УДК 621.865.8

А.А. МЕЛЬНИК 1,3 , В.Н. ХОМЕНК 1,2 , П.С. ПЛИС 1 П. ЭНА $\Phi\Phi^{2,3}$ (канд.техн.наук, доц.), В.Ф. БОРИСЕНКО 1 (канд.техн.наук, доц.) Донецкий национальный технический университет 2 Университет Версаля Сен Кантен-ан-Ивлин 3 Университет Сержи-Понтуаз, Франция

КИНЕМАТИЧЕСКАЯ МОДЕЛЬ РОБОТА С ШЕСТЬЮ СТЕПЕНЯМИ СВОБОДЫ И ВОЗМОЖНОСТЬЮ УЧЕТА ЗАЗОРА В СУСТАВАХ

artemmelnyk@gmail.com, slava.khomenko@gmail.com

Даны рекомендации по построению кинематической модели робота-манипулятора с шестью степенями свободы. Для решения этой задачи применен классический матричный подход. Он использован для составления математических моделей трех типовых конфигураций робота-манипулятора Каtana. Проанализирована возможность учета величины механического зазора для каждого сустава робота с использованием разработанных моделей.

Введение. Проблема и ее связь с научными и практическими задачами. Для эффективного управления роботом необходимо иметь его точную кинематическую модель. В настоящее время широко применяются и хорошо изучены подходы к составлению уравнений, описывающих кинематику роботовманипуляторов, наибольшее распространение получило преобразование Денавита-Хартенберга. Данная методика математического описания является достаточно общей, и требует конкретизации для каждого типа роботов. Также, в литературе при использовании классического подхода описания кинематики роботов [1, 2] не принимают во внимание величину возможных отклонений присоединенных углов от расчетных значений. Это связано, например, с механическим зазором [3-5] в суставах роботов, о чем свидетельствует практика их длительной эксплуатации. Учет величины зазора в уравнениях кинематики необходим для повышения точности управления роботом-манипулятором, а также при его автоматической калибровке.

Целью работы является математическое описание робота-манипулятора с шестью степенями свободы Каtana 6M с учетом зазоров в суставах робота.

Для достижения данной цели требуется решение **следующих задач**: систематизировать основные технические характеристики кинематики трех конфигураций робота-манипулятора Katana; выполнить анализ кинематической структуры манипулятора, на основе чего выбрать базовую и локальные системы координат; произвести формализованную запись уравнений кинематики в матричном виде.

Изложение материала и результаты. Для проведения исследований нами был использован роботманипулятор с шестью степенями свободы Каtana швейцарского производителя Neuronics. Общий вид трех конфигураций манипулятора Кatana с различным типом грузозахватывающего органа приведен на рис. 1. Манипулятор имеет шесть степеней свободы, каждое сочленение манипулятора — вращательное с электрическим приводом постоянного тока, соосно монтируемым с волновым редуктором Harmonic Drive. Двигатели питаются от индивидуально управляемых ШИМ-преобразователей. Система регулирования замкнутая по положению и/или по скорости двигателя. Управление электромеханическими системами отдельных суставов реализовано на базе локального контроллера робота, централизованное управление может осуществляться от компьютера, либо с помощью PLC-контроллера.

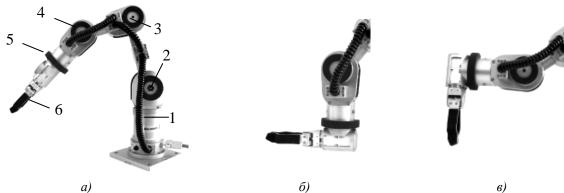


Рисунок 1 — Общий вид трех конфигураций робота-манипулятора Каtana: $a-6M180, \, 6-6M90A, \, 8-6M90B$ [6]

© Мельник А.А., Хоменко В.Н., Плис П.С., Энафф П., Борисенко В.Ф., 2011

Данные по электроприводу сведены в табл.1. Рекомендуемая максимальная загрузка рабочего органа робота составляет 500 г, что, учитывая высокие показатели быстродействия и точности, позволяет использовать робот в качестве интерактивного помощника при взаимодействии с человеком, а также решать ряд практических вопросов автоматизации технологического процесса (микросварка, манипуляция объектами на конвейерной линии) и использовать его в учебно-дидактических целях [7-9].

Номер		Двигатель	Редуктор			
сочле- нения	Мощность двигателя, Вт	Частота вращения, об/мин	кпд	Суммарное передаточное число	КПД	
1	44,5		0,84	100		
2	47,9	6400	0,85	371		
3	23,2	0400	0,79	371	0.90	
4	44,5		0,84	100	0,80	
5	3,88	7900	0.91	100		
6	3,88	7800	0,81	100		

Таблица 1 – Основные данные ЭМС манипулятора Katana конфигурации 6M180 [6]

Для составления кинематической модели манипулятора задаются базовой системой координат и системой координат каждого звена. Базовой системой координат называют «нулевую» систему координат (x_0, y_0, z_0) , представляющую собой инерциальную систему координат манипулятора. Что касается каждого звена, то на оси его сочленения определяют декартову ортонормированную систему координат $(x_i, y_i, z_i, 1)$, где i=1,2,...,n, а n равно числу степеней свободы манипулятора. Для случая с вращательным сочленением, которое имеет только одну степень свободы, каждая система координат (x_i, y_i, z_i) манипулятора Каtana соответствует (i+1)-у сочленению и связана с i-м звеном. Когда электропривод приводит в движение i-е сочленение, i-е звено начинает двигаться относительно (i-1)-го звена, и поскольку i-я система координат связана с i-м звеном, то она движется вместе с ним. Так же справедливо, что n-я система координат движется вместе с последним n-м звеном манипулятора.

Для описания вращательных и поступательных связей между соседними звеньями Денавит и Хартенберг (ДХ-представление) предложили матричный метод последовательного построения систем координат, связанных с каждым звеном кинематической цепи [1, 2]. Смысл этих представлений состоит в формировании однородной матрицы преобразования, имеющий размерность 4х4 и описывающей положение системы координат каждого звена относительно системы координат предыдущего звена.

Рисунок 2 — Система координат звена и ее параметры при использовании модернизированного преобразования Денавита-Хартенберга [6]

Это дает возможность последовательно преобразовать координаты схвата манипулятора из системы отсчета, связанной с последним звеном, в базовую систему отсчета, являющуюся инерциальной системой координат для рассматриваемой динамической системы. Так, для манипулятора Katana с шестью степенями свободы должны быть определены семь систем координат, а именно (x_0, y_0, z_0) , (x_1, y_1, z_1) ,..., (x_6, y_6, z_6) .

Каждая система координат формируется на основе следующих трех правил: 1) ось z_{i-1} направлена вдоль оси i-го сочленения; 2) ось x_i перпендикулярна оси z_{i-1} и её направление принимается либо вдоль i-го звена либо перпендикулярно ему; 3) ось y_i дополняет оси x_i и z_i до декартовой системы координат.

Эти правила оставляют свободу в выборе 0-й системы координат при условии, что ось z_0 направлена вдоль оси первого сочленения. Последняя, n-я система координат также может быть выбрана в произвольной точке n-го звена при условии, что ось x_n перпендикулярна оси z_{n-1} .

Эти правила описания звеньев зависят от четырех геометрических параметров, соответствующих каждому звену. Любое вращательное или поступательное движение полностью описывается набором из четырех параметров, которые определяются в соответствии с рис. 2 следующим образом: 1) a_i - линейное смещение - расстояние от z_{i-1} до z_i вдоль x_{i-1} ; 2) α_i - угловое смещение — угол, на который надо повернуть ось z_{i-1} вокруг оси x_i , чтобы она стала коллинеарной с осью z_i (знак определяется в соответствии с правилом правой руки); 3) d_i - расстояние от оси z_{i-1} до оси z_i , отсчитываемое вдоль оси z; 4) θ_i - присоединенный угол — угол на который надо повернуть ось z_{i-1} вокруг оси z_i , чтобы она стала коллинеарной с осью z_i (знак определяется в соответствии с правилом правой руки).

Для вращательных сочленений параметры d_i , a_i и α_i являются характеристиками сочленения, их называют присоединенными параметрами, подчеркивая то, что они являются постоянными для рассматриваемого робота. В то же время θ_i является переменной величиной, изменяющейся при вращении i-го звена относительно (i-1)-го. О величине θ_i говорят как о присоединенной переменной, подразумевая тем самым, что она может менять свое значение.

Базируясь на изложенных выше основных правилах построения ортонормированных систем координат звеньев, а также учитывая геометрический смысл параметров сочленений и звеньев, была сформирована ортонормированная система координат робота-манипулятора Кatana. Системы координат пронумерованы в порядке возрастания — от основания к схвату манипулятора (рис. 3). Предлагаемый способ выбора систем координат не является единственным.

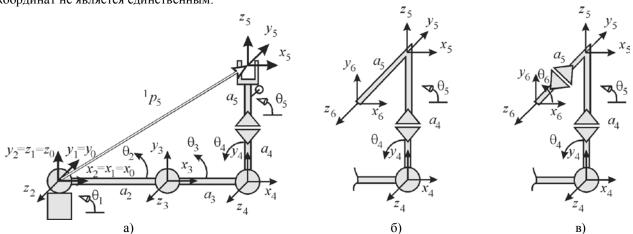


Рисунок 3 — Конфигурации робота-манипулятора Каtana и соответствующие им системы координат: a - 6M180; 6 - 6M90A; 6 - 6M90B [6]

В табл. 2 сведены данные по кинематике трех рассмотренных конфигураций робота-манипулятора Каtana. На основании характеристик табл. 1 и пользуясь формулой расчета момента

$$M_{i} = \frac{P_{nMi}}{\omega_{nMi}} \cdot \eta_{Mi} \cdot i_{Ri} \cdot \eta_{Ri}$$

$$\tag{1}$$

получены величины моментов каждого сустава робота, они представлены в табл. 2.

Таблица 2 – Базовые величины и координаты кинематики манипулятора Katana серии 450

Сочленение	6M180			6M90A		6M90B			Пределы	Номинальный	
i	d_i	a_i	α_i	d_i	a_i	α_i	d_i	a_i	α_i	изменения углов	момент
1	0	0	0	0	0	0	0	0	0	+/-169.5°	4,46 Нм
2	0	0	90	0	0	90	0	0	90	+102°/-30°	18,03 Нм
3	0	a_2	0	0	a_2	0	0	a_2	0	+/-122.5°	8,12 Нм
4	0	a_3	0	0	a_3	0	0	a_3	0	+/-112°	4,46 Нм
5	$a_4 + a_5$	0	-90	a_4	0	-90	a_4	0	-90	+/-168°	0,31 Нм
6	схват			a_5	0	-90	a_5	0	90	+299.5°/-29.5°	0,31 Нм

Из [1, 2] известно, что координаты точки r_i , заданные в i-й системе координат, можно преобразовать в координаты точки r_{i-1} относительно (i-1)-й системы координат, выполняя последовательность следующих операций: 1) $ROT(\alpha_i)$ - поворот вокруг оси x_{i-1} на угол α_i ; 2) $TRANS(a_i)$ - сдвиг вдоль оси x_{i-1} на расстояние a_i ; 3) $ROT(\theta_i)$ - поворот вокруг оси z_i на угол θ_i ; 4) $TRANS(d_i)$ - сдвиг вдоль оси z_i на

Каждую из этих четырех операций можно описать однородной матрицей элементарного поворота или сдвига, а произведение таких матриц даст однородную матрицу сложного преобразования $^{i-1}A_i$, называемую ДХ-матрицей преобразования для смежных систем координат с номерами i и (i-1). Таким образом получаем:

$$\sum_{i=1}^{i-1} A_{i} = T_{z,d} T_{z,\theta} T_{x,a} T_{x,\alpha} = ROT(\alpha_{i}) TRANS(a_{i}) ROT(\theta_{i}) TRANS(d_{i}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\ 0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta_{i} & -\sin \theta_{i} & 0 & a_{i} \\ \cos \alpha_{i} \sin \theta_{i} & \cos \alpha_{i} \cos \theta_{i} & -\sin \alpha_{i} & -d_{i} \sin \alpha_{i} \\ \sin \alpha_{i} \sin \theta_{i} & \sin \alpha_{i} \cos \theta_{i} & \cos \alpha_{i} & d_{i} \cos \alpha_{i} \end{bmatrix}$$

$$(2)$$

Основываясь на матрице $^{i-1}A_i$ преобразования смежных систем координат (2) и принимая во внимание параметры кинематики робота-манипулятора (табл. 1), нами получены однородные матрицы преобразования систем координат звеньев трех конфигураций манипулятора Katana. Матрицы преобразования координат с 1-го по 4-е звено 0A_1 - 4A_5 идентичны для всех трех конфигураций манипулятора (3-7а). Матрица 5A_6 не имеет смысла для конфигурации манипулятора 6М180, так как его захватное устройство сонаправлено с 5-м звеном и его длинна уже учитывается в матрице 4A_5 . Матрица (7б) относится к конфигурациям типов 6М90A и 6М90B, матрице ${}^{5}A_{6}$ отвечают уравнения (8а) и (8б) соответственно:

$${}^{0}A_{1} = \begin{bmatrix} \cos(\theta_{1}) & -\sin(\theta_{1}) & 0 & 0\\ \sin(\theta_{1}) & \cos(\theta_{1}) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$$(3)$$

$${}^{1}A_{2} = \begin{bmatrix} \cos(\theta_{2}) & -\sin(\theta_{2}) & 0 & 0\\ 0 & 0 & -1 & 0\\ \sin(\theta_{2}) & \cos(\theta_{2}) & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$$(4)$$

$$A_{3} = \begin{bmatrix} \cos(\theta_{3}) & -\sin(\theta_{3}) & 0 & a_{2} \\ \sin(\theta_{3}) & \cos(\theta_{3}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$$A_{5} = \begin{bmatrix} \cos\theta_{5} & -\sin\theta_{5} & 0 & 0 \\ 0 & 0 & 1 & a_{4} + a_{5} \\ -\sin\theta_{5} & -\cos\theta_{5} & 0 & 0 \\ 0 & 0 & 1 & a_{5} \\ -\sin\theta_{6} & -\cos\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$$A_{6} = \begin{bmatrix} \cos\theta_{6} & -\sin\theta_{6} & 0 & 0 \\ 0 & 0 & 1 & a_{5} \\ -\sin\theta_{6} & -\cos\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$$(8a)$$

$$A_{6} = \begin{bmatrix} \cos\theta_{6} & -\sin\theta_{6} & 0 & 0 \\ 0 & 0 & 1 & -a_{5} \\ -\sin\theta_{6} & -\cos\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$$(8b)$$

$${}^{4}A_{5} = \begin{bmatrix} \cos\theta_{5} & -\sin\theta_{5} & 0 & 0 \\ 0 & 0 & 1 & a_{4} + a_{5} \\ -\sin\theta_{5} & -\cos\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$
(7a)
$${}^{4}A_{5} = \begin{bmatrix} \cos\theta_{5} & -\sin\theta_{5} & 0 & 0 \\ 0 & 0 & 1 & a_{4} \\ -\sin\theta_{5} & -\cos\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$
(76)
$${}^{5}A_{6} = \begin{bmatrix} \cos\theta_{6} & -\sin\theta_{6} & 0 & 0 \\ 0 & 0 & 1 & a_{5} \\ -\sin\theta_{6} & -\cos\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$
(86)

$${}^{5}A_{6} = \begin{bmatrix} \cos\theta_{6} & -\sin\theta_{6} & 0 & 0 \\ 0 & 0 & 1 & a_{5} \\ -\sin\theta_{6} & -\cos\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \tag{8a}$$

$${}^{5}A_{6} = \begin{bmatrix} \cos\theta_{6} & -\sin\theta_{6} & 0 & 0 \\ 0 & 0 & -1 & -a_{5} \\ \sin\theta_{6} & \cos\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. \tag{86}$$

Используя матрицы $^{i-1}A_i$, можно связать однородные координаты p_i точки p (которая покоится в i -й системе координат) с однородными координатами p_{i-1} относительно (i-1)-й системы отсчета, связанной с (i-1) -м звеном. Эта связь устанавливается равенством:

$$p_{i-1} = {}^{i-1}A_i p_i, (9)$$

где $p_{i-1} = (x_{i-1}, y_{i-1}, z_{i-1}, 1)^T$ и $p_i = (x_i, y_i, z_i, 1)^T$.

Произведение однородных матриц вида $^{i-1}A_i$ представляет собой однородную матрицу 0T_i при помощи которой определяют положение i -й системы координат относительно базовой:

$${}^{0}T_{i} = {}^{0}A_{1} {}^{1}A_{2} \dots {}^{i-1}A_{i} = \prod_{j=1}^{i} {}^{j-1}A_{j} = \begin{bmatrix} n_{i} & s_{i} & a_{i} & {}^{0}p_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} {}^{0}R_{i} & {}^{0}p_{i} \\ 0 & 1 \end{bmatrix},$$

$$(10)$$

где ${}^{0}R_{i}=igl[n_{i}\quad s_{i}\quad a_{i}igr]$ - матрица определяющая ориентацию i -й системы координат, связанной с

i-м звеном, по отношению к базовой системе координат (верхняя левая подматрица матрицы ${}^{0}T_{i}$ размерностью 3x3); ${}^{0}p_{i}$ - вектор соединяющий начало базовой системы координат с началом i-й системы координат (верхняя правая подматрица матрицы ${}^{0}T_{i}$, имеющая размерность 3x1).

В частности, при i=6 мы получаем матрицу $T={}^0A_6$, которая определяет положение и ориентацию схвата манипулятора относительно базовой системы координат. Эту матрицу часто называют «матрицей манипулятора»:

$$T = {}^{0}A_{6} = \prod_{j=1}^{n} {}^{j-1}A_{j} = \begin{bmatrix} \mathbf{n} & \mathbf{s} & \mathbf{a} & \mathbf{p} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} n_{x} & s_{x} & a_{x} & p_{x} \\ n_{y} & s_{y} & a_{y} & p_{y} \\ n_{z} & s_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix},$$
(11)

где p - вектор положения схвата; n - вектор нормали к схвату; s - касательный вектор схвата; a - вектор подхода схвата.

Касательный вектор \boldsymbol{n} схвата лежит в плоскости движения пальцев схвата и указывает направление движения пальцев во время открывания и закрывания схвата. Вектор подхода схвата \boldsymbol{a} направлен по нормали к плоскости захвата, т.е. перпендикулярен креплению инструмента в схвате. Вектор положения схвата \boldsymbol{p} определяется линией, направленной из начала базовой системы координат к началу системы координат схвата, которое, как правило, расположено в точке, которая является геометрическим центром полностью сжатых пальцев.

Решение прямой задачи кинематики для манипулятора по уравнению (11) приводит к единственной матрице T при заданных значениях θ_i для рассматриваемого случая вращательных сочленений. Для каждого сочленения манипулятора известны ограничения, которые определяются физическими пределами изменения θ_i . В табл. 2 указаны такие пределы для робота Каtana серии 450 в относительных координатах для каждого сустава. В соответствии с изложенным, для манипулятора Кatana конфигурации 6М180 получаем конечные уравнения:

$$\begin{cases} n_x = \cos(\theta_1) \cdot \cos(\theta_2) \cdot \cos(\theta_3) \cdot \cos(\theta_4) \cdot \cos(\theta_5) - \cos(\theta_1) \cdot \cos(\theta_2) \cdot \sin(\theta_3) \cdot \sin(\theta_4) \cdot \cos(\theta_5) - \cos(\theta_1) \cdot \sin(\theta_2) \cdot \sin(\theta_2) \cdot \sin(\theta_3) \cdot \cos(\theta_4) \cdot \cos(\theta_5) - \sin(\theta_1) \cdot \sin(\theta_2) \cdot \sin(\theta_2) \cdot \sin(\theta_3) \cdot \cos(\theta_4) \cdot \cos(\theta_5) - \sin(\theta_1) \cdot \sin(\theta_5); \\ n_y = \sin(\theta_1) \cdot \cos(\theta_2) \cdot \cos(\theta_3) \cdot \cos(\theta_4) \cdot \cos(\theta_5) - \sin(\theta_1) \cdot \cos(\theta_2) \cdot \sin(\theta_3) \cdot \sin(\theta_4) \cdot \cos(\theta_5) - \sin(\theta_1) \cdot \sin(\theta_2) \cdot \sin(\theta_2) \cdot \sin(\theta_3) \cdot \cos(\theta_4) \cdot \cos(\theta_5) - \sin(\theta_1) \cdot \sin(\theta_2) \cdot \sin(\theta_2) \cdot \sin(\theta_3) \cdot \cos(\theta_4) \cdot \cos(\theta_5) + \cos(\theta_5); \end{cases}$$

$$(12)$$

$$n_z = \sin(\theta_2 + \theta_3 + \theta_4) \cdot \cos(\theta_5);$$

$$\begin{cases} s_{x} = \cos(\theta_{1}) \cdot \cos(\theta_{2}) \cdot \sin(\theta_{3}) \cdot \sin(\theta_{4}) \cdot \sin(\theta_{5}) - \cos(\theta_{1}) \cdot \cos(\theta_{2}) \cdot \cos(\theta_{3}) \cdot \cos(\theta_{4}) \cdot \sin(\theta_{5}) + \\ + \cos(\theta_{1}) \cdot \sin(\theta_{2}) \cdot \cos(\theta_{3}) \cdot \sin(\theta_{4}) \cdot \sin(\theta_{5}) + \cos(\theta_{1}) \cdot \sin(\theta_{2}) \cdot \sin(\theta_{3}) \cdot \cos(\theta_{4}) \cdot \sin(\theta_{5}) - \sin(\theta_{1}) \cdot \cos(\theta_{5}); \\ s_{y} = -\sin(\theta_{1}) \cdot \cos(\theta_{2}) \cdot \cos(\theta_{3}) \cdot \cos(\theta_{4}) \cdot \sin(\theta_{5}) + \sin(\theta_{1}) \cdot \cos(\theta_{2}) \cdot \sin(\theta_{3}) \cdot \sin(\theta_{4}) \cdot \sin(\theta_{5}) + \\ + \sin(\theta_{1}) \cdot \sin(\theta_{2}) \cdot \cos(\theta_{3}) \cdot \sin(\theta_{4}) \cdot \sin(\theta_{5}) + \sin(\theta_{1}) \cdot \sin(\theta_{2}) \cdot \sin(\theta_{3}) \cdot \cos(\theta_{4}) \cdot \sin(\theta_{5}) + \cos(\theta_{1}) \cdot \cos(\theta_{5}); \\ s_{z} = (\cos(\theta_{2} + \theta_{3} + \theta_{4} + \theta_{5}) - \cos(\theta_{2} + \theta_{3} + \theta_{4} - \theta_{5}))/2; \end{cases}$$

$$(13)$$

$$\begin{cases} a_x = -\cos(\theta_1) \cdot \sin(\theta_2 + \theta_3 + \theta_4); \\ a_y = (\cos(\theta_1 + \theta_2 + \theta_3 + \theta_4) - \cos(\theta_1 - \theta_2 - \theta_3 - \theta_4))/2; \\ a_z = \cos(\theta_2 + \theta_3 + \theta_4); \end{cases}$$
(14)

$$\begin{cases} p_{x} = (a_{2} \cdot (\cos(\theta_{1} + \theta_{2}) + \cos(\theta_{1} - \theta_{2})) + a_{3} \cdot (\cos(\theta_{1} - \theta_{2} - \theta_{3}) + \cos(\theta_{1} + \theta_{2} + \theta_{3})) + \\ + (a_{4} + a_{5}) \cdot (-\sin(\theta_{1} + \theta_{2} + \theta_{3} + \theta_{3}) + \sin(\theta_{1} - \theta_{2} - \theta_{3} - \theta_{4})) / 2; \\ p_{y} = (a_{2} \cdot (\sin(\theta_{1} + \theta_{2}) + \sin(\theta_{1} - \theta_{2})) + a_{3} \cdot (\sin(\theta_{1} - \theta_{2} - \theta_{3}) + \sin(\theta_{1} + \theta_{2} + \theta_{3})) + \\ + (a_{4} + a_{5}) \cdot (\cos(\theta_{1} + \theta_{2} + \theta_{3} + \theta_{3}) - \cos(\theta_{1} - \theta_{2} - \theta_{3} - \theta_{4})) / 2; \\ p_{z} = a_{2} \cdot \sin(\theta_{2}) + a_{3} \cdot \sin(\theta_{2} + \theta_{3}) + (a_{4} + a_{5}) \cdot \cos(\theta_{2} + \theta_{3} + \theta_{4}). \end{cases}$$

$$(15)$$

Приведенные уравнения (12-15) позволяют определить конечные положения схвата на базе координат отдельных сочленений робота-манипулятора θ .

При наличии зазора на выходе сочленений решение данной задачи значительно усложняется. В этой работе нами предлагается учитывать зазор следующим образом:

$$\theta_i = \theta_i' + \delta \theta_i(M_i), \tag{16}$$

 $\delta\theta_i(M_i)$ - функция отклонения присоединенного угла, описывающая зазор в i -м сочленении; θ_i' - угол перед зазором; θ_i - угол на выходе сустава.

Типовая зависимость величины отклонения присоединенного угла от момента при наличии зазора в сочленении представлена на рис. 4.

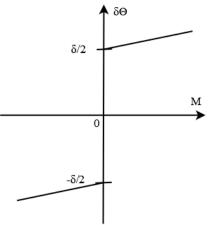


Рисунок 4 –Зазор в суставе робота

Математическое описание этой характеристики имеет вид:

$$\delta\theta_i(M_i) = \delta \cdot \left(\frac{1}{2} \cdot \text{sign}(M_i) + k_H \frac{M_i}{M_{Hi}}\right),\tag{17}$$

 $sign(M_i)$ - функция знака момента, действующего на i-е сочленение; где

 δ - величина механического зазора со стороны выходного вала редуктора (для редукторов Махоп, применяющихся в роботах-манипуляторах Katana серии 200, она составляет 0,035 рад. при отсутствии нагрузки);

 $k_{H} = 0.05 \div 0.4$ - коэффициент, зависящий от материала зубчатых колес и конструкции редуктора;

 $M_{\scriptscriptstyle Hi}$ - номинальный момент на выходе i-го сочленения.

Оценка поведения модели при исходном зазоре $\delta = 0$ выполнена на базе проекций вектора положения схвата. Воспользовавшись матрицей манипулятора (11), были посчитаны проекции вектора положения. Эта операция реализована для исходного состояния (рис.3, a) и для поворота четвертого звена на угол $\frac{\pi}{2}$ по часовой стрелке, а также для случая вертикально выпрямленного манипулятора.

Для исходного положения системы присоединенные углы равны $\theta = (\theta_1, \theta_2, \theta_3, \theta_4, \theta_5)^T = (0.00, 0.00)^T$; подставляя их значения в уравнение (15) получим проекции вектора положения схвата:

$$p = (p_x, p_y, p_z)^T = (a_2 + a_3, 0, a_4 + a_5)^T.$$
 (18)

Для второго случая – положения после поворота – присоединенные углы $\theta = (0,0,0,-\frac{\pi}{2},0)^T$, а проекции вектора положения схвата будут равны:

$$p = (p_x, p_y, p_z)^T = (a_2 + a_3 + a_4 + a_5, 0, 0)^T.$$
(19)

Робот в вертикальном положении:

$$p = (p_x, p_y, p_z)^T = (0, 0, a_2 + a_3 + a_4 + a_5)^T,$$
 (20)

что подтверждает правильность основных теоретических положений. Геометрический смысл доказательства состоит в том, что для случаев (19) и (20) манипулятор находится, соответственно, в горизонтальном, либо вертикальном положении, и его проекция на ось x или z равна суммарной длине его звеньев.

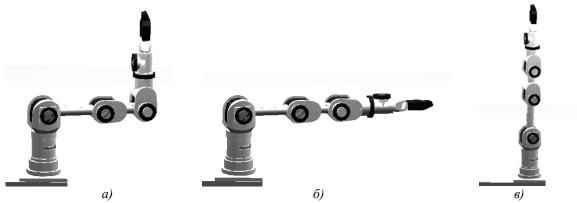


Рисунок 5 – Положения звеньев манипулятора, полученные в ПО Webots

На рис. 5 графически отображены результаты проверки уравнений (12-15) в среде виртуального математического моделирования Webots, подтвердившие доказательство их правильности: а) исходное положение – формула (18); б) горизонтальное положение руки после поворота третьего сустава (19); в) вертикальное положение руки (20).

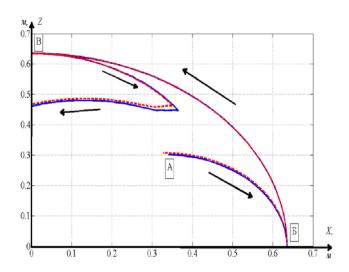


Рисунок 6 – Траектория движения схвата из исходного положения (точка А) в горизонтальное (Б) и вертикальное (В) при учете зазора (сплошная линия) и без него (штриховая)

Зазор δ =0,035 рад. в суставах робота существенным образом сказывается на передвижении схвата (рис. 6), отрицательно влияя на точность его позиционирования.

Авторы выражают благодарность руководству лаборатории LISV Версальского университета Сен Канетан-Ивлин за предоставленную возможность воспользоваться лицензионным программным обеспечением Webots (Cyberbotics) для реализации математической модели робота.

Выводы и направление дальнейших исследований. Представленный принцип построения кинематической модели робота позволил получить основные матрицы преобразования координат робота с шестью степенями свободы, показана возможность учета величины зазоров в суставах. Результирующая модель предлагается для использования при построении алгоритмов управления роботом-манипулятором Katana с автоматическим «выбором» зазора, а также при калибровке робота [10-12].

В дальнейшем планируется экспериментальная проверка разработанных моделей на действующем лабораторном оборудовании с использованием микроэлектромашинных датчиков SCA121-Т (инклинометр) и ADXL150 (трехосевой акселерометр), монтируемых на выходе сустава робота.

ЛИТЕРАТУРА

- 1. Фу К. Робототехника: пер. с англ. / Фу К., Гонсалес Р., Ли К. М.: Мир, 1989. 624 с., ил.
- 2. Handbook of robotics / Siciliano B., Khatib O. Springer-Verlag Berlin Heidelberg. 2008. 1611 p.
- 3. Hovland G., Hanssen S., Moberg S. and other. Nonlinear Identification of Backlash in Robot Transmissions // Proceedings of the 33rd ISR (International Symposium on Robotics). October 7-11. 2002. 6 p.
- 4. Nordin M., Gutman P-O. Controlling mechanical systems with backlash—a survey // Automatica. Vol. 38. 2002. P. 1633-1649.
- 5. Lima Miguel F.M. Análise dinâmica de vibrações em manipuladores robóticos. PhD Thesis. Universidade de coimbra. Portugal. 2008. 225 p.
 - 6. Katana 450 Benutzerhandbuch. Neuronics AG. Document Nr: 233493. Version 2.0.4. 2001-2008.
- 7. Flexible robotic arm unveiled at Hanover // Manufacturingtalk. May 11, 2007. [Режим доступа]: http://www.manufacturingtalk.com/news/nvy/nvy104.html
- 8. Small robot integrates into processes // Engineeringtalk. May 9, 2007. [Режим доступа]: http://www.engineeringtalk.com/news/nvy/nvy101.html
- 9. Neuronics Strengthens its Position in the International Market for "Intelligent Personal Robotics". [Режим доступа]: http://www.roboticstrends.com/robotics_features/article/neuronics_strengthens_its_position/.
- 10. Пашкевич А.П. Анализ и синтез кинематических моделей манипуляционных систем роботов / А.П. Пашкевич // Доклады БГУИР январь-март. 2004. №1. С. 50-63.
- 11. Elatta A.Y., Gen L.P., Zhi F.L. An Overview of Robot Calibration // Information Technology Journal 3 (1), Asian Network for Scientific Information. 2004. P. 74-78.
- 12. Ruggeri S., Vertuan A., Legnani G., Visioli A. Kinetostatic calibration of a SCARA robot // XIX Congresso AIMETA, Associazione Italiana di meccanica teorica e applicata. Ancona. 14-17 Settembre, 2009. 10 p.

Надійшла до редколегії 15.10.2010

А.А. МЕЛЬНИК 1,3 , В.М. ХОМЕНКО 1,2 , П.С.ПЛІС 1 , П. ЕНАФФ 2,3 , В.П. БОРИСЕНКО 1

Кінематична модель робота з шістьома ступенями свободи і можливістю врахування зазору в суглобах. Дано рекомендації до побудови кінематичної моделі робота-маніпулятора шістьома ступенями свободи. Для вирішення цієї задачі застосовано класичний матричний підхід. Його використано для складання математичних моделей трьох типових конфігурацій роботаманіпулятора Katana. Проаналізовано можливість врахування величини механічного зазору для суглобу використовуючи кожного робота, розроблені математичні моделі.

A. MELNYK 1,3 , V. KHOMENKO 1,2 , P. PLIS 1 , P. HENAFF 2,3 , V. BORYSENKO 1

¹ Donetsk National Technical University

²University of Versailles Saint-Quentin-en-Yvelines

Рецензент: О.І. Толочко

³ Cergy-Pontoise University

A Kinematic Model of a Robot with Six Degrees Of Freedom and a Possibility of Taking into Account Gaps in the Joints. The construction of a cinematic model for a six degree-of-freedom robot-manipulator is presented in this article. To solve this problem, the classical mathematical matrix approach was implemented. It is applied to compose mathematic models for three typical configurations of the robot manipulator Katana. The possibility of taking into account the value of a mechanical gap in each joint of the robot using these models is analyzed.

¹ Донецький національний технічний університет

²Університет Версаля Сен Кантен-ан-Івлін

³ Університет Сержи-Понтуаз