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ABSTRACT

We propose a proof-of-concept prototype wheelchair
with legs for people with motor disabilities with the
objective of demonstrating the feasibility of a completely
new approach to mobility.  Our prototype system is a
vehicle equipped with powered wheels and legs and is
capable of traversing uneven terrain and circumventing
obstacles such as steps and ditches.  The design combines
the advantages of legged locomotion (versatility,
adaptability) with wheeled locomotion (reliability, superior
stability).  When the wheels and legs are employed
together, the system is redundantly actuated.  In this paper,
we describe a coordination scheme that allows us to
optimize the tractive capabilities of the vehicle.  The basic
underlying idea is to minimize the tendency of the wheels
and legs to slip.  This is accomplished by minimizing the
largest friction angle at all the locomotion elements.  We
briefly describe our experimental prototype.  Simulation
and  experiments are used to demonstrate the performance
of the active traction optimization scheme.

INTRODUCTION

Motorized wheelchairs with sophisticated controls are
available for people with disabilities. While they can
locomote on prepared surfaces most are unable to surmount
common obstacles like steps and curbs [11]. (See
ANSI/RESNA WC/10 or ISO 7176/10 standards for
determination of the obstacle climbing ability of a
wheelchair).  Architectural modifications such as curb cuts,
ramps and elevators improve accessibility but are primarily
limited to new buildings [7].  Wheelchair users often
cannot enjoy strolling on beaches nor can they easily cross
muddy patches and potholes.  Previous research in
rehabilitation engineering has concentrated primarily on
constructing a better wheelchair [5,9,15,16].  Many special
purpose aids including stair climbers and customized
outdoor buggies have been developed to solve specific
problems [5,13,15] but they tend to be customized to a
particular environment and are not versatile.

A legged vehicle allows locomotion in environments
cluttered with obstacles where wheeled or tracked vehicles
cannot be used.  It is inherently omni-directional, provides
superior mobility in difficult terrain or soil conditions
(sand, clay, gravel, rocks etc.) and provides an active
suspension.  The legs also give the chair versatility and
allow it to be re-configured.  When stationary, one of the
legs can be used as a manipulator in order to perform

simple tasks such as reaching for objects or pushing open
doors.

In the past two decades, several articulated legged
vehicles have been designed and built in research
laboratories.  Most work has focused on statically stable
locomotion, characteristic of insects [17], in which the legs
maintain the vehicle in static equilibrium.  This is
contrasted with dynamically stable locomotion  [12] that is
exhibited by galloping four-legged animals and walking (or
running) humans.  A number of proof-of-concept statically
stable legged robots have been built [2,8,10,17].  Although
they are more reliable and are likely to be more acceptable
to consumers than dynamically stable machines, they are
still suffer from one major disadvantage.  It is difficult to
achieve the required strength/weight ratio using
conventional actuators.  With a payload of 100 kgs, if we
assume a maximum vehicle weight of as much as 100 kgs
(net weight = 200 kgs) for a four-legged vehicle, each leg
must be able to support a minimum of 100 kgs (in
addition to providing the tractive force).  This translates to
a payload/weight ratio of over 4 for each leg.  It is difficult
to design a moderately-expensive, compact actuation
system with such stringent requirements.  By increasing
the number of legs, the required strength/weight ratio
becomes smaller but the design becomes less compact.
Further our informal survey of potential consumers
indicated that a four-legged walking chair [20]  is likely to
suffer from a lack of acceptance by consumers.

In a conventional wheeled system, the payload is
supported passively while the actuation system only has to
provide the tractive force.  Motivated by this observation
we considered an alternative design that combines the
advantages of legged locomotion (versatility, adaptability)
with wheeled locomotion (reliability, superior stability).
Our prototype of such a hybrid vehicle with four wheels
(two powered) and two legs is shown in Figure 1. Such a
hybrid vehicle is capable of using powered wheels to
navigate on a flat surface with relatively low actuator
forces/torques.  The legs are used primarily on uneven
terrain and on unprepared surfaces.  A maneuver similar to
walking is accomplished by using the legs to drag the
vehicle forward or push backward.  The legs are used with
wheels to provide additional traction on slippery surfaces.
Alternative uses include use as manipulators, to push open
doors or move obstacles.

When the wheels and legs are used in conjunction, the
system is statically indeterminate.  Because we actively
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control the wheels and legs, it is necessary to resolve this
actuator redundancy [6].  In this paper, we describe a
coordination scheme that allows us to optimize the tractive
capabilities of the vehicle.  This is accomplished by
minimizing the largest friction angle at all the locomotion
elements.  We briefly describe our experimental prototype.
Simulation and  experiments are used to demonstrate the
performance of the active traction optimization scheme.

THE PROTOTYPE SYSTEM

A picture of the prototype is shown in Figure 1 while
the essential mechanical details are shown in a CAD model
in Figure 2.  The two 12 volt batteries, the amplifiers and
the controller are not shown in the figures.  The prototype
weighs 62 lbs (28.2 kgs), not including the controller and
batteries. The prototype is 28 inches wide and can go
through a standard 30 inch doorway.  The rear wheel radius
is 4.25 inches while the wheelbase is 20 inches.

FIG 1: THE EXPERIMENTAL PROTOTYPE.

Each leg is a 2R linkage driven by two motors that are
mounted on the chassis in a parallel-drive configuration
[14] in which power is transmitted to the distal link
through a chain and sprocket transmission.  Each link is 16
inches long giving the leg a net reach of approximately 32
inches (0.81 m).  The chain is preloaded to remove
backlash.  At the end of the distal link is a compliant ankle
which is a linear spring loaded joint on linear bearings.

Each joint in the leg is driven by a DC gear motor
(PMI 12FG) capable of exerting 200 in-lbs (22.6 N-m) of
torque at 26 rpm, with a peak (stall) torque of 240 in-lbs.
(27.12 N-m).  A further external speed reduction of 3:1 is
accomplished between the gear motor and the link.  Each
rear wheel is driven by a similar, smaller gear motor (PMI
9FG) with a rating of 40 in-lbs (4.5 N-m) continuous
torque.  At the rated wheel speed (78 rpm), the chair can
move at 0.93 meters/second (3.4 km/hour).  All motors
(legs and wheels) are mounted on the chassis (base of the
chair) so that their weight is not borne by the moving
links as can be seen in Figure 2 below.

FIG 2:  AN AUTOCAD MODEL OF THE SYSTEM.

The motors are driven by 20 kHz PWM switching
amplifiers (Kollmorgen VXA 48-8-8) that operate off of a
24 Volt DC source.  Although in the laboratory we use
transformers and AC line voltage, the vehicle can be
operated on two standard 12 volt lead acid batteries with a
peak current requirement of 6 amperes.  The amplifiers are
configured to clamp to the motor current determined by the
control signals received from the control computer.
System feedback is achieved using a 500 line resolution
incremental optical encoders also supplied by Kollmorgen/
PMI.  Because of the gearing, the encoders provide a
resolution of 2500 counts per degree of joint shaft rotation
for each leg.  Position is measured directly from the
encoders that are mounted on the input side of each motor
and the velocity is computed digitally by taking successive
derivatives of the position signal.  A digital I/O card
(Keithley Metrabyte DDA 06) is used for data acquisition.

The tension in the chain is sensed by strain gages
mounted on the chain.  This facilitates the measurement of
the applied torque on the distal link.  A force plate using
folded back cantilever beams instrumented with strain gages
is used to measure the vertical reaction force exerted by the
distal link at the foot.  The Signal Conditioning Amplifier
(Analog devices, 3B18) is mounted close to the gages to
minimize noise.  A data acquisition card (Real Time
Devices, ADA2000) is used to convert the analog strain
measurements.  The applied tangential force at the foot is
inferred from this combination of sensors using the inverse
kinematics map.

The control computer is an IBM compatible 486
machine with an i860 processor running in parallel.  The
i860 is used to perform the control computations that are
necessary to process the sensory data and coordinate the
multiple actuators.  The 486 processor performs all system
input and output tasks.

More details on the mechanical design and the system
integration are available from references [18,19].
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MATHEMATICAL MODELING

We analyze the planar wheelchair system in the
sagittal plane with the variables as assigned in Figure 3.
We assume rolling contacts between the ground and the
mechanism both at the foot and at the wheel.  The system
is redundantly described by the following 6 ×1 vector of
Lagrangian coordinates.

q = xw , yw ,θ1,θ2 ,θ3 ,θ4[ ]T
 (1)

where xw , yw ,θ1,θ2 ,θ3 ,θ4   are defined in  the table below.
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FIG 3: THE VARIABLES ASSIGNED TO THE CHAIR.

VARIABLE DESCRIPTION
O,XY Inertial global frame.
CG Center of Gravity of Chair.
α Angle between tangent to the ground and the X-axis.
xf X Coordinate of the foot contact.
yf Y Coordinate of the foot contact.
xw X coordinate of the wheel axle.
yw Y coordinate of the wheel axle.
Μc Distance of CG from the wheel axle.
η Included angle between CG and base level of the chair.

Νc Distance of arm attachment from the wheel axle.
ξ Included angle arm attachment and base level.

L3 Length of the upper limb.
L3c Distance of c.g. of upper limb from the proximal joint.
L4 Length of the lower limb.
L4c Distance of c.g. of lower limb from the distal joint.
θ1 Rotation of the wheel.
θ2 Chair lift angle (angle between base level and ground).
θ3 Relative angle between link3 and link2.
θ4 Relative angle between link4 and link3.

TABLE 1: SYMBOL TABLE OF SYMBOLS USED IN THE FORMULATION.

KINEMATICS

The inverse kinematics computation for the
mechanism is unique and is computed analytically.  A
nonlinear system of equations  Eq.2-5 is set up with the
four known quantities.  They are the expressions for the
Cartesian position of one point on the chair (e.g. the center
of mass xcg and ycg) and the Cartesian position of the tip
of the foot (xf  and yf ).
xcg = Rθ1 Cα − R Sα + Mc Cαη2 � (2)

ycg = Rθ1 Sα + RCα + Mc Sαη2 (3)

x f = Rθ1 Cα − R Sα + Nc Cαξ 2 + L3 Cαξ 23 + L4 Cαξ 234 (4)

y f = Rθ1 Sα + RCα + Nc Sαξ 2 + L3 Sαξ 23 + L4 Sαξ 234 (5)

where 
  
CαβL δ = Cos( α + β +L + δ )

 and    
  
SαβL δ = Sin( α + β +L + δ ) .

For any given xcg, ycg, xf  and yf the solution of this set of
equations yields analytic solutions for the angles θ1 ... θ4 .

A quick analysis, using the Gruebler criterion, shows
that the system has only two degrees of freedom.  Since we
have used six Lagrangian variables to describe the system
we also specify four equations of constraint.  The
constraints can be holonomic or nonholonomic.  In the
planar case we have four holonomic constraints.  However,
in general, we have two holonomic and two nonholonomic
constraints.

The holonomic constraints arise out of the
impenetrability / high stiffness of rigid body contact and
the non holonomic constraints arise from the no slip
condition imposed on the wheels.  Here, for the sake of
generality, we differentiate the holonomic constraints and
use all the constraints in the differential form.

The choice of surplus coordinates and constraints in
the formulation becomes clear here.  We now have explicit
analytical expressions for the reaction forces at the wheel
and the foot (in the form of Lagrange multipliers) which
will be used in the formulation.  We can now write the
matrix differential form of the constraint as,

 A(q)q̇ = 0 (6)

We then determine a 6 × 2 full rank matrix S(q)  as
the null space of the constraint matrix expressed in the
differential form as follows,

 A(q)S(q) = 0 (7)

The columns of S span the motion space of the constrained
system.  It is now possible to define two generalized
velocities,

ν = ν1, ν2[ ]T
(8)

which completely describe the motion at the velocity level.
The general solution to Eq.6 can now be written as,

q̇ = S(q)ν(t) (9)

which can be written in the acceleration level as,

˙̇q = S(q)ν̇(t) + Ṡ(q)ν(t) (10)

DYNAMICS

The dynamic equations of a constrained  mechanical
system are written as,

M(q) ˙̇q + h(q , q̇) = E(q) τ − AT σ (11)

A(q) q̇ = 0

where, M is the 6 × 6 generalized inertia matrix, ˙̇q  is the
6 ×1 acceleration vector, h is the 6 ×1 vector of nonlinear
and gravity terms, τ is the 3 ×1 vector of torques applied
to the system, λ  is the 4 ×1 vector of Lagrange
multipliers and E is the 6 × 3 actuator distribution matrix
for the generalized coordinates.
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FIG 4:  ESTIMATION OF THE FRICTION IN THE SYSTEM.

Multiplying Eq.11 by ST  and substituting from Eq.9-10
we get,

ν̇ = −(ST MS )−1 ST MṠν + ST h( ) − ST E τ[ ] (12)

Inverting the 6 × 6 positive definite symmetric matrix
M  in Eq.11 we get,
˙̇q = M −1 Eτ − AT σ − h[ ]  (13)

Differentiating Eq.6 and substituting from Eq.13 yields,

λ = (AM −1AT )−1 ȦSν − AM −1h + AM −1E τ[ ] (14)

TRACTION OPTIMIZATION

We note that in Eq.12 while q, ν, and ν̇  are known
from the desired trajectory we have three unknowns
(actuator torques) and only two equations.  Thus, the
requirement for an additional criterion arises because of
redundancy in actuation (due to the formation of the closed
loop).

A variety of criteria have been proposed in the past.
We choose to adopt the criterion proposed by [21] because
we would like to minimize the tendency to slip at the
wheels and at the feet.  We achieve this by minimizing the
largest friction angle at all the contact point.

We define the force ratio  (ri) at each contact as the
ratio of the tangential force to the normal force, normalized
by the friction coefficient µ  as shown below,

ri = Ft , i (µ i Fn, i )[ ] (15)

From Eq.6 and 14 we can identify the components of
the λ 4×1  vector of Lagrange multipliers. The λ 1 and λ 2

are the tangential and normal wheel forces while λ 3  and

λ 4  are the tangential and normal foot forces.  Such a

decomposition of the λ 4×1  vector enables us to define the
corresponding ratios.

In order to maintain point contact without slip at each
contact two conditions have to be satisfied.
1)  The normal force must be non-negative which implies,

Fn,i ≥ 0 ∀ i = 1, 2 (16)

2) Based on the Colombo model of friction we also arrive
at the condition of no slip,

Ft , i ≤ µ i Fn,i ∀ i = 1, 2 (17)

In order to minimize the possibility of slippage and to
minimize losses due to frictional forces we can choose to
minimize the larger of the two force ratios.  The
optimization problem can be stated as,

Minimize Maxi=1,2 {ri
2 }[ ] (18)

subject to Eq.11, Eq.14-17 where q, ν, and v̇  are known or
can be computed  from the desired system motion.

It has been shown in the literature [21] that this kind
of optimization problem has the solution r1

2 = r2
2 (19)

in the absence of actuator constraints.
We use this result to provide us with an additional

equation of constraint to append to the underdetermined
system in Eq.12 and to solve for the unknown torques.
The resulting solution is a quartic in the torques which has
at most four feasible solutions.  We choose the solution
which can accomplish the motion with the smallest force
ratio.

As we will see later in this paper, in the presence of
actuator constraints the condition in Eq.19 is no longer
optimal.

MODELING OF NONLINEARITIES

In our system we deal with two major nonlinearities,
friction and actuator limits, which are artifacts present in
any real world system.  In our system, these nonlinearities
have a marked effect on the system dynamics making their
modeling imperative for any realistic simulation.

FRICTION

The dominant nonlinearity in the system is friction.
Because of the complexity of the system it is difficult to
develop analytical models of the friction.  Instead, we
assume a Coulomb like frictional law for the entire system
and use experimental techniques to determine the
coefficients.
 A controlled experiment is set up for acquiring this
data.  A forward motion of 3.5 inches (0.0889 m) in 20
seconds (while maintaining a constant height of the CG) is
commanded as shown in Figure 4.A.  The wheel motors
are turned off and the system uses only the powered legs for
this maneuver.  The foot forces (normal and tangential) for
the motion are plotted in Figure 4.B.

Since the tangential inertial force is negligible for this
motion we can directly use the obtained data for tangential
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FIG 6: SIMULATION RESULTS WITH FRICTION.

force at the foot to characterize the friction in the system.
The tangential force profile during the motion shows the
characteristic peak in breakaway static friction which is
overcome at about 6 seconds into the maneuver (as can be
verified by the motion of Xcg in Figure 4.A).  After the
motion commences, we note that the tangential force value
stabilizes to a constant value which gives us an estimate of
the kinetic friction in the system.

While our experiment yields only the Cartesian
frictional force (net sum of all friction of the system
resolved in the Cartesian directions) it is adequate for our
modeling and simulation purposes.

ACTUATOR LIMITS

The other nonlinearity present in our system is the
presence of motor torque limits.

In any redundant system, the effect of the actuator
reaching its limit is to reduce the degree of actuator
redundancy present in the system.  This is because the
actuator under consideration will now be producing a
determinate actuation force (equal to its limit).  Hence, we
can now eliminate this variable from the list of unknowns.
In our system since the degree of actuator redundancy is
one, if one actuator is saturated, the system becomes
determinate and we rewrite Eq.12 as shown below,

τ 2×1 = ST Ẽ( )−1

(ST MS )ν̇ + ST MṠν + ST h[ ] (20)

where Ẽ6×2 is the modified torque distribution matrix
(formed by setting the saturated torque to its limit in E6×3

the initial torque distribution matrix).

TRAJECTORY GENERATION

The trajectory generation for our system is done to
make the change in acceleration continuous at all times -
the minimum jerk condition.  This enforces the continuity
of the trajectory in the acceleration, velocity and position
levels.  An added advantage of such a choice is that it
provides for a smoother ride since it eliminates
discontinuous changes in acceleration.

Thus, given the initial and final positions and zero
initial and final velocities and accelerations we obtain two
fifth order polynomials for the trajectories.
They are shown in dimensionless form below,
x = 10τ 3 − 15τ 4 + 6τ 5

y = 10τ 3 − 15τ 4 + 6τ 5 (21)

where x = x − x0

x f − x0

, y = y − y0

y f − y0

, τ = t

T

These describe a minimum jerk Cartesian motion profile
for the center of gravity of the chair.

Shown in Figure 5.A is the Cartesian position profile
for the motion which lifts the front wheels of the
wheelchair onto a fourteen inch step in two phases. The
first phase consists of lifting the front wheels of the
wheelchair 14 inches (0.3556 m) off the ground and
moving it forward by 1 inch (0.0254 m) in 20 seconds.
The second phase then moves the wheelchair a further 9
inches (0.2286 m) forward while maintaining the same
height in the next 20 seconds. The resulting Cartesian
trajectories are mapped back into the joint space using the
inverse kinematics map and shown in Figure 5.B.

The Cartesian velocity and acceleration are determined
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by differentiating the expression for position.  Assuming
rigid body motion, this process translates to continuity of
acceleration change for every point in the task space.  It
also extends to continuity in the joint space because of the
existence of a 1:1 inverse kinematics map.  In this way any
complex trajectory can be created by merging small pieces
of trajectories while preserving continuity at the
acceleration level.

SIMULATION RESULTS

 The simulation studies were carried out for the motion
described in Figure 5.

SYSTEM WITHOUT ACTUATOR LIMITS

The results presented in Figure 6 are for the case where
there are no limits are imposed on the actuator torques but
the friction is modeled in the system.

We observe again that for this sample motion the
inertial tangential force due to the acceleration of the chair
is negligible.  The most significant component of the force
is the friction in the system which opposes the force
required to actually move the system.

SYSTEM WITH ACTUATOR LIMITS

In Figure 7, we present the case where there are
actuator limits on the wheel motor.  This solution to the
system of equations is obtained in two stages. The first
stage involves solution of the problem without imposing
any actuator limits using the optimizing criterion
developed earlier.  The torques so obtained are checked for
compatibility with the actuator limits.  If the limit is
violated we set that particular actuator force to its limit and

then recompute the other actuator forces for the reduced
order redundant system.

As mentioned earlier, since the degree of redundancy in
our system is 1, the reduced redundancy system is now
determinate and we solve for the other 2 torques using
Eq.20.

When we contrast the scenarios with and without
actuator limits we notice that in the first case the wheel
provides a significant component of the tangential force and
hence the saturation of the wheel torque has caused
significant deviation from the equal force ratios condition.

We also note that since we now have a reasonably
accurate model for the system we can vary the actuator
limits.  We observe that the solutions of such studies tend
asymptotically towards the idealized optimal traction
solution as the limit is raised.

EXPERIMENTAL RESULTS

The system is commanded to move according to the
trajectory devised with the minimum jerk profile.  The
force histories obtained from the simulation (dotted) and
observed experimentally (solid) are shown in Figure 8.A.

Figure 8.B depicts the comparison between  the
predicted force ratio at the foot and the actual force ratio.
Figure 8.C depicts the comparison between the simulated
(desired) trajectory and the actual trajectory.  We note that
the wheel motion lags considerably behind the desired value
because of the lower bandwidth for control and the effects
of actuator limiting.  We also note that initially and when
terminating the motion the system is slow to respond to
the changes because of the low bandwidth of the wheel
motor.
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We observe that the experimental data agrees with the
simulation.  Because the experiments were performed with
a rubber foot on a carpeted floor, we observe very large
force ratios without any noticeable slip.  The wheel normal
force can only be inferred by subtracting the foot force from
the weight (35.31 lbs) of the vehicle and is therefore not
shown.  The wheel tangential force is saturated at 2.74 lbs
during the entire maneuver.

CONCLUDING REMARKS

The main focus of this paper was the traction
optimization scheme for an actively controlled vehicle with
legs and wheels that minimizes the tendency of the wheels
and legs to slip.  The optimization involves minimizing
the largest force ratio among the locomotion elements.
While it is theoretically possible to achieve the optimal
condition in which all force ratios are equal, we found that
in practice, saturation of the actuators and friction limits
the performance of the system.  We used experimental
techniques to identify the friction and to develop models for
actuator saturation.  By constraining the optimization
problem with these models, we were able to obtain optimal
operating conditions for our system. We presented results
that demonstrate the feasibility of our approach.

We also presented the design of our experimental
prototype of a computer-controlled powered wheelchair
with legs that is capable of navigating on uneven terrain.
We note that another group independently arrived at a
similar configuration for a hybrid vehicle for forestry
applications [1]. The main direction for future work is to
incorporate a posture regulation system (see, for example,
[3]) that maintains the rider in a horizontal configuration
(or any preferred orientation) even when the chair is
climbing a step.
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