АНАЛИЗ УСЛОВИЙ РАБОТЫ БАТАРЕЙ КОНДЕНСАТОРОВ В СИСТЕМЕ С НЕЛИНЕЙНЫМИ НАГРУЗКАМИ

АСОМОАХ ДЖОШУА., магистр; ЛАРИНА И.И, доц., к.т.н.

(Донецький національний технічний університет, м. Донецьк, Україна)

Установка батарей конденсаторов (БК) в системах электроснабжения $6-10~\mathrm{kB}$ с источником высших гармоник тока может приводить к их параллельному резонансу с сетью. Это приводит к увеличению токов высших гармоник (ВГ), протекающих через питающую сеть и конденсаторы, до величины в десятки и сотни раз превышающие значения потоков высших гармоник и их источников.

В работе проверена возможность возникновения резонанса в сети электроснабжения завода ВАОК. Для питания тягового внутризаводского транспорта используется выпрямительная подстанция, на которой установлена установка ВАКЛЕ – 2000 — 600Н — УХЛУ. Упрощенная схема замещения, составленная по полной электрической схеме участка сети, представлена на рис.1.

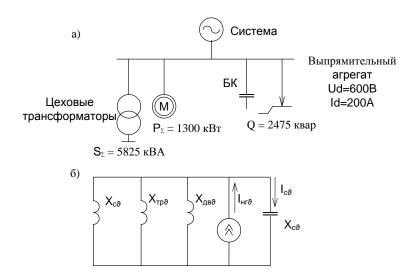


Рисунок 1 — К расчету токов ВГ: а) упрощенная исходная; б) схема замещения для v-й гармоники

Конденсаторную батарею необходимо проверять на возможность возникновения резонанса токов по условию

$$g_{XL} = X_C / g$$

откуда определяется номер гармоники, при которой возможен резонанс

$$\mathcal{G} = \sqrt{X_C / X_L}$$

Отстройка от резонанса выполняется для наименьшей из частот высших гармоник в месте подключения конденсаторов, поэтому для более высоких гармоник результирующее сопротивление реактора и конденсаторов будет всегда индуктивным.

Расчет потоков ВГ, протекающих в электрических цепях, производится по схеме замещения, составленной для каждой гармоники в отдельности. При этом в схеме замещения объединяются концы всех нагрузочных ветвей, вентильных

преобразователей и питающей энергосистемы. Сопротивление схемы замещения v-й гармоники определяется согласно [1].

Первая гармоника тока нагрузки выпрямителя составила

$$I_1 = 0.9 \frac{U_{d \text{ HOM}} \cdot I_{d \text{ HOM}}}{\sqrt{3} \cdot U_{\text{HOM}} \cdot \cos \varphi} = 0.9 \frac{600 \cdot 2000}{\sqrt{3} \cdot 6000 \cdot 0.7} = 148.6 \text{ A}.$$

Величины токов учитываемых гармоник (5, 7, 11 ,13) равнялись $I_5 = 26,8$ A; $I_7 = 19,12$ A; $I_7 = 12,17$ A; $I_{13} = 10,3$ A.

Ток батареи конденсаторов рассчитывается по формуле

$$I_C = \frac{Q_{EK}}{\sqrt{3 \cdot U_{HOM}}}$$
.

Величины токов при максимальной (2475квар) и минимальной (450квар) мощности БК равны $I_{C\,max}=238$ А и $I_{C\,min}=43$ А.

Расчет коэффициентов кратности и токи гармоник в цепи батареи конденсаторов приведен в табл. 1.

Таблица 1 – Коэффициенты кратности и токи ВГ в цепи БК

Номер	$Q_{\it BK}$ = 450 квар		$Q_{\mathit{EK}} = 2475$ квар	
гармоники	$k_{B \ \it v}$	I_{CB} , A	$k_{B\upsilon}$	I_{CB} , A
5	0,129	3,46	-1,71	45,8
7	0,29	5,52	5,22	99,8
11	1,24	15,1	1,48	18
13	3,4	35,1	1,3	13,45

Эквивалентный ток батареи и кратность перегрузки вычислялся только при $Q_{\rm БК}$ так как I_B при $Q_{\rm БK}$ меньше тока батареи конденсаторов (35,1 < 43A).

Величины эквивалентного тока и кратности перегрузки составляют:

$$I_{\mathcal{H}B} = \sqrt{238^2 + 45.8^2 + 99.8^2 + 18^2 + 13.45^2} = 263.1 \text{ A},$$

$$k_{II} = \frac{263.1}{238} = 1.105.$$

Результаты расчета показали, что перегрузка конденсаторов составляет 10,5%, что меньше, чем 15% при которой запрещается эксплуатация КУ.

Параметры сети обуславливают близость к резонансу на 7 гармонике, величина которой наибольшая в гармоническом спектре для данной установки.

БІБЛІОГРАФІЧНІ ДАНІ

1. Овчаренко А.С., Технико-экономическая эффективность систем электроснабжения промышленных предприятий./ Овчаренко А.С., Рабинович М.Л.// Киев: Техника, 1977. – 172с.