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Abstract The ball and beam system is one of the most popular laboratory experiments for control 
education. There are two problems for ball and beam control: (1) many laboratories use simple 
controllers such as PD control, but theory analysis is based on linear models, and (2) nonlinear 
controllers for the ball and beam system have good theory results, but they are seldom used in 
laboratories. Little effort has been made to analyse PD control with nonlinear models. In this paper 
we modify the normal PD control in two ways for the ball and beam system: parallel and serial PD 
regulations; then we analyse the stability of these types of PD regulations with the complete nonlinear 
model. Real experiments are applied to test our theory results. This paper gives a good example of how 
to apply nonlinear theory in the laboratory for control education. 
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The ball and beam system is widely used because many important classical and 
modem design methods can be studied based on it. The system (shown in Fig. 1) is 
very simple - a steel ball rolling on the top of a long beam. One side of the beam 
is fixed, the other side is mounted on the output shaft of an electric motor and so 
the beam can be tilted by applying an electrical control signal to the motor amplifier. 
The position of the ball can be measured using a special sensor. It has a very impor- 
tant property - open loop unstable, because the system output (the ball position) 
increases without limit for a fixed input (beam angle). The control job is to auto- 
matically regulate the position of the ball by changing the position of the motor. 
This is a difficult control task because the ball does not stay in one place on the 
beam when a z 0, but moves with an acceleration that is proportional to the tilt of 
the beam. 

This standard experiment can be approximated by a linear model, and many uni- 
versities use it for education of classical control theory. Linear feedback control or 
PID control can be applied. The stability analysis is based on a linear state-space 
model or transfer function.' Resent results show that the stabilisation problem of 
the ball and beam can be solved by nonlinear controllers. Approximate input-output 
linearisation used state feedback to linearise the ball and beam system first, then a 
tacking controller based on the approximates system can stabilise the ball and beam 
~ys tem.~  But this controller is very complex for real applications. In order to solve 
the transient performance problem, an energy shaping method uses a nonlinear 
static state feedback that is derived from the interconnection and damping assig- 
ment.3 But it requires shaping of the kinetic and potential energie~.~ A sliding mode 
controller can overcome the problem associated with singular states.' But chattering 
in sliding mode is a big problem in application. Observer-based nonlinear control 
in Ref. 6 uses the same coordinate transformation as in Ref. 2 to design a nonlinear 
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observer for thc velocities of the ball and beam system. The controller is more 
complex than that in Ref. 2. Some intelligent controllers for ball and beam can also 
be found. such as fuzzy control,' sliding mode fuzzy control, neural control,' fuzzy 
neural control,' etc. These intelligent controllers are derived from some prior infor- 
mation or input-output data of the ball and beam system. There are two problen~s 
for ball and beam control: ( I )  many laboratories use simple controllers such as PD 
control, but theory analysis is based on linear models;' and (2) nonlinear controllers 
which are based on Lagrangian and kinetic energy-potential energy"' for ball and 
beam system have good theory results,'.' but they are con~plex and seldom used in 
real applications. 

In this paper we modify the normal PD control in two ways for the ball and beam 
system: parallel and serial PD regulations. We analyse the stability of the PD control 
with the coniplete nonlinear model. To the best of our knowledge. stability analysis 
of PD control based on a nonlinear model of the ball and beam system has not yet 
been established in the literature. A real experiment is applied to test our theory 
results. We hope we can build a bridge between the nonlinear theory and control 
education in laboratories." 

The ball and beam model and PD control 

For the ball and beam system described schematically in Fig. I, a ball is placed on 
a beam where i t  is allowed to roll with I degree of freedom along the length of the 
beam. A lever arm is attached to the beam at one end and a servo gear at the other. 
As the servo gear turns by an angle 8, the lever changes the angle of the beam by 
a. When the angle is changed from the horizontal position, gravity causes the ball 
to roll along the beam. The basic mathematical description of this system consists 
of d.c. servomotor dynamic and ball o n  the beam model. 
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Modelling the d.c. servomotor can be divided into electrical and mechanical 
subsystems. The electrical system is based on Kirchhoff's voltage law 

where U is input voltage, I ,  is armature current, R,, and L,, are thc resistance and 
inductance of the armature, K,, is back e.m.f. constant, and 8 is angular velocity. 
Compared to R J ,  and ~ , 8 ,  the term LJ,, is very small. In order to simplify the 
modelling and as in most d.c. motor modelling methods, we neglected the term 
L,"I",. 

The mechanical subsystem is 

where K, is gear ratio, J,, is the effective moment of inertia, H,, is viscous friction 
coefficient, and 5, is the torque produced at the motor shaft. The electrical and 
mechanical subsystems are coupled to each other through an algebraic torque 
equation 

where K ,  is the torque constant of the motor. Assuming that there is no backlash or 
electric deformation in the gears, the work done by the load shaft equals the work 

1 
done by the motor shaft, 7 = -7," = r,,, where 7 is the torque on the frame of the 

Ks 
ball and beam system. So the d.c. motor model is 

R", J," .. 

K," Ks 

In the absence of friction or other disturbances, the dynamics of the ball and beam 
system can be obtained by Lagrangian method. Consider the ball and beam system 
with a coordinate reference frame about the A point (see Fig. I). and a sphere with 
its centre aligned with the axis of the beam as in the figure below. The kinetic energy 
of the system is 

where TI and T2 are kinctic energies of  the beam and the ball; these kinetic cncrgics 
include radial and circular motions. Since A is not moving bom the coordinate kame, 
the rotational kinctic cncrgy of the beam is simply 

where J ,  is the moment of inertia of the beam and & is the angle velocity of the 
frame. The ball has kinetic energy 
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where J2 is the moment of inertia of the ball, i and y are radial and rotational 
2 

velocities of the ball and m is its mass. Because J 2  = - m ~ ' ,  i = R y ,  the rotational 
5 

kinetic energy of the ball is 

The potential energy of the system is exhibited by the rolling ball alone 

where M is the mass of the frame, L is the longitude of the frame, and r is the 
position of the ball. The Lagrange equation is 

Since there is no external force on the ball in the radial direction, Lagrange's 
equatjons of motion are formed as 

Remark I The second equation of (4) can be derived directly from the force rela- 
tion. In Fig. I 
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my =-mg+ N c o s a + F s i n a  

mi'=-Nsina+ Fcosa 

x 2 
where N is friction, F is rotational force, FR = Jh, w = - , J = - m ~ ~ .  Multiplying 

R 5 
with sin a and cos a; and summarising the two equations in (5) with F = 0, gives 

d d 
Using the conditions y=- ( i s ina+r&cosa) ,  i = - ( i c o s a - r b s i n a ) ,  

dt dt 
y = -r sin a, z = -r cos a; gives 

j;sina+zcosa = -r+rb2 

This expression is similar to the second eq~ation of (4). When the system is near to 
a stable point, & = 0, the acceleration of the ball is given by 

Since a is a small angle, sin a = a: The approximation linear model for the ball 
and beam system becomes 

b 
G ( s )  = - 

s2 
(6) 

In state space form, it is 

where x,  = r, x ,  = r.  

Remark 2 The model (4) differs from the most commonly used ball and beam 
system as in Re$ 2, where the motor is jxed in the body centre of the beam. In our 
case theJixed point A is to one side of the beam. So the gravity of the beam cannot 
be neglected. Also, the beam angle a and motor position 8 are not the same; we use 
Fig. 2 to calculate them. The arc distances in the two circles are equal, i.e., 

The control problem is to design a controller which computes the applied voltage 
U for the motor to move the ball in such a way that the actual position o f  the ball 
reaches the desired one. The controllers are constructed by introducing nonlinear 
compensation terms into the traditional PD controller. Two types o f  PD controller 
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Fig. 2 Relntiorr beween motor posi l io~~ and beciln tutgle. 

will bc designed for this system. Thc first one is scrial PD control which is shown 
i n  Fig. 3 (a). The bcam anglc a (or motor position 8) can be controlled by PD con- 
troller CI .  This constirutcs the inncr loop. The outer loop controls the ball position 
wrth PD controller C2. rc is  a compensator which can assure asymptotic stabilily."' 
The scrial PD control has the following form 

where k,,,, and kt,,,, are positive constants. which correspond to proportional and 
derivative coefficients for motor control; kph and k,/,, are proportional and derivative 
gains for the ball control. 

The second one is parallel PD control which is shown in Fig. 3 (b). Because the 
final position of the motor must be 0, such that the ball does not move, so a* = 0. 
The feedback control of motor position becomes - 1. The parallel PD control has the 
following form 

For regulation problems the control aim is to stabilise the ball in a desired position 
I-*. so r* = 0. The two PD controllers (8) and (9) can be rewritten in a unique form 

where serial PD control a ,  = k,,,kl,f,. a2 = (A;,,, + k,/,,,)kdb. 0 1  = k,ln,k~lb, a4 = k,,,,,, as = k,,",. 
and for parallel PD control o,  = kph. a2 = a ,  = 0, o4 = kt ,,,, a5 = k,,,, a, > O 
( i  = 1 . . . 5). 
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(a; Ser~al control 

(b) Parallel control 

Fig. 3 PD coiztro1,fi)r. bull and h e m  sysrern. 

Stability analysis of PD regulation 

In this section, PD regulation for the ball and beam system is proposed. From cqn 
(2) we haw 

The whole ball and beam system is given by (3), (4) and (7): 

(mr' + k , ) & +  2mridr+ cosa = k2U - k,& 
(1 1) 

R J  L 
where k , = z -  K", + J , ,  k 2 = l + - ,  

7 R m B n l ) ,  k,=--, + K,+- 
K,"K, d Rm K," K, 

kt > 0 (i = I . . . 4). We define the system state as x = [a.  rIT; the regulation error is 

where x* is the desired variable, x* = [a*. r* IT .  For the ball and bean1 system, 
in the balance position a *  = 0. i* = 0. So x* = [0, F I T .  r* is the desired ball 
position. 
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It is difficult to apply the dynamic equation of the ball and beam system (1 1) and 
PD control (10) for the Lyapunov method directly. On the other hand, it is well 
known that we can prove the stability of robots with PD control by the Lyapunov 
method. In this paper we will transfer (1 1) and (10) into the form of the robot dynam- 
ics, then we will prove that the ball and beam system has similar properties as robots. 
The closed-loop system is obtained by substituting the control voltage U from the 
control law (10) into ball and beam system ( I  1) 

k2a, + k, k2a2 + 2mra where M (x) = C (x, i )  = [ -rk 0 

B=[" k":], D=[$],  G(.)=[( mgr+-Mg : ) cosa 1. Before presenting the 
gs ina  - 

stability analysis, we give the following lemma. 

Lemma I The following equations 

have an isolated solution [a ,  r] = [a*, r*]. 

Prooj Substituting U into the first equation of (12), we have 

k2a,F- k2a3r - k2a4a = 0. (1 3) 

I 
From the second equation of (12), we can conclude F = --gsina. So (13) 

k4 
becomes 

It can be rewritten as 

The only possible solution for a is a = 0, otherwise the ball has to move. For any 
a # 0, r" cannot be a constant, so (14) has no solution. When a = 0, form (14) we 
know F = 0. Because a *  = 0, this allows us to conclude [a ,  r] = [a*, r*] is the 
unique solution for (12). 

The stability of the closed loop system is stated in the following theorem. 
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Theorem I The serial or parallel PD control as in (10) with a compensator as 

can guarantee asymptotic stability of the ball and beam system (11). 

Proof: Because M(x) and B are positive definite matrices, we choose the following 
positive definite quadratic form as Lyapunov function candidate: 

I 1 k4 . 2  
V ( X ,  i ) = - i T M ( x ) X + - i T B i + - r  . 

2 2 2 
(16) 

Differentiating it with respect to time, and recalling that x* is constant, yields 

Since M(x)x = B.i + DX - C(x, i)i - G(x), 

because 

Using k4r  - rh2 + g sin a = 0 
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If we choose the compensator as 

since (klui + k,) > 0. v is a ncgat~vc-sen~idelinilc function. Therdore, by invoklng 
~ h c  Lyapunov direct method, i t  can be concluded that [a ,  r l  = [0, r * ]  (a*  = 0) is a 
stable equilibrium. 

In order to prove asymptotic stabilily, we use LaSalle's theorem. In the region 

YI = {[a, r ]  : v = 0) 

the invariant set is obtained from the closed-loop system ( I  I )  when 6 = 0, that 
is (12). Furthermore, according to Lemma 1 .  (12) 1s satisfied for [a. r l  = 10, r* l  
(a*  = 0). Therefore, invoking LaSalle's theorem, we can be assured that the equili- 
brium [a,  r l  = [0, r * ]  is asymptotically s~ab l c . ' ~  This means that 

lim .? = 0. 
I+-= 

Rernurk 3 Since the velocities i mnd 6 in ( IS )  me very stnull in the regul~t ion case. 
the main cornyensation is the gravities of the brill rmd beurn 

lr =-  mgr+-Mg cosa. 
2 k2 I 

The controllers (8) or (9 )  with (19) are wry simple and easy to irnplernent. The 
corltrol parameters of PI> control are independent of systern parameters, the cotn- 
pensator uses two motor parameters and the masses ofthe ball and beam. Although 
the pure PI)  controller ( k i t h  lr = O) can also stabilise the system as in maty labo- 
rutories' experinrental proofs, the control pet$fi,t-tnance under the pure P1> ~ u n t t ~ l  
is very utlsntisfactoq (especially for the cotfutation of our type), due to the gruvities 
of bull and beam 

Remark 3 To the best of our knowledge, the theoretical u tdys is  of u P l l  control- 
ler for the bull and beam systent based on a complete nonlitlear model has not yet 
been establislied in the literature. Many stability unalyses ure based on cotnplete 
nonlinear  controller^,^^ and these controllers have to use the nonlineur model o j  
the ball a d  beam system. 011 the other hand, muny labotntories use tnodeljree 
controllers' ' (r.g. tlre P1l controller); the tlzeoretical analyses use the simplified 
linear model as it1 (6). Because die P D  contt-oll~r 1s also a lmear system, tmd~t ional  
cotltrol tlleoty can be upplied for stubility analysl~.  
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Simulation and experimental case study 

First we give some simulation examples to conipare our controller with 

the other existing nicthods. For the simulation we chose -"-- ' -0.01 176, 
K,,, K,y 

R1nB + K,,, = 0 8 8 2 1  .I If we do not consider the energy effect, the whole dynamic 
K,,, K,c 
equation is 

The regulation results of normal PD control are given by 

When the kinetic energy of the system is considered. the first equation of (20) 
becomes ( I  I ) .  We use the parameters m = 0.06, g = 9.8, M = 0.12, L = 0.6. The 
modified PD control is (21) with con~pensation n= 0.2r + 0.1 cons a. The sin~ulation 
results are shown in Fig. I .  The normal PD control is suitable for a simplified model, 
but i t  does not work for the complete nonlinear model. The modified PD control 
proposed in this paper can work. The response is similar to that in Ref. 2, but the 
transient performance is worse than in Ref. 4. We note that the nonlinear controllers 
of Refs 2 and 4 need the complete hall and beam system rnodel. The only give 
simulation results. Our modified PD control does not require the nonlinear ball and 
beam system rnodel. Its application is easier. 

The experiment is carried out on the Quanser ball and beam system' (see Fig. 4). 
The beam is 60 ern long. The ball is about 60 g. The input to the system is the motor 
control voltage I / ;  outputs are the positions of motor (8) and ball ( r ) .  The power 
module is also Quanser, PA-0 103 with f 12 V and 3 A output. The AID-DIA board 
is based on a Xilinx FPGA microprocessor, which is a multifunction analogue and 
digital timing I/O hoard dedicated to real-time data acquisition and control in the 
Windows XP environment. The hoard is mounted in a PC Pentiu~n-Ill500 MHz host 
computer. Because the Xilinx FPGA chip supports real-time opcrations without 
introducing latencies caused by the Windows default timing system, the control 
programme is operated in Windows XP with Matlab 6.5lSimulink. The san~pling 
time is about 10 ms. 

The motor and ball controllers are both of the PD type and require direct velocity 
measurements, but they are unavailable. We use the derivative block of Si~nulink to 
calculate them. This requires that the position signals are smooth enough; so tirst- 
order low-pass filters are applied. For motor position we use the following first-order 

10 
lilter: G,(s) = - . For ball position wc usc the lollowing first-ordcr fillcr: 

s + 1 0  

G,(s) = - l 7  . For the serial PD control (8) we use k ,,, = 2, k,/,,, = 0.1. kIr, = 0.5. 
s + 1 7  

k,,,, = 0.1. For the parallel PD control (9) wc use k,, = 2, k,,,, = 0.5, k,,, = 0.4, 
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Fig. 4 Ball and beam control sysfem. 

L 
kdb = 0.1. The parameters for this experiment are - = 16 , m = 0.06, g = 

n d 
9.8, = 0.3 , M = 0.12, L = 0.6. We only use gravity compensationlg. The 

R m  + K m  
compensator is 

(k,+kh)k(lb+(2m-3)r& i.+ mgr+-Mg cosa I f )  I 
It can be approximated as n= 0.3(0.588r + 0.353)cos a (see (19)). The response of 
the parallel PD control for the ball and beam system is shown in Fig. 5. The serial 
PD control has the same compensator as the parallel one. At time t = 200 ms, we 
move the ball 1 cm, to mimic an external disturbance. The response is shown in 
Fig. 6. When we use pure PD control, the response of the serial PD control without 
compensator is shown in Fig. 7. We can see that PD control with exact compensation 
is effective for the ball and beam system. The closed-loop system appears (from 
the step input) to exhibit second-order behaviour with a natural frequency around 
1 rads. Faster filters are used (a rule of thumb would suggest at least 5 to 10 times 
faster than the fastest closed-loop modes). So the filter dynamics will not have a 
significant impact on the control. 
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Fig. 5 Parallel P D  control with gravity compensation. 

Fig. 6 Serial P D  control with nonlinear compensation. 
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Time (ma) 

Fig 7 Serial PI) control witholrt nonlinear coiilpensatoi: 

Conclusion 

The main contributions ol'thc paper are: (1) Two types oC PD controllers with non- 
linear compensation have been presented Cor regulation of the ball and beam system. 
(2) By using Lyapunov's direct method, we have shown that for a well-defined set 
of initial conditions, the ball remains on any point of the bar. (3) Experimental results 
are presented to illustrate the control system's stability and performance. 

The results of this paper can be easily extended to the other mechanical plants. 
A greal benefit to engineering educators is that this paper provides an approach to 
transferring complex theory problcms found in textbooks into prototypes in  the 
laboratory. 
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