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Abstract The ball and beam system is one of the most popular laboratory experiments for control
education. There are two problems for ball and beam control: (1) many laboratories use simple
controllers such as PD control, but theory analysis is based on linear models, and (2) nonlinear
controllers for the ball and beam system have good theory results, but they are seldom used in
laboratories. Little effort has been made to analyse PD control with nonlinear models. In this paper

we modify the normal PD control in two ways for the ball and beam system: parallel and serial PD
regulations; then we analyse the stability of these types of PD regulations with the complete nonlinear
model. Real experiments are applied to test our theory results. This paper gives a good example of how
to apply nonlinear theory in the laboratory for control education.
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The bal and beam system is widely used because many important classical and
modem designh methods can be studied based on it. The system (shownin Fig. 1) is
very simple — a steel bal rolling on the top of along beam. One side of the beam
is fixed, the other side is mounted on the output shaft of an electric motor and so
the beam can betilted by applyingan electrical control signa to the motor amplifier.
The position of the ball can be measured using a special sensor. It hasa very impor-
tant property — open loop unstable, because the system output (the ball position)
increases without limit for a fixed input (beam angle). The control job is to auto-
matically regulate the position of the ball by changing the position of the motor.
This is a difficult control task because the ball does not stay in one place on the
beam when &= O, but moves with an acceleration that is proportional to the tilt of
the beam.

This standard experiment can be approximated by alinear model, and many uni-
versities use it for education of classical control theory. Linear feedback control or
PID control can be applied. The stability analysisis based on a linear state-space
mode or transfer function.' Resent results show that the stabilisation problem of
the ball and beam can be solved by nonlinear controllers. Approximate i nput-output
linearisation used state feedback to linearise the ball and beam system firgt, then a
tacking controller based on the approximatessystem can stabilisethe ball and beam
system.? But this controller is very complex for red applications. In order to solve
the transient performance problem, an energy shaping method uses a nonlinear
static state feedback that is derived from the interconnection and damping assig-
ment.* But it requiresshaping of the kinetic and potential energies.* A sliding mode
controller can overcomethe problem associated with singular states.” But chattering
in sliding mode is a big problem in application. Observer-based nonlinear control
in Ref. 6 uses the same coordinate transformation as in Ref. 2 to design a nonlinear
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Fig. | Ball and beain system.

observer for the velocities of the bel and beam system. The controller is more
complex than that in Ref. 2. Some intelligent controllers for bal and beam can aso
be found. such as fuzzy control,' sliding mode fuzzy control, neura control,' fuzzy
neural control,' etc. These intelligent controllers are derived from some prior infor-
mation or input-output data of the bal and beam system. There are two problems
for bal and beam control: (1) many laboratories use simple controllers such as PD
control, but theory analysisis based on linear models;' and (2) nonlinear controllers
which are based on Lagrangian and kinetic energy—potentia energy"* for ball and
beam system have good theory results,'.' but they are complex and seldom used in
real applications.

In this paper we modify the norma PD control in two waysfor the bal and beam
system: parallel and seria PD regulations. We analyse the stability of the PD control
with the complete nonlinear model. To the best of our knowledge. stability analysis
of PD control based on a nonlinear model of the bal and beam system has not yet
been established in the literature. A real experiment is applied to test our theory
results. We hope we can build a bridge between the nonlinear theory and control
education in laboratories."

The ball and beam model and PD control

For the bal and beam system described schematically in Fig. 1, a bdl is placed on
a beam where it is allowed to roll with | degree of freedom along the length of the
beam. A lever arm is attached to the beam at oneend and a servo gear at the other.
As the servo gear turns by an angle 6, the lever changes the angle of the beam by
a When the angle is changed from the horizontal position, gravity causes the bal
to roll aong the heam. The basic mathematical description of this system consists
of d.c. servomotor dynamic and bdl on the beam model.
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Modelling the d.c. servomotor can be divided into electrical and mechanical
subsystems. The electrical system is based on Kirchhoff's voltage law

U=L,i, +R,1,+K,0 (n

where U is input voltage, |, is armature current, R, and L,, are the resistance and
inductance of the armature, K, is back e.m.f. constant, and 8 is angular velocity.
Compared to R,l, and K,8, the term L,/,, is very small. In order to simplify the
modelling and as in most d.c. motor modelling methods, we neglected the term
L1

The mechanical subsystem is

1 . .
_(‘1"79+ Bmo) = tm (2)
KS

where K, is gear ratio, J,, is the effective moment of inertia, B,, is viscous friction
coefficient, and 7, is the torque produced at the motor shaft. The electrical and
mechanical subsystems are coupled to each other through an algebraic torque
equation

Tm = Knllm

where K, is the torque constant of the motor. Assuming that there is no backlash or
electric deformation in the gears, the work done by the load shaft equals the work

1 .
done by the motor shaft, 7= ra T.,= T.., Where 7is the torque on the frame of the
&
ball and beam system. So the d.c. motor model is
RmJ,"
K.K

i g

R.B,

é+(K,,+ ]9=U (3)

mir g

In the absence of friction or other disturbances, the dynamics of the ball and beam
system can be obtained by Lagrangian method. Consider the ball and beam system
with a coordinate reference frame about the A point (see Fig. 1). and a sphere with
itscentre aligned with the axis of the beam as in the figure below. The kinetic energy
of the system is

T=T,+T,

where T and T, are kinctic energies of the beam and the ball; these kinetic energies
includeradia and circular motions. Since A is not moving from the coordinate kame,
the rotational kinctic cncrgy of the beam is simply

|
Ti==J&
2

where J, is the moment of inertia of the beam and « is the angle velocity of the
frame. The ball has kinetic energy
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I . 1 1
T,=—(mr)a? +=mi* +=J,0?
2 2( r ) 2m > 207
where J, is the moment of inertia of the ball, r and w, are radial and rotational

. o 2 . .
velocities of the ball and m is its mass. Because J, = E mR?, F = Ra,, the rotational

kinetic energy of the ball is %(%mﬂ) $0

T= —l—[(.ll +mr*)a? +Zmr'2:|
2 5
The potential energy of the system is exhibited by the rolling ball alone
. L .

P=mgrsina+ MgEsma
where M is the mass of the frame, L is the longitude of the frame, and r is the
position of the ball. The Lagrange equation is

L=T-P

. L .
=%[(J, +mr2)a2+%mi‘2:,—(mgr+3Mg)sma

Since there is no external force on the ball in the radial direction, Lagrange's
equatjons of motion are formed as

droL) oL

dtlLdal da
4roL) 9L,
dtlLorl or

L . . .
Because %=—(mgr+—Mg)cosa, il,i=(J,+mr2)a, il—‘-=mrocz—mgsm(:t,
Ja 2 Jo Jr

&—L—Zmr‘ So
I 5
. . L
(Jy+mr)a+2mrra + mgr+5Mg cosa=7 (4a)
T. .
gr—ra +gsing=0 (4b)

Remark | The second equation of (4)can be derived directly fromthe force rela-
tion. In Fig. |
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my=-mg+ Ncosa+ Fsinc )
mZ =-=Nsina+ Fcosa

P . . . X 2 N
where N is friction, Fisrotational force, FR=Jw, a):—R, J =§mR2. Multiplying

with sn aand cos &, and summarising the two equations in (5)with F =0, gives

mysino+micoso = —mgsma+§mr

. - Lo do, . d .
Using the conditions y=a(rsma+racosa), 2=a(r'cosa—rasina),
y=-rdna,Z=-rcos a; gives

ysina+7icosa=—F+ra?

Thisexpression is similar to the second equation of (4). When the systemis near to
a stable point, & = 0, the acceleration of the ball is given by

F——é sina
78

Snce aisa small angle, sin & = o« The approximation linear model for the ball
and beam system becomes
b
G(s)=— 6

52

In state space form, it is
)0 ollel+Ls)
] Lo ollx] lel®

LN

wherex, =r,x, =r.

Remark 2 The model (4) differs from the most commonly used ball and beam
systemas in Ref. 2, where the motor is fixed in the body centre of the beam. In our
case the fixed point A isto one side of the beam. So the gravity of the beam cannot
be neglected. Also, the beamangle aand motor position 8 are not the same; we use
Fig. 2 to calculate them. The arc distances in the two circles are equal, i.e.,

al =6d N

The control problemisto design acontroller which computes the applied voltage
U for the motor to move the ball in such a way that the actual position of the ball
reaches the desired one. The controllers are constructed by introducing nonlinear
compensation terms into the traditional PD controller. Two types of PD controller
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Fig. 2 Relation berween motor position and beam angle.

will be designed for this system. The first one is serial PD control which is shown

in Fig. 3 (a). The beam angle @ (or motor position 8) can be controlled by PD con-

troller C1. This constitutes the inner loop. The outer loop controls the bal position

with PD controller C2. 7 is a compensator which can assure asymptotic stability."”

The scrial PD control has the following form
U=k, (o =)+ kyn{@* — @)+ 7

(8)

ox =k, (r*—r)+ kg (r* = r)
where &, and &, are positive constants. which correspond to proportional and
derivative coefficients for motor control; &,, and k,, are proportional and derivative
gains for the ball control.

The second one is paralel PD control which is shown in Fig. 3 (b). Because the
fina position of the motor must be 0, such that the ball does not move, so & = 0.
The feedback control of motor position becomes — 1. The parallel PD control has the
following form

U = (=kp 0= k@) + Lk (r* = r) + k(P =F) |+ 9)
For regulation problems the control aim is to stabilise the ball in adesired position
r*.s0 r* =0. The two PD controllers (8) and (9) can be rewritten in a unique form

U=af-ar—ar-a,00—a;0+T1 (10)

Where %nal PD ContrOI a; = kpmkpln a, = (I‘—Iun + k:lm)kdh- ay= k:lmkdha ay = k;um as = ktlnn
and for paralel PD control a, = k. a; = ks a3y = 0, a1 = Ky as = kg @ > 0
(i=1...5)
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Fig. 3 PD control for bull and beam system.

Stability analysis of PD regulation

In this section, PD regulation for the ball and beam system is proposed. From cgn
(2) we have

K"l (U - Kl,é) =T

m

The whole ball and beam system is given by (3), (4) and (7):

, . .. L A .
(mr* k) a+ 2mrra+(mgr+5 Mchosa: kU - kya an

ki —ra? + gsina =0

RoJm L K K.K R.B
where k=—"—-—+J,, ky=1+—", klzi[#-}-[(h'*#’_ s k4=z,
K.K. d R, d\ R, K.K, 5
k:>0(i =1...4). Wedefine the system state as x = [a. r|": the regulation error is
X=ux*—ux

where x* is the desired variable, x* = [@*, r*]". For the bal and beam system,
in the balance position a* = 0. x* = 0. So x* = [0, r*]", r* is the desired badl
position.
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It is difficult to apply the dynamic equation of the ball and beam system (11) and
PD control (10) for the Lyapunov method directly. On the other hand, it is well
known that we can prove the stability of robots with PD control by the Lyapunov
method. In this paper we will transfer (11) and (10) into the form of the robot dynam-
ics, then we will provethat the ball and beam system has similar properties as robots.
The closed-loop system is obtained by substituting the control voltage U from the
control law (10) into ball and beam system (I 1)

Mx)x+C(x, x)x+G(x)=Bx+Dr

_Tki+mr kﬂ;] o\ _Thoas Tk, k2a2+2mrd'|
where M(x)—[ 0 k| C(x, x)—[ C o ,
k k k I:
B=[ 2(;14 2(;1'-', D=[02], G(x)=|\mgr+- Mg/cosa |. Before presenting the
. gsina

stability analysis, we give the following lemma.
Lemma/ Thefollowing equations
L
(mgr + EMg)cosa =k, U
kiyi+gsina=0 12)

- . 1 L
U =a,r—a3r—a4(x+k—(mgr+5Mg)cosa
2

have an isolated solution [e, 1] = [a*, r*].
Proof: Substituting U into the first equation of (12), we have
k;alf—k2a3f—k2a4a=0. (13)

L
From the second equation of (12), we can conclude F=—k—gsina. So (13)
4

becomes

. ka
k,a,F+ Ehat

gsina—kya,a =0.
3

It can be rewritten as

k,a ka, .
44a_41r
a8 a8

The only possible solution for & is &= 0, otherwise the ball has to move. For any
a= 0, F cannot be a constant, so (14) has no solution. When a= 0, form (14) we
know 7 = 0. Because o* = 0, this allows us to conclude [, r] = [a*, r*] is the
unique solution for (12).

The stability of the closed loop system is stated in the following theorem.

sing = (14)
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Theorem |  The serial or parallel PD control asin (/0) with a compensator as

7r=%{[kzaz+(2m—3)rd]i‘+(mgr+§Mg)cosa} (15)

2

can guarantee asymptotic stability of the ball and beam system (/7).

Proof: Because M(x) and B are positivedefinite matrices, we choose the following
positive definite quadratic form as Lyapunov function candidate:;

Vix, i):%kTM(x)jc+%iTBi+%;2. (16)

Differentiating it with respect to time, and recalling that X* is constant, yields

%}V_ = xTM(x)x+%x’M(x)x—x’B;+k4r“r'.

Since M(x)x = Bx + Dr - C(x, x)x — G(x),
1% =%x’ [M (x)=2C (x, )] x + %7 [BE — G(x)+ Drt — BE]+ k4 7¥
because

M(x)—2C(x,j)=[2mrr —4mra:|_[2k2a5+2k3 2k2a2:|‘

2ra 0 0 0

So

V=—leQx+2rxT["?’ ‘2'""‘]' ;
) a

o |5 TG (x)+x" Dr+ k,FF,

where Q = [2](20504' 2k3 2k(2)azil

2rxT["(;’ ‘2m"‘]x =-2r6*(m~1)F

0
oT L * . .
-xX'G(x)=- mgr+5Mg cosQx + gsinar an
XTDH =ak27t

1 . .
—EXTQX = —(k2a5 +k3)a2 —kzazai'

using ks - ra® + gsna=0
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. 2 iy L .
V==(kas+k)o + al:k2”+ (—2m+ 3)rra—(mgr+ By Mg)cosa—-kgalr:l

If we choose the compensator as

! .
= k—[(Zm -3)rra+ (mgr + % Mg|cosa+ kzazr':l

2

V < —(kas+k, )0 (18)

since (kias T k) > 0. V is a negative-semidefinite function. Therefore, by invoking
the Lyapunov direct method, it can be concluded that [a, r] =[O0, r*] (a* =0) isa
stable equilibrium.

In order to prove asymptotic stability, we use LaSalle’s theorem. In the region

¥Y={la,r]:V=0)

the invariant set is obtained from the closed-loop system (I 1) when « = 0, that
is (12). Furthermore, according to Lemma 1. (12) 1s satisfied for [, r] = [0, r*]
(a* =0). Therefore, invoking LaSalle’s theorem, we can be assured that the equili-
brium [a, r] = [0, r*] is asymptoticaly stable."” This means that

limx=0.

oo

Remark 3 Since the velocities r and o in (1S) are very small in the regulation cuse.
the main compensation is the gravities d the brill and beam

I (m r+ L M «a (19)
=—|n — cosq.

PR

2

The controllers (8) or (9) with (19) are very simple and easy to implement. The
control parameters & PD control are independent of system parameters, the com-
pensator uses two motor parameters and tlie masses of the ball and beam. Although
the pure PD controller (with #=0) can also stabilise the svstem as in many labo-
rutories' experimental proofs, the control performance under the pure PD control
is very unsatisfactory (especially for the confutation d our type), due to the gravities
d bull and beamn.

Remark 3 To the best & our knowledge, the theoretical analysis & a PD control-
lerfor the ball and beam svsten: based on a complete nonlinear model has not yet
been established in the literature. Many stability analyses are based on complete
nonlinear controllers,** and these controllers have to use the nonlinear model of
the ball and beam system. On the other hand, many laboratories use model-free
controllers' ** (e.g. the PD controller); the theoretical analyses use the simplified
linear model as in (6). Because die P D controller is also a linear system, traditional
control theory can be appliedfor stability analysis.
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Simulation and experimental case study

First we give some simulation examples to compare our controller with
R.J

the other existing mcthods. For the simulation we chose raa =0.01176,
m 8
lflf +K,, =0.58823." If wedo not consider theenergy effect, the whole dynamic
m L
equation is
%F—rdz =—gsina, 0.011760+0.458230=U, o= %9 20)

The regulation results of normal PD control are given by
U=(-58a-0.1@)+[2.2(r*~r)+0.8(F = )]. 2n

When the kinetic energy of the system is considered. the first equation of (20)
becomes (I 1). We use the parameters m = 0.06, ¢ = 9.8, M =0.12, L = 0.6. The
modified PD control is(21) with compensation 7= 0.2r+ 0.1 cons & Thesimulation
results are shown in Fig. |. Thenormal PD control issuitable for asimplified model,
but it does not work for the complete nonlinear model. The modified PD control
proposed in this paper can work. The response is similar to that in Ref. 2, but the
transient performance is worse than in Ref. 4. We note that the nonlinear controllers
of Refs 2 and 4 need the complete hall and beam system rnodel. The only give
simulation results. Our modified PD control does not require the nonlinear bal and
beam system model. Its application is easier.

The experiment is carried out on the Quanser ball and beam system' (see Fig. 4).
The beam is60 ¢m long. The ball isabout 60 g. The input to the system is the motor
control voltage U; outputs are the positions of mator (8) and bal (r). The power
module isalso Quanser, PA-0103 with £12V and 3 A output. The A/D-D/A board
is based on a Xilinx FPGA microprocessor, which is a multifunction analogue and
digital timing /O hoard dedicated to real-time data acquisition and control in the
Windows X P environment. The hoard is mounted in a PC Pentium-I11 500 MHz host
computer. Because the Xilinx FPGA chip supports real-time operations without
introducing latencies caused by the Windows default timing system, the control
programme is operated in Windows XP with Matlab 6.5/Simulink. The sampling
time is about 10 ms.

The motor and ball controllers are both of the PD type and require direct velocity
measurements, but they are unavailable. We use the derivative block of Simulink to
calculate them. This requires that the position signals are smooth enough; so first-
order low-passfiltersare applied. For motor position we use the following first-order

10
filter: G,(s)= 10 For ball position wc use the following first-order filter:
A

| .
Gy(s)= —+71—7 For the serial PD control (8) we use &, = 2, k, = 0.1. k,, = 0.5.
s

ks = 0.1. For the parallel PD control (9) wc use k,. = 2, k4. = 0.5, k,, = 0.4,
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Fig. 4 Ball and beam control system.

. . L
kg = 0.1. The parameters for this experiment are a=16, m = 006, g =

9.8, E_RM—K =0.3,M=0.12, L =0.6. We only use gravity compensation'®. The
m + m

compensator is

R R .
T - {|: - (kpm +k1lm)k(1b+(2m_3)ra

. L ) }
= r+ mgr+—Mg|cosa
R.+K.|LR.+K, 2

It can be approximated as 7 = 0.3(0.588r + 0.353)cos « (see (19)). The response of
the parallel PD control for the ball and beam system is shown in Fig. 5. The serid
PD control has the same compensator as the parallel one. At time ¢ = 200 ms, we
move the ball 1cm, to mimic an externd disturbance. The response is shown in
Fig. 6. When we use pure PD control, the response of the serial PD control without
compensator isshown in Fig. 7. We can see that PD control with exact compensation
is effective for the bal and beam system. The closed-loop system appears (from
the step input) to exhibit second-order behaviour with a natural frequency around
1 rad/s. Faster filtersare used (arule of thumb would suggest at least 5 to 10 times
faster than the fastest closed-loop modes). So the filter dynamics will not have a
significant impact on the control.
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Fig.5 Parallel P D control with gravity compensation.
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Fig. 7 Serial PD control without nonlinear compensator:

Conclusion

The main contributions of the paper are: (1) Two typesof PD controllers with non-
linear compensation have been presented for regulation of the ball and beam system.
(2) By using Lyapunov’s direct method, we have shown that for a well-defined set
of initial conditions, the bal remainson any point of the bar. (3) Experimenta results
are presented to illustrate the control system's stability and performance.

The results of this paper can be easily extended to the other mechanical plants.
A great benefit to engineering educators is that this paper provides an approach to
transferring complex theory problems found in textbooks into prototypes in the
|aboratory.
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