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ABSTRACT: The mechanical response of rock masses to loading and excavation, especially in low stress environments, is 
significantly affected by discontinuities. This paper examines the practical modelling of rock mass problems with explicit 
representation of discontinuities using special joint elements in the Finite Element Method. The paper discusses why it is possible 
to use this approach for routine, practical engineering analysis today. Through a few examples, it also presents the merits of the 
approach such as the ability to capture a range of mechanisms and scale effects due to discontinuities. 

1. INTRODUCTION 
The idea of using the continuum-based finite element 
method (FEM) to model blocky rock mass behaviour has 
been around since the 1960s. The first joint or interface 
element for simulating the behaviour of discontinuities 
was proposed then [1]. Over the years however, 
discontinuum-based numerical approaches such as the 
Discrete Element Method (DEM) and Discontinuous 
Deformation Analysis (DDA) surpassed the FEM as the 
tools of choice for modelling blocky rock masses.  

This paper briefly discusses the effects discontinuities 
(the terms discontinuities and joints will be used 
interchangeable throughout the paper) have on rock mass 
response to excavation and mechanical loading. It will 
argue that the Shear Strength Reduction (SSR) method, 
combined with modern computing advances, has made it 
possible to apply the FEM to the practical and routine 
engineering of structures in discontinuous rock masses 
as originally envisaged. 

Through a few examples, the paper will show how the 
FEM captures a spectrum of discontinuous rock mass 
behaviours ranging from individual block movements to 
continuum-like mechanisms, and combined modes. One 
of the examples looks at step-path (en-echelon) failure 
(that combines slip along joints with shearing through 
intact rock) determined by the FEM. The paper will 

outline two unique advantages of the FEM compared to 
pure discontinuum approaches. 

2. RESPONSE OF DISCONTINUOUS ROCK 
MASSES TO EXCAVATION AND 
MECHANICAL LOADING 
The influence of discontinuities on the mechanical 
response of rock masses to loadings and excavation has 
long been recognized [1, 2, 3, 4]. In some situations 
(especially in low stress environments such as are 
encountered in slopes and near surface excavations) 
discontinuities exert greater influence on behaviour than 
do intact rock properties. 

Discontinuities can cause the distribution of stresses and 
displacements induced in a rock mass to differ 
significantly from those predicted by classical elastic or 
elasto-plastic theories for homogeneous continua. The 
strength, deformation modulus, and stress-strain 
responses to loading of rock masses can be all affected 
by discontinuities in non-linear and anisotropic fashion. 
As well, discontinuities can make it very difficult to 
predict the strength and deformation characteristics of 
rock masses. 

The deformations of discontinuities contribute greatly to 
the behaviour of discontinuous rock masses under 
excavation. Discontinuities generally exhibit brittle 
(strain softening) behaviour; they typically have residual 
strength that is much lower than peak strength [2]. This 



leads to the development of progressive failure 
mechanisms. When the strength of a segment of a joint 
is reached, the material in this stressed zone yields and 
deforms considerably, while the strength drops to the 
lower, residual value. These developments cause stresses 
to be redistributed to adjacent rock areas and joint 
segments. The new distribution of stresses may then 
cause other material and joint segments to similarly fail. 
The failure continues to propagate until an equilibrium 
state is attained or complete collapse results.  

The modes in which structures and excavations in rock 
masses fail are another way in which joints influence 
rock mass response. Because these failure modes change 
with the strength and deformation properties of both 
intact rock and joints, and the distribution of joints [2, 
5], it can be difficult to anticipate or predict the manner 
in which failure can occur. 

3. REALISTIC NUMERICAL MODELLING OF 
DISCONTINUOUS ROCK MASS PROBLEMS  
One approach of incorporating the influence of joints on 
rock mass strength in numerical analysis is through 
modelling of rock masses as continua with reduced 
deformation and strength properties [6]. Methods based 
on this approach, although useful, are not able to model 
deformation mechanisms involving movements such as: 
separation, slip and rotations of blocks [7]. 
Unfavourably dipping joints, for example, can create 
unstable conditions in rock slopes or tunnels that may be 
difficult to model with continuum methods. As will be 
demonstrated in the examples section of this paper, 
another weakness of continuum-based theories is that in 
constant stress environments the stability of an 
excavation is independent of opening size. In reality this 
is not the case due to the effects of discontinuities. 

The realistic modelling therefore of the mechanical 
behaviour of joints is a prerequisite for the successful 
numerical modelling of discontinuous rock. Such models 
better capture the broad range of behaviours caused by 
interactions between the different moduli and strengths 
of intact rock, joints and support. 

To model the wide-ranging behaviours of discontinuous 
rock masses, special numerical techniques such as the 
DEM [3, 8] and DDA [9] were developed. (Widely-used 
codes for such analysis include UDEC [10]). These 
methods explicitly model a rock mass as an aggregate of 
discontinuities and intact material. The DEM and DDA 
have essentially been the de facto methods for 
simulating discontinuous rock masses.  

Through the development of special elements – joint 
elements (sometimes also known as interface elements) 
[1, 11, 12] – the continuum-based Finite Element 
Method (FEM) can also be applied to the modelling of 

discontinuous rock masses. These elements can have 
either zero thickness or thin, finite thickness. They can 
assume linear elastic behaviour or plastic response when 
stresses exceed the strengths of discontinuities.  

Due to the fundamental continuum analysis condition of 
displacement compatibility at element nodes, FEM 
programs do not allow the detachment of individual 
blocks [13]. Nevertheless they are very useful for 
determining the onset of instability (collapse 
mechanisms) or large movements that cause block 
detachments. 

Hybrid numerical methods such as those that combine 
FEM and DEM are another category of powerful tools 
for modelling discontinuous rock masses. ELFEN [14] is 
one such program. A most recent approach for 
modelling jointed rock mass behaviour is the synthetic 
rock mass approach [15]. 

4. FRACTURE NETWORKS 
The generation of a network (system) of discontinuities, 
which is representative of field conditions, is one of the 
most important steps in modelling a jointed rock masses. 
Characterization of discontinuity networks in order to 
generate them is not a trivial step though. First, adequate 
description of the discontinuities in a geological domain 
is difficult, because of the three-dimensional nature of 
discontinuities and their partial exposure in outcrops or 
excavations [16, 17]. Because only parts of 
discontinuities are visible on exposed faces, thorough 
description of exposed samples is not possible. At the 
same time, indirect methods of measurement are not 
very accurate [17].  

The geometric attributes (orientation, length, spacing, 
persistence, etc.) of the discontinuities in a set are not 
deterministic values but random [18]. However they 
exhibit patterns that may be approximated with some 
statistical distributions and, as a result, discontinuities in 
a network are best described as a group with statistical 
characteristics in space [17, 19]. 

Fracture network models are useful tools for generating 
systems of discontinuities for blocky rock mass 
modelling [17]. Approaches exist for characterizing the 
fractures in a rock mass and simulating them according 
to some fracture network model. Some of these models 
are implemented and described by Dershowitz et al [20] 
in a program known as FracMan. With the computing 
power available today, it has become possible to 
generate networks of discontinuities numerically and to 
simulate the mechanical behaviour of each member of a 
network. 



5. THE SHEAR STRENGTH REDUCTION 
METHOD AND PRACTICAL BLOCKY ROCK 
MASS MODELLING WITH THE FEM 
Although the idea of modelling rock masses with the 
FEM and joint elements has been around since the 
1960s, it is only recently however that the method is 
being applied to routine rock engineering analysis. In 
addition to widespread availability of powerful desktop 
and laptop computers, the development of the shear 
strength reduction (SSR) method of slope stability 
analysis with the FEM has contributed greatly to the 
ability to use the FEM for practical blocky rock mass 
[21]. Quite a few publications have shown that the SSR 
method is a powerful alternative to conventional limit 
equilibrium methods of slope stability analysis, and have 
highlighted its several advantages (including the ability 
to solve a broader range of problems) [22 – 28].  

5.1. Non-Traditional Use of the SSR Method 
Because the SSR method is able to reveal the formation 
and progress of failure mechanisms, it can be readily 
applied to non-slope problems. For example, for the 
stability analysis of a tunnel, when the contour patterns 
of displacement or maximum shear strain are arranged in 
order (e.g. from the lowest strength reduction factor to 
the highest), they show the sequence in which blocks 
and joints move and deform. This often gives a good 
picture of how the failure mechanism is formed and how 
it propagates from zone to zone. 

5.2. A Note on Joint Stiffness and Strength 
Parameters 

The shear and normal stiffness parameters of 
discontinuities, as mentioned earlier, as well their 
strength parameters, influence the behaviour of rock 
masses. Unfortunately though, information on these 
parameters is not easily obtained [4]. In many practical 
situations however, knowledge of the ratios of these 
parameters for the different types of discontinuities is 
adequate enough to generate reasonable answers. 
Goodman et al [1] provide a good discussion on the 
factors that most affect joint parameters. The ideas they 
express provide a good framework for making 
reasonable guesses at joint stiffness and strength 
parameters based on geological observations.  

An example is the description of how the filling material 
in joints influences stiffness and strength. Goodman et al 
[1] describe that clay infill generally leads to low normal 
and shear discontinuity stiffness, and also leads to low 
strength, except when joint surfaces in strong rock 
interlock extensively and therefore require shearing of 
asperities during failure. Another example they give is 
the role of joint cementation by quartz, calcite or 
epidote. Such cementation gives rise to joint properties 
that are as good as or even stronger than those of intact 
rock material.  

5.3. Advantages of the FEM in the Modelling of 
Discontinuous Rock Masses 

In the authors’ opinion, the FEM enjoys two unique 
advantages over the DEM and DDA: 

1. It facilitates integrated analysis in which the 
different components (such as foundations, rock, 
joints and support elements) of a rock 
engineering system interact with each other. The 
FEM can help establish the interactions between 
these different components, and 

2. It can handle cases in which fractures intersect 
in a manner such that discrete blocks may not 
necessarily be formed, i.e. cases in which joints 
may terminate within intact rock and not only at 
intersections with other joints. One of the 
examples in the paper will show how the method 
can handle rock slope failures involving step-
path mechanisms. 

6. EXAMPLES 
Three examples were analyzed in order to investigate the 
application of the FEM to problems in discontinuous 
rock masses. Each of the first two examples involves 
two rock mass cases: a homogeneous rock mass with no 
joints, and a second case in which the rock mass has two 
joint sets. This helps assess the joint effects such on the 
stability of excavations and distribution of stresses.  

The third example is designed to illustrate the versatility 
of the FEM by analyzing a step-path failure mechanism. 
This is done without use of any special assumptions or 
treatment; the mechanism is uncovered from 
straightforward SSR analysis. 

 The FEM computational tool used to carry out the 
analysis is a version of the Rocscience program Phase2 
[29] with an automatic generator of discontinuity 
networks and joint sets.   

 
6.1. Example 1 – Stability of a Cut in Continuous 

and Discontinuous Rock Masses 
This example explores the stability of a rock cut that 
slopes at one horizontal to two vertical (1H: 2V). 
Different heights (15m, 30m, 45m and 60m) of the cut 
are considered. The basic geometry of a slope height of 
60m is shown on Figure 1. The intact rock and joint 
properties used in the example are described in Table 1.  

The results of the analyses of slope heights of 15m, 30m, 
45m and 60m, respectively, for the cases of 
homogeneous and discontinuous rock masses are given 
in Table 2. 

The results show that for near-surface excavations size 
effects on stability exist even for conventional elasto-



plastic assumptions on material behaviour. This is due to 
the fact that in such cases the magnitudes of the stresses 
driving failure are directly related to excavation or slope 
size. As the height of the slope increases the factor of 
safety reduces. The results also show that presence of the 
joints reduced the factor of safety for the slopes. 

Table 1: Properties of Intact Rock and Joints 
Material Properties 
Intact Rock Unit weight = 0.027 MN/m3 

Young’s Modulus = 20000 MPa 
Poisson’s ratio = 0.3 
Tensile strength = 0 MPa 
Cohesion = 1 MPa 
Friction angle = 30 degrees 
Dilation angle = 0 degrees 

Joints Dip (of Joint Set 1) = 0 degrees 
Dip (of Joint Set 2) = 45 degrees 
Spacing = 3m 
Normal stiffness = 100000 MPa/m 
Shear stiffness = 10000 MPa/m 
Tensile strength = 0 MPa 
Cohesion = 0.5 MPa 
Friction angle = 20 degrees 

 
Table 2: Factors of Safety for the Different Slope Cases 
Slope Height Factor of Safety 

for Homogeneous, 
Unjointed Rock 
Mass 

Factor of Safety 
for Discontinuous 
Rock Mass 

15m 11.01 6.66 
30m 5.6 3.5 
45m 3.93 3.48 
60m 3.12 1.86 

 
Of also great interest in this example is the analysis of 
the critical failure mechanisms for the different slope 
cases. The failure mechanism of the slopes can be 
identified from the contours of maximum shear strain 
from SSR finite element analysis. We will examine of 
these contours (as shown on Figures 2 and 3) for the 
smallest (15m) and largest (60m) slope heights. Figure 
2a depicts a rotational-type failure for the case of the 
homogeneous 15m slope. The failure mechanism for the 
corresponding 15m cut in the discontinuous rock mass 
(Figure 2b) involves block movements (sliding) relative 
to each other. In the 60m slope height cases (Figures 3a 
and 3b), the contours of maximum shear strain and total 
displacement for the discontinuous rock mass slope 
indicate a failure mechanism with greater shearing 
through intact rock in the upper right zones of the slope.  

Another case of the 60m slope was analyzed in which 
the joints in the rock mass were more closely spaced 
(spacing of 1.25m). As seen on Figure 3c, the failure 
surface for this case has acquired a much more rotational 
character. Its factor of safety was 1.78. 

These results indicate the range of mechanisms the FEM 
is able to capture. The results are also consistent with 

rock mass behaviour widely noted in rock slope stability 
that the larger (the term ‘large’ in this case refers to the 
ratio of slope height to joint spacing) a slope, the closer 
the failure mechanism gets to the rotational-type failures 
common to soils. 

 
Figure 1a: Basic geometry of 60 m rock cut in homogeneous 
rock mass. 

 
Figure 1b: Basic geometry of 60 m rock cut in discontinuous 
rock mass. 

6.2. Example 2 – Distribution of Major Principal 
Stress around Circular Hole  

This example examines the distribution of stresses 
around the perimeter of a circular hole in two rock mass 
types: a homogenous, unjointed rock mass, and a rock 
mass with two joint sets (one horizontal and the other 
vertical). For the jointed rock mass, the joints in each set 
had lengths of 10m, length persistence of 0.8, and 
spacing of 3m. The resulting jointing pattern is shown on 
Figure 3. Because of the presence of rock bridges (due to 
the fractional length persistence), some of the joints 
terminated in intact rock and created ‘partial’ blocks.  



 
Figure 2a: Contours of maximum shear strain for 15 m cut in 
discontinuous rock mass. The contours indicate a rotational 
type failure. 

 
Figure 2b: Contours of maximum shear strain for 15 m cut in 
discontinuous rock mass. The contours indicate a failure 
mechanism involving block movements. (The block 
displacements shown on the figure are exaggerated just to 
make it easier to visualize the movements and deformations.) 

 
Figure 3a: Contours of maximum shear strain for 15 m cut in 
discontinuous rock mass. The contours indicate a rotational 
type failure. 

 

 
Figure 3b: Contours of maximum shear strain for 60 m cut in 
discontinuous rock mass. The contours indicate a failure 
mechanism involving block movements and some shearing 
through intact rock. 

 
Figure 3c: Contours of maximum shear strain for 60 m cut in 
highly discontinuous rock mass (joints at 1.25m spacing). The 
failure mechanism has acquired a more rotational character. 

A constant in situ stress field of 10 MPa in both the 
horizontal and vertical directions was assumed. The 
stresses around three different excavation sizes (1m, 5m 
and 10m diameters) were studied. Two cases on intact 
rock behaviour were considered – elastic, and elastic-
perfectly plastic stress-strain behaviour. The properties 
assumed for the intact rock and the joints are provided in 
Table 3.  



Table 3: Properties of Intact Rock and Joints 
Material Properties 
Elastic Rock  Young’s Modulus = 20000 MPa 

Poisson’s ratio = 0.3 
Plastic Rock Young’s Modulus = 20000 MPa 

Poisson’s ratio = 0.3 
Tensile strength = 0 MPa 
Cohesion = 1 MPa 
Friction angle = 30 degrees 
Dilation angle = 0 degrees 

Joints Normal stiffness = 100000 MPa/m 
Shear stiffness = 10000 MPa/m 
Tensile strength = 0 MPa 
Cohesion = 0.5 MPa 
Friction angle = 20 degrees 

  
To help analyze the impact the joints had on both the 
elastic and elasto-plastic rock materials in the simplest 
manner, the mean, minimum and maximum values of 
major principal stress along the excavation perimeter 
were calculated. These results are in Table 4. They 
indicate the following: 

1. For both the elastic and elasto-plastic unjointed 
rock, the distribution of stresses was practically 
independent of excavation size. (The small 
differences were more as a result of differences 
in meshes.)   

2. The presence of joints reduced the mean major 
principal stress value for both the elastic and 
elasto-plastic rock. 

3. The larger the excavation the smaller the scatter 
in results (minimum and maximum stress 
values) around the excavation perimeter. The 
reduction in the scatter of stress values with 
increasing excavation size can be interpreted as 
a trend towards the behaviour exhibited in 
homogeneous, unjointed rock. 

Table 4: Major Principal Stress Results around the Excavation 
Perimeter 

Major Principal Stress 
(MPa) 

Case Hole 
Diameter 

Mean Min Max 
1m 19.8 19.75 20.0 
5 m 19.3 18.6 20.3 

Elastic 
homogeneous 
rock 10 m 18.6 18 19.4 

1m 18.9 3.1 31.2 
5 m 14.5 3.4 28.2 

Jointed, elastic 
rock mass 

10 m 10.2 2.8 25.4 
1m 6.9 6.6 7.3 
5 m 7.3 6.6 8.5 

Elastic-perfectly 
plastic 
homogeneous 
rock 

10 m 7.2 6.6 7.9 

1m 7.8 3.2 9.8 
5 m 6.5 3.2 8.7 

Jointed, elasto-
plastic rock mass 

10 m 5.6 2.8 7.7 
 

 
Figure 3: Jointing pattern for Example 2. Notice the 
termination of some joints in intact rock. 

 
Figure 4a: Contours of major principal stress for the elastic-
perfectly plastic, unjointed rock. 

 

 
Figure 4b: Contours of major principal stress for the elastic-
perfectly plastic, jointed rock mass. 

 



 
Figure 5: Geometry of slope for Example 3.  

 
6.3. Example 3 – Step-Path Failure of Rock Slopes 
Example 3 looks at the failure mechanism of a simple 
slope with three en-echelon joints. The geometry of the 
slope is shown on Figure 5. The intact slope rock had the 
following deformation and strength properties: 

Young’s modulus = 20000 MPa, Poisson’s ratio = 0.3, 
tensile strength = 0 MPa, cohesion = 0 MPa, friction 
angle = 25 degrees, and dilation angle = 0 degrees.  

The stress-strain behaviour of the rock was assumed to 
be elastic-perfectly plastic, i.e. the residual strength 
properties were taken to the same as the peak parameters 
given above.The joints had a dip of 36 degrees. They 
also had normal stiffness = 100000 MPa/m, shear 
stiffness = 10000 MPa/m, cohesion = 0 MPa, and 
friction angle = 35 degrees. 

The failure mechanism predicted by finite element SSR 
analysis of the slope is shown on Figure 6 (the contours 
of maximum shear strain are shown). The SSR analysis 
predicted a step-path failure mechanism with a factor of 
safety of 1.26. 

The critical mechanism combined slipping along 
discontinuity faces with shearing through intact rock (as 
evident on the contours of maximum shear strain).  

7. DISCUSSIONS 
The central argument of this paper is that due to the 
coming together of numerical modelling improvements 
such as the shear strength reduction method, automatic 
means for generating fracture networks, numerical 
formulations for joint behaviour, and the widespread 
availability of computing power, it is now possible to 
perform practical analysis of discontinuous rock masses 
with the FEM. A primary advantage of the FEM is 
versatility: it can model a broaden range of continuous 
and discontinuous rock mass behaviours without a priori 
assumptions on failure mechanisms. As a result, it is 
possible to examine different design ideas, and obtain 
meaningful results or make meaningful predictions with 
a single tool.  

 
Figure 6: Step-path failure mechanism (as depicted by 
contours of maximum shear strain) for Example 3 predicted by 
SSR analysis. 

This does not in any way preclude use of other 
approaches such as the DEM and DDA though. There 
certainly are many situations, such as those involving 
large strains or complete separation of blocks, which 
would require DEM and DDA modelling tools.  

In many cases of practical geotechnical engineering, the 
understanding of basic mechanisms of behaviour and 
their likely bounds, rather than precise quantitative 
details, is most important [30]. Burland [30] writes the 
following about the engineering of a solution for 
arresting the tilt of the Leaning Tower of Pisa: “It is true 
to say that the identification of the form of motion of the 
foundations of the tower is the single most important 
finding in the development of a strategy for stabilization. 
No amount of sophisticated analysis that did not capture 
the mechanism of leaning instability would have led to 
the adopted stabilization strategy.” This is precisely the 
manner in which the authors believe FEM modelling of 
blocky rock masses should be used. Its worth to rock 
engineers lies in its ability to help identify overall 
behaviour and develop remedial measures. 
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