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Abstract

In this paper, we consider a discrete-time random signal detection problem under the presence of additive noise
exhibiting weak dependence. We derive the test statistic of the locally optimum detector under a weakly dependent noise
model. The performance characteristic of the locally optimum detector is analyzed and compared with that of the
square-law detector in term of asymptotic relative efficiency. ( 1999 Elsevier Science B.V. All rights reserved.

Zusmmenfassung

In dieser Arbeit wird ein Problem der Detektion eines zeitdiskreten Zufallssignals in additivem Rauschen mit
schwacher Abhängigkeit betrachtet. Die Teststatistik des lokal optimalen Detektors wird für ein Rauschmodell mit
schwacher Abhängigkeit abgeleitet. Die Leistungsfähigkeit des lokal optimalen Detektors wird analysiert und mit jener
des quadratischen Detektors in Hinblick auf asymptotische relative Effizienz verglichen. ( 1999 Elsevier Science B.V.
All rights reserved.

Résumé

Dans cet article, nous considérons un problème de détection de signaux aléatoires en temps discret, en présence de
bruit additif présentant une dépendance faible. Nous dérivons une statistique de test du détecteur localement optimal
sous un modèle de bruit faiblement dépendant. La performance du détecteur localement optimum est analysée et
comparée avec celle du détecteur à loi quadratique, en termes d’efficacité relative asymptotique. ( 1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The signal detection problem in noisy observa-
tions has been considered in many previous studies.
Among the various signal detection problems,
weak signal detection has been of much interest in
detection theory and applications. Among the typi-
cal investigations on locally optimum (LO) de-
tectors are those considered in [1,4,5,11].

It has been commonly assumed that the additive
noise samples are statistically independent. In prac-
tice, however, this assumption is often violated, and
the optimum detectors designed under this assump-
tion are no longer optimum in practice. Such a situ-
ation becomes more realistic as the sampling rate
gets higher. Thus, investigations on signal detec-
tions in dependent noise should be considered.
Among the investigations on the general optimum
detection problem under various dependent noise
models, including the /-mixing noise model, m-
dependent noise model, and transformation noise
model, are those in [2,3,7,9]. When the dependence
of noise is weak, we can use a simpler model. In
[6,8], the first order moving average (MA) of an
i.i.d. random process is considered as a weakly
dependent noise model. In these studies, however,
detection schemes only for known signals were
considered.

In this paper, we will investigate the LO detec-
tion for random signals under a weakly-dependent
noise model. The weakly dependent noise will be
modeled as the first order MA of an i.i.d. random
process.

2. Observation model

In this paper, we will consider the detection of
discrete-time random signals in weakly dependent
noise environment. Let H

0
be the null hypothesis

and H
1

be the alternative hypothesis. Then, the
observation model can be written as

H
0
: X

i
"¼

i
, i"1,2,2,n,

H
1
: X

i
"hs

i
#¼

i
, i"1,2,2,n,

(1)

where MX
i
N are the observations, M¼

i
N are the

weakly-dependent noise components, h is the signal

strength parameter, Ms
i
N are the random signal

components with mean zero and variance Mp2
i
N.

Then, the detection problem becomes a problem of
the hypothesis decision based on the n observa-
tions, MX

i
N.

Weakly dependent noise can generally be
modeled by the Volterra expansion with Volterra
kernels and independent random processes [10].
This model, however, is almost intractable to
handle because of the infinitely many terms of the
expansion. In [6,8], simple first-order bilateral and
unilateral MAs of an i.i.d. random process are used
to model the weakly dependent noise, respectively.
These two MA models are simple and good ap-
proximations to a weakly dependent noise. In addi-
tion, it was shown that the LO detector designed
under one MA noise model can be applied with
slight changes in the other one with almost the
same performance [6]. In this paper, we will as-
sume that the weakly dependent noise ¼

i
,

i"1,2,2,n, are the unilateral MA of i.i.d. random
variables:

¼
i
"e

i
#oe

i~1
u
i~2

, (2)

where e
i
, i"1,2,2,n, are the i.i.d. random vari-

ables with common p.d.f. f
%
. The p.d.f. f

%
is even

symmetric with bounded continuous derivatives
and satisfies the regularity condition [4]. This
model is not only an analytically tractable model
but also a good representation of practical depen-
dent noise when the dependence is weak. Here, o is
called the dependence parameter determining the
correlation coefficient of ¼

i
, and u

i
is the unit step

sequence, i.e., u
i
"0 when i(0 and u

i
"1 when

i*0.
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3. The locally optimum detector

Let us define

/(XDh)"PRn

fw(X!hs) fs(s) ds, (4)

where Rn is the set of all n-tuples of real numbers.
Then, the LO test statistic can be calculated by [4]

¹
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where l is the order of the first nonzero derivative
of /(X Dh) at h"0. From Eqs. (3) and (4), it is easily
seen that

d2/(X Dh)

dh2 Kh/0

"PR n

d2fe(Y!hc)
dh2 Kh/0

fs(s) ds

"PR n

fe(Y ) fs(s)C
n
+
i/1

n
+

j/1,jEi

c
i
c
j
g
LO

(½
i
)

]g
LO

(½
j
)#

n
+
i/1

c2
i
h
LO

(½
i
)Dds (6)

and

/(X D0)"PRn

fe(Y ) fs(s) ds"fe(Y), (7)

where g
LO

(x)"!f @
%
(x)/f

%
(x) and h

LO
(x)"f A

%
(x)/f

%
(x).

Then, the LO test statistic can be obtained as

¹
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where EsM ) N is the expectation over s.
It is easily seen that the test statistic (8) is the

same as that obtained for independent noise except

that we use weighted averages ½
i

of the output
samples and correlation coefficients of the weighted
averages c

i
of the signal components. It is also seen

that n!1 memories are required to implement the
LO detector. Thus, it is clear that the implementa-
tion of the LO detector becomes more inefficient as
the sample size gets larger. We can, however, obtain
finite memory approximations, which are easy to
implement and have less memory requirement, to
the exact LO detector from (8) by ignoring higher-
order terms of o. The performance of the exact LO
detector is then the upper bound of that of those
finite memory detectors. Due to the fact that DoD is
small, the performance of the finite memory de-
tectors is expected to be acceptable, which was
shown in [6] for the known signal case.

4. Performance analysis

In this section, we will analyze the performance
characteristics of the LO detector under the weakly
dependent noise model. The performance of the LO
detector for known signals in weakly dependent
noise was studied and shown to be better than
those of the linear correlator and the sign correla-
tor in [6]. In this paper, the performance of the LO
detector will be compared with that of the square-
law (SQ) detector whose test statistic is

¹
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"

n
+
i/1

X2
i
. (9)

In comparing the asymptotic performance of two
detectors, the asymptotic relative efficiency (ARE)
is generally employed. Under some regularity con-
ditions [4] the ARE

1,2
of detector D

1
with respect

to detector D
2

can be expressed as ARE
1,2

"m
1
/m

2
,

where m
i
is the efficacy of D

i
calculated as
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In Eq. (10), ¹
i

denotes the test statistic of the
detector D

i
, EM¹

i
DH

1
N denotes the expected value of

¹
i
under the alternative hypothesis, and »M¹

i
DH

0
N

denotes the variance of ¹
i

under the null hypo-
thesis.
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Theorem 1. The efficacy of the LO detector is
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Theorem 2. The efficacy of the SQ detector is
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The proofs of Theorems 1 and 2 are shown in
Appendix A.

Now, let us consider some examples to show the
asymptotic performance of the LO detector more
explicitly.

Example 1. Let r
s
(i, j)"r@i~j@, where 0(DrD(1

and f
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Fig. 1. ARE
LO,SQ

for various values of o when the noise is the
first-order MA of the i.i.d. Gaussian process.

Fig. 2. ARE
LO,SQ

for various values of o when the noise is the
first-order MA of the i.i.d. symmetric logistic process.

Example 2. Let r
s
(i, j)"r@i~j@, where 0(DrD(1

and f
%
(x)"e~x/(1#e~x)2. Then, we have I

1
( f

%
)"

1
3
, I

2
( f

%
)"1

5
, m

4
" 7

15
n4 and p4

%
"1

9
n4. Then, from

Theorems 1 and 2, the ARE
LO,SQ

is

ARE
LO,SQ

"

n4(4#13o2#4o4)

2025

]A
10(1!or)K(o,r)

(1#or)3(1!o2)3(1!r2)

!

(1!or)2

(1!o2)2(1#or)2B. (30)

In Figs. 1 and 2 , the ARE
LO,SQ

derived in the two
examples are plotted for various values of o when
the additive noise is the first-order MA of the i.i.d.
Gaussian process and the i.i.d. symmetric logistic
process, respectively.

5. Concluding remark

In this paper, we considered the LO detection of
random signals in additive weakly dependent noise.
The test statistic of the LO detector for random
signals in weakly dependent noise was derived and
shown to have the same structure as that for inde-
pendent noise with additional weighted averaging
of output samples. The asymptotic performance of
the LO detector was analyzed and compared to
that of the SQ detector in terms of ARE. It was
shown that the LO detector outperformed the SQ
detector more as the correlation coefficient of the
signal differed more from that of the noise.
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Appendix A.

Proof of Theorem 1. Using x
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Proof of Theorem 2. Using c
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