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The study presents two approaches to increase the generalization capability, or to 
overcome the over-fitting tendency, of neural networks so that their prediction accuracies 
for unseen data can be further enhanced. The use of early stopping and Bayesian 
regularization approaches are considered. Data used are the artificial Mackey-Glass time 
series and the real time series of Mississippi River. Results show that the Bayesian 
regularization approach is best to overcome the over-fitting problems. It is observed that 
in the scenario when the data set considered is quite clean and large in size, the over-
fitting effect is very small; thus, only marginal prediction improvement can be expected 
from the proposed approaches. 

 
INTRODUCTION 
 
Over-fitting problem or poor generalization capability happens when a neural network 
over learns during the training period. As a result, such a too well-trained model may not 
perform well on unseen data set due to its lack of generalization capability. Several 
approaches have been suggested in literature to overcome this problem. The first method 
is an early learning stopping mechanism in which the training process is concluded as 
soon as the overtraining signal appears. The signal can be observed when the prediction 
accuracy of the trained network applied to a test set, at that stage of training period, gets 
worsened. The second approach is the Bayesian Regularization. This approach minimizes 
the over-fitting problem by taking into account the goodness-of-fit as well as the network 
architecture. 

Both approaches are considered in this study and demonstrated on (1) an artificial 
and a real time series data; (2) data of various noise-levels and sizes.  

A very brief introduction of multilayer perceptron neural network together with back 
propagation learning algorithm is first given. This is followed by the measures to 
overcome poor generalization and the data used.  Results of networks with or without the 
use of the approaches are compared and conclusions are finally drawn. 

 
MULTI-LAYER PERCEPTRONS (MLP) 
 
Artificial Neural Network (ANN) is a computing paradigm designed to mimic the human 
brain and nervous systems, which are primarily made up of neurons. The typical neural 
network is Multilayer Perceptrons (MLP). This type of network consists of the input, the 
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hidden and the output layers of neurons. Training MLPs in a supervised manner with the 
error back-propagation algorithm, many studies have shown MLPs ability to solve 
complex and diverse problems. 

The error back-propagation learning consists of 2 passes through the different layers 
of the network: a forward and a backward passes. In the forward pass, an activity pattern 
is applied to the input neurons of the network and its effects propagate through the 
network, layer by layer, until an output is produced the network. Weights between 
neurons of successive layers are initially assigned in random.  In the backward pass, the 
error observed between the network and the desired responses is computed and used to 
amend the weights. Each neuron starting from the hidden layer is modeled with a 
nonlinear activation function.  The widely used function is the logistic expressed as:  
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where yj is the output of the neuron and vj is the weighted sum of all inputs and the 
bias of neuron j. Figure 1 show the graphical composition of the neural network and the 
two computations done in each neurons. 
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(a) Composition of a Neural Network Model 
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(b) Two computational steps in each neuron 

Figure 1. Schematic Configuration of a Neural Network 
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Learning by Scaled Conjugate Gradient (SCG) algorithm 
In back propagation learning family, there are a number of algorithms available such as 
gradient descent, gradient descent with momentum, conjugate gradient, quasi-Newton. 
This study considers the Scaled Conjugate Gradient (SCG), developed by Moller (1993); 
it is based on a well known optimization technique in numerical analysis called the 
Conjugate Gradient Method. Unlike many other standard backward propagation 
algorithms, this technique does not require any user-specified parameters and its 
computation is faster and inexpensive. Detailed description of the algorithm can be found 
in [8]. 
 
APPROACHES TO AVOID OVER-FITTING PROBLEMS 
 
Approaches considered overcoming the over-fitting problems are: (a) early stopping 
approach; (b) Bayesian Regularization approach. 

Early Stopping Approach 
This approach requires the data set to be divided into three subsets: training, test, and 
verification sets. The training and the verification sets are the norm in all model training 
processes.  The test set is used to test the trend of the prediction accuracy of the model 
trained at some stages of the training process. At much later stages of training process, 
the prediction accuracy of the model may start worsening for the test set.  This is the 
stage when the model should cease to be trained to overcome the over-fitting problem. 

Bayesian Regularization Approach 
The Bayesian Regularization approach involves modifying the usually used objective 
function, such as the mean sum of squared network errors (MSE or dE ) 
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The modification aims to improve the model’s generalization capability. The 
objective function in Eq. (2) is expanded with the addition of a term, wE  which is the 
sum of squares of the network weights:   

d wF E Eβ α= +  (3) 

where the α and β  are parameters which are to be optimized in Bayesian 
framework of MacKay ([3], [4]). It is assumed that the weights and biases of the network 
are random variables following Gaussian distributions and the parameters are related to 
the unknown variances associated with these distributions. It is a known fact that the 
optimal regularization technique requires quite costly computation of the Hessian matrix. 
To overcome this drawback, Gauss-Newton approximation to the Hessian matrix is used. 
The approximation with Levenberg-Marquardt algorithm for network training ([1], [2], 
[6], [9]) is used in this study. 
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DATA 

Mackey-Glass Time Series 
A noise-free artificial Mackey-Glass (MG) time series [5] is considered. The analysis is 
first applied on MG time series contaminated with various known noise levels measured 
in signal-to-noise-ratio (SNR) expressed as: 
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Value of SNR can be interpreted as:  smaller SNR signal implies that it has a higher noise 
level.  A signal with a very large SNR is thus quite clean.  If the noise level is defined as 
the ratio between variance of noise to the variance of signal, the relationship between the 
noise level and SNR is shown in Figure 2 and expressed as:  

SNR
10

1noise_level=
10

 (5) 

MG time series is written as: 
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where ∆ is the shift parameter. The equation can be solved numerically using the 
fourth-order Runge-Kutta method with the initial condition x(t = 0) = 1.2 and x(t-∆) = 0.0 
for 0 ≤ t < ∆.  A time step of 0.01 is used to solve the equation numerically.  A 
moderately chaotic MG time series corresponding to ∆ = 30 is selected for study. 

To analyze the performance of generalization approaches, MG time series data is 
injected with some known noise levels, the SNR values of 3, 10, 15, and 25. Different 
data sizes (300, 600, 3000) are also considered, Table 1. 

 
Figure 2. Relationship between noise level and SNR 
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Table 1. Various Data Sizes and SNR for Mackey Glass Time Series 

Total 
Data Size SNR Equivalent Noise 

Level (%) 
Training 
Size 

Verification 
Size 

300 3, 10, 15, 25 50.1, 10, 3.2, 0.3 200 100 

600 3, 10, 15, 25 50.1, 10, 3.2, 0.3 400 200 

3000 3, 10, 15, 25 50.1, 10, 3.2, 0.3 2000 1000 

Mississippi River Time Series 
A real time series, Mississippi River flow data, is also considered. Daily Mississippi river 
flow time series at Vicksburg station (1985-1993) with data sizes of 300, 600, and 3000 
are used in the analysis. Data are obtained from the US Geological Survey website. The 
flow rate of the Mississippi river is quite large (mean at around 18,500m3/s) as shown in 
Figure 3. The various sizes for training and verification follow exactly that of MG time 
series (Table 1). 

A test set is required only when the early stopping criteria approach is considered. 
The test set data is taken from the training set as given in Table 1. Thus, the test set and 
the resulting training set together form the entire training data set given in Table 1. 

   

0
10000
20000
30000
40000
50000
60000

0 500 1000 1500 2000 2500 3000

Time (days)

M
is

si
ss

ip
pi

 ri
ve

r f
lo

w
 (m

3 /s
)

 
Figure 3. Mississippi River Flow Time Series 

METHODOLOGY 

The Multilayer Perceptrons is first constructed with 3 layers: input, hidden and output 
layers. The number of neurons in input layer is 6 representing the immediate past 6 data 
to forecast the next data in the time series. The number of neurons in hidden layer used, 
as suggested in [11], is 

integer( / 2 )N n R= +  (7) 

where n is the number of input neurons and R is the data set size. 
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This architecture of neural network is then trained by: (a) Scaled Conjugate Gradient 
(SCG); and (b) Bayesian Regularization (BR) with the configurations described in 
Table 2. 

 
Table 2. Configurations of Running Neural Network 

Configuration Description 

1 SCG trained without early stopping criteria 

2 SCG with early stopping criteria; test set size : training set size = 1: 2 

3 SCG with early stopping criteria; test : training = 1:3 

4 Bayesian Regularization approach 
 
 

RESULTS AND DISCUSSIONS 
 
The results of Verification set for MG and Mississippi river time series, with various 
configurations, are presented in Tables 3 and 4 respectively. The highest prediction 
accuracy values are highlighted in grey and the second highest values are marked with 
bold italic font. 
 
Table 3. Results of the Mackey Glass Time Series 

Neural Network Configuration Data 
Size 

Noise 
(SNR) 1 2 3 4 

3 -0.95507 0.43335 0.44990 0.38446 
10 0.55079 0.81674 0.80814 0.79938 
15 0.85700 0.81928 0.92744 0.92870 

 
 

300 
25 0.98637 0.97166 0.97568 0.98979 
3 -0.18162 0.45672 0.44188 0.45683 

10 0.76698 0.83425 0.83140 0.82733 
15 0.91980 0.93106 0.93347 0.93569 

 
 

600 
25 0.99130 0.98010 0.98170 0.99137 
3 0.43427 0.46636 0.46681 0.47944 

10 0.82499 0.82247 0.82193 0.83429 
15 0.93906 0.92684 0.92612 0.93985 

 
 

3000 
25 0.99259 0.98898 0.98875 0.99265 

 
 
Table 4. Results of the Mississippi River Time Series 

Neural Network Configuration Data Size 
1 2 3 4 

300 0.99775 0.95771 0.83777 0.99851 
600 0.99838 0.98297 0.98695 0.99800 
3000 0.99787 0.99713 0.99597 0.99751 
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From Table 3, the following main observations are made:  
• For all cases when noise level is very high (SNR=3), it is clear that 

forecasting with early stopping criteria (Config. 2 and 3) or with BR 
(Config. 4) approach is better than without stopping criteria (Config. 1); 

• For cases when the noise level is very low (SNR=25), ANN without early 
stopping criteria or BR approach performs almost equally well;  

• Small data size combined with very noisy data should not train ANN 
without generalization. A poor performance can be expected otherwise. 

• In general, the Bayesian Regularization approach performs better in most of 
the cases. 

The Mississippi river time series (Table 4) agrees with the observations obtained 
from the MG time series with low noise levels. ANN without early stopping criteria or 
BR approach yields equally good performance. 

 
CONCLUSIONS 
 
The study examined the generalization ability of several approaches on neural network 
forecasting model.  The approaches were first tested on artificial clean data which are 
contaminated with noises of known levels.  A real time series data, the daily Mississippi 
river flow, was also considered in the study. 

Results showed that, in general, the Bayesian Regularization (BR) approach, 
compared to the early stopping approach, lends the model higher generalization ability.  
Thus, BR yields higher prediction accuracy than the early stopping approach. Also 
another advantage of BR over early stopping approach is that, BR does not require a test 
set.  It should be noted that the length of the test set has an impact on the prediction 
capability of the trained model. 

The prediction improvement of models trained with generalization approaches over 
those with standard approach is considerably remarkable when the data is very noisy. 
However, this prediction improvement diminishes significantly when data set considered 
is quite clean. In other words, generalization approach does not play a crucial role in 
training neural network when data set used is of large size and relatively clean. 
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