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The motivation behind this work is to develop a dynamical systems understanding of
the phenomenon of squeal. Squeal is a form of self-excited vibration; vibrations are induced
in a structure such as a wheel or violin string by the action of a frictional driving force.
The nature of this force is rather difficult to define; however, a phenomenological model
is proposed which combines the concepts of static and dynamic friction, which seems
intuitively reasonable and for which there is documented evidence. In the case presented
here, the vibrating structure is simplified to that of a block resting on a moving conveyor
belt, restrained by a simple spring and dashpot to a rigid wall. The non-linear system
dynamics predicted by using the new friction model are unusual in that the conditions
giving rise to squeal include not only the belt speed, but also the initial conditions of the
structure. It is thought that this information may be useful in the control of the onset of
squeal.
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1. INTRODUCTION

This research is being performed within the framework of a project concerned with the
control of railway wheel squeal, the ultimate objective of which is to learn more about the
onset of such vibrations, so that they may be suppressed. Railway wheels are designed to
be sections through a cone, so that the effective wheel diameter may be varied by the
position of the wheel relative to the track, and this provides a simple geometric differential.
However, because the bogies have fixed axles, prolonged sliding of the wheel rims against
the rails will occur when a train traverses a bend at speed. As the wheels slip sideways
across the rails, the friction forces acting at the wheel rim excite transverse vibrations in
the wheel. This is one example of friction-induced self-excited vibration, which includes
the action of a bow on a violin string or a wet finger rubbed around the rim of a wine
glass. It is notable that with such different structural materials and different surfaces of
contact, the mechanism of vibration excitation appears so similar.

In an experimental context, the vibration of a structure known to be prone to squeal
might be logged on a spectrum analyzer and the Fast Fourier Transform (FFT) of the data
displayed in real time. Thus the experimentalist would see the development of the vibration
of the structure from initiation to full squeal. Initially many of the vibrational modes of
the structure would be excited, resulting in an FFT trace containing a number of spikes.
As the vibration develops, typically one of the resonance spikes will dominate, and this
increase in amplitude would indicate the incipience of squeal. A broadening of the
resonance spike may also be observed, indicating a variability in the frequency.
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In the analysis, computation of the full development of squeal would be impractical, and
rather uninformative. Instead, the focus is on the behaviour of the structure at large time.
To simplify the analysis as much as possible, but to retain the essential features investigated
here, the vibrating structure considered is a block, attached to a rigid wall by a simple
spring and dashpot. The system is driven by the frictional force between the block and
the moving belt upon which it is resting: a simple one-degree-of-freedom structure with
a non-linear excitation term. The configuration is shown in Figure 1. A similar analysis
including a many-degrees-of-freedom model for the wheel vibration, but which uses only
simple models for the friction, has been performed by Engineer and Abrahams [1].

The governing equation for this system is

mẍ+ rẋ+ sx=F(ẋ, ẍ), (1.1)

where m is the mass of the block, s is the spring constant and r is the damping coefficient.
The frictional force is given by F(ẋ, ẍ), although it may be more natural to think of it
as varying with time.

2. REVIEW OF FRICTION MODELS

The earliest formulation of the laws of friction was made by Leonardo da Vinci, who
observed that friction seems to be independent of the area of contact, and that the frictional
force is directly proportional to the applied normal load. Later, in 1781, Coulomb
recognized the concept of a limiting static friction; that forces applied to a static body
would not cause the body to slide unless they exceeded this limit, which is greater than
the coefficient of kinetic friction. These, and the observation that the frictional force is
nearly independent of the sliding speed, are generally known as Coulomb’s friction law.
For many purposes this is still considered to be a very good model for friction.

However, there are many instances where this model does not give predictions which
have the correct quality. A particular example of this is the phenomenon of squeal. The
observed phenomenon is that a small initial disturbance in a system, such as the
spring–mass–damper system shown in Figure 1, can be amplified by energy transfer from
the belt (or drive mechanism) to the vibrating system, even under significant levels of
damping. Ultimately, the amplitude of the motion is limited; the motion increases until
at one point in each cycle the velocity of the block is matched with the velocity of the belt,
i.e. in a state of ‘‘stick’’. It is the amplification of the motion to this limit that is termed
squeal, or self-excited vibration. The Coulomb friction law does not provide a mechanism
for energy exchange from the belt to the spring–mass–damper system, so that in the
presence of damping, initial disturbances are damped out and the long term behaviour is

Figure 1. Friction driven spring–mass–damper system.
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steady slip. The state of ‘‘stick’’ can be achieved only once, and then only if the initial
conditions were sufficiently energetic.

It thus becomes necessary to consider the plethora of possible friction variables; each
being rather complex and possibly applying in restricted circumstances. These include for
example, the non-bulk material properties of the material, the surface roughness, the
chemical composition of the surface, the adhesive properties of the surface, thermal
properties of the surface, etc. Moreover, the frictional force will fluctuate randomly
because the action of rubbing is to modify the interacting surfaces. A method of analysis
based on state variables was proposed by Ruina [2], which he applied to fault motions in
the Earth. This technique has also been applied by Smith [3] for the modelling of the action
of the violin bow on a string. In that particular case, the important factor was the friction
induced heating and the effect it has on the rosin.

The effect of many of these factors on the friction force are really understood only
qualitatively and it is inappropriate to attempt to build a predictive model of friction based
on such knowledge. However, it is intuitive that the precise details are largely irrelevant;
Heslot et al. [4] concluded likewise following their experimental investigation of
paper-on-paper dry-friction dynamics. What is required is a friction law which includes
details which might be expected to be pertinent, and a number of parameters which may
be modified, so that the model can be tuned to predict the experimental outcome for the
particular regime of interest.

The phenomenon of squeal is associated with ‘‘stick-slip’’. This is a term first used by
Bowden and Tabor [5], when describing the relative motion of two surfaces in contact.
They noted that the motion is governed by a kinematic friction law while the surfaces are
‘‘slipping’’ and by a static law when there is no relative motion, ‘‘sticking’’. However, when
the relative motion is very small, such as when the relative motion changes direction, it
is hard to think of the kinematic and static frictions as being distinct processes. To develop
a friction law which is well suited to modelling self-excited vibrations, it is thus necessary
to review static and kinematic models, and bring them to a synthesis.

In the ‘‘stick’’ phase, the applied tangential force FT is exactly balanced by the frictional
force F. That is, the greater the applied force the greater the force due to static friction,
up to a limiting value which is

=FT =EFmax = msmg. (2.1)

It is only when the applied force exceeds this value that ‘‘slip’’ can take place. In the
simplistic treatments of static friction, this limiting force is taken to be a constant, however
Bowden and Tabor showed, for metal–metal contact, that junctions between the asperities
on the two surfaces grow with time and applied normal force, so that bodies which have
been in contact for a period of time will require a greater applied tangential force to
separate them.

In the case of ‘‘slip’’, the effect of friction is to produce a force which opposes the
direction of motion. The Coulomb friction model states that the frictional force is
independent of the magnitude of the velocity

F=−sgn (vR )mkmg, (2.2)

where vR is the velocity of the body against which the force F is acting, relative to the other
body. However, experiments have shown that there is a velocity dependence, and Lindop
and Jensen [6] demonstrated this computationally based on a qualitative understanding
of surface interactions. Other authors (Ibrahim [7], Popp and Stelter [8], and Capone et
al. [9]) have argued its significance by interpreting squeal phenomena in the light of
mathematical understanding of dynamical systems. Each of these arguments leads to the
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construction of a frictional force versus relative velocity graph which shows, for velocity
increasing from zero, the opposing frictional force rising from zero up to a local maximum,
with various behaviours as the velocity goes to infinity. The view taken by several
researchers (Oden and Martins [10]) is that the variation of the friction force is due to
fluctuations of the applied normal force. Kragelsky et al. [11] have reviewed the issues of
friction and wear at length, and cited a number of empirical friction–velocity relationships
of the form described above.

The experimental results of Wang [12] show hysteresis for relative velocities near to zero.
As the relative velocity approaches zero, the frictional force rises to a local maximum and
then begins to fall. It does not reach zero until the relative velocity has actually changed
sign and then it finally reaches a minimum lower than the initial maximum. Sakamoto’s
graphs [13] show a similar phenomenon, but over a restricted range. Hunt et al. [14],
working in 1965, also noted this effect and concluded that the frictional force was
dependent on another variable besides velocity, and proposed that this be acceleration. The
model presented below has been constructed to match these results qualitatively, for
periodic sliding motions.

3. A PHENOMENOLOGICAL MODEL

It is well known that the elastic limit for a microscopic piece of material is far higher
than for the bulk material, and the frictional contact area is comprised of many small
contacts on the surface irregularities. Thus it would seem reasonable that the two
contacting bodies could move a small distance relative to each other, without disrupting
the temporary bonds between them, and the opposing frictional force would be
predominantly due to the elastic force applied by the stretched irregularities. Such a view
was proposed by Rabinowicz [15], who presented results of experiments to determine the
variation of the coefficient of friction with displacement, demonstrating that the friction
force quickly reaches a maximum on the length scale of the asperity height, after which
it initially declines rapidly and then gradually.

It is clear that such a phenomenon would reveal itself differently depending on the
relative velocity of the two surfaces, since bonds would remain unbroken for a period of
time equal to the maximum extension of the bond divided by the velocity. For very low
relative velocities, this time period could introduce a hysteretic effect, since the contacting
bodies can move small distances relative to each other whilst remaining in a state of
‘‘stick’’—a phenomenon known as ‘‘microslip’’. For moderate velocities the frictional force
might be expected to increase in accordance with the increase of the number of bonds being
broken in a time period. Obviously the random distribution and size of asperities will
introduce stochastic effects which may be expected to be most significant at low relative
velocities.

The sketches in Figure 2 show the motion of a block resting on a fixed slab. The block
is driven relative to the slab with a velocity v(t) which oscillates about zero. For high
frequency oscillations with sufficiently small amplitude it is obvious that the interface
between the block and the slab will remain in the ‘‘stick’’ phase; the strain in the bonded
irregularities providing the ‘‘static’’ frictional force. The brush-like representation of the
interface is a visualization of the growth of junctions between asperities, and the strain
on these junctions. In the present work, it serves merely as an aid to intuition; however
a computational model of friction, based on modelling a number of individual ‘‘bristles’’
has been presented by Haessign and Friedland [16].

However, if the frequency is reduced or the amplitude increased, the block will move
relative to the slab by a distance greater than the maximum extension of the bonds.
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Figure 2. Schematic showing interface deformation and ‘‘stick–slip’’ state.

Initially, see Figure 2(a), the block is stationary and the bonds are unstrained, so that there
is no force opposing the motion. In Figure 2(b), a short time later the velocity of the block
relative to the belt is shown to be slightly positive, but the bonds are still intact. The
frictional force opposing this motion is ‘‘static’’ in nature, so will rise to a limiting value.
At this point, see Figure 2(c), the block begins to ‘‘slip’’, and at this point the frictional
force becomes ‘‘kinematic’’, which is characterized by a sharp decrease. The block now
decelerates to the slightly positive velocity where earlier it was in a state of ‘‘stick’’ (see
Figure 2(d)) but this time it will still be slipping since the bonds have not had the time
to reform. However, as the block decelerates through v=0, see Figures 2(e) and (f), the
bonds reform and a state of ‘‘stick’’ is re-obtained. The argument follows through
Figures 2(g) to ( j), and a frictional force–relative velocity curve is obtained (see Figure 3),
which is rather similar to the one given by Wang.

If A is a typical surface irregularity size, and vd is the greatest velocity relative to the
slab at which the interface is still in a ‘‘stick’’ state, then one can conceive of a quantity,
t0A/vd , the ‘‘characteristic period’’ of the interface. In this work there is no attempt to
measure this value, but rather to obtain an order of magnitude estimate. Typically surface
irregularities are 01 mm (according to Johnson [15]), and from Wang vd 0 1 mm/s. Thus
t0 10−3 seconds. For this model to be useful, the externally applied oscillations should

Figure 3. Schematic of frictional force versus bulk sliding velocity.
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have a significantly longer period; otherwise the interface would be in a permanent ‘‘stick’’
state. In Wang’s experiment the externally applied oscillation was 28 Hz, so it satisfies this
condition. For the numerical simulation of squeal, the oscillation is governed by the
vibrating structure, and will therefore have a frequency similar to that of one of the
resonances.

In the interests of simplicity, it is necessary on decide to a set of variables for the friction
model. For this reason, the choice has been slip velocity and acceleration. It is plausible
that other effects, such as surface heating, could be linked to a combination of these, and
this is almost certainly the explanation for the hysteretic effects that have been observed,
i.e., slipping back onto a recently used path where new asperities may have been created
and surface conditions, such as temperature, chemical composition, etc., have not yet
returned to the ambient state. The problem is then to devise a function of velocity and
acceleration which shows the essential features of the qualitative discussion above, i.e.,
which gives a curve similar to that in Figure 3.

The mathematical model proposed is presented below, generalized for the case of a block
resting on a conveyor belt. Given that the belt speed is vB , then the relative velocity of
the sliding surfaces vR is

vR = ẋ− vB . (3.1)

Since the belt is taken to have constant velocity, the relative acceleration is the same as
the instantaneous acceleration of the surface of the structure, ẍ. Now, for reasonably high
slip velocity the model should predict Coulomb’s law, whilst for velocities close to zero
stick-type behaviour should be manifest. These two types of behaviour are introduced by
having two parts to the friction function,

F1(ẋ, ẍ)=−mkmg(2/p) arctan (vRmk/=ẍ =t), (3.2)

which approximates to F1 =3mkmg for large and steady slip velocities, and

F2(ẋ, ẍ)=mg6−=ẍ =t/(vR − ẍt/mk ),
sgn (ẍ)ms sin (VvR +F),

if sgn (ẍ)vR Q 0 orq 2=ẍ =t/mk

otherwise 7. (3.3)

In these equations ms is a parameter which may be considered to be the analogue of the
conventional coefficient of static friction. mk is the coefficient of kinetic friction in the
Coulomb friction regime and t is the ‘‘characteristic period’’ of the interacting surfaces,
which determines the ‘‘width’’ of the quasi static friction region. In addition,
F=arcsin (mk /ms ) and V= mk (p−F)/ẍt. The two parts of F2 are chosen to be continuous
at vR =0 and 2=ẍ =t/mk . For realistic values of F, the slope discontinuity across these points
is small enough as to be imperceptible by eye. (A more complex model might insist on
continuity of slope, but this probably an unnecessary luxury.) Figures 4 and 5 show F1/mg
and F2/mg respectively, as functions of velocity with ẍ=2 ms−2, mk =1, t=10−3 s and
F=1.

The overall frictional force is given by

F(vR , ẍ)=F1(vR , ẍ)+F2(vR , ẍ). (3.4)

Figure 6 shows this as graph of frictional force versus relative sliding velocity for a mass
sliding with sinusoidal motion, x=0·5×10−6 sin(200t), relative to a surface. The shape
of this graph compares well with the experimental results presented by Wang. This
theoretical model was constructed to display the features of hysteresis and increased
frictional force having just changed direction that were observed in the experiments. The
graph in Figure 7 represents an order of magnitude lower frequency motion,
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Figure 4. First part of friction function.

Figure 5. Second part of friction function.

x=5×10−6 sin (20t). This is characterized by a Coulomb type law for non-zero relative
velocities, and a sharp peak very close to zero, as expected for a static law.

4. MATHEMATICAL MODEL OF THE SYSTEM

For the purposes of the present examination, a non-dimensionalized form of the
governing equations will be used. Thus, without loss of generality, one may combine the
equations of sections 1 and 3 to give

x–
..
+2nx–

.
+ x̄=−(2/p) arctan [(x–

.
− l/=x–

..
=t̄)]

+6−=x–
..
=t̄/[(x–

.
− l)− x–

..
t̄],

(sgn (x–
..
)/sin F)sin[{(p−F)(x–

.
− l)/x–

..
t̄}+F],

if sgn (x–
..
)(x–

..
− l)Q 0 or q 2=x–

..
=t̄

otherwise 7. (4.1)

Figure 6. Friction force versus sliding velocity for sinusoidal motion at 200 rad s−1.
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Figure 7. Friction force versus sliding velocity for sinusoidal motion at 20 rad s−1.

Here x̄=(s/m)(x/mkg) and t�=zs/m t are the non-dimensionalized displacement and time
respectively, t̄=(t/mk )zs/m is the non-dimensionalized ‘‘characteristic period’’ of the
interacting surfaces, and the other two independent variables are n= r/2zms and
l=(vB /mkg)zs/m. From this point the overbar notation is dropped.

The right side of equation (4.1) is the functional F(ẋ(t), ẍ(t)), i.e.,

ẍ+2nẋ+ x=F(ẋ(t), ẍ(t)). (4.2)

If the system is started from rest at t=0, that is, the forcing is zero for all tQ 0, then
it is straightforward to show that

x(t)=g
t

0

g(t− t� )F(ẋ(t� ), ẍ(t� )) dt� , (4.3)

where g(t) is a complementary function of equation (4.2),

g(t)= (1/v) e−nt sin (vt), where v=z1− n2. (4.4)

Differentiating equation (4.3) with respect to t, and noting that g(t=0)=0 gives

ẋ(t)=g
t

0

dg
dt bt− t�

F(ẋ(t� ), ẍ(t� )) dt� ,

and differentiating twice gives

ẍ(t)=g
t

0

d2g
dt2 bt− t�

F(ẋ(t� ), ẍ(t� )) dt� +
dg
dtbt= t�

F(ẋ(t), ẍ(t)).

It is convenient to define two functions,

S(1)(t)=g
t

0

e−n(t− t� ) cos {v(t− t� )}F(ẋ(t� ), ẍ(t� )) dt�

and

S(2)(t)=g
t

0

e−n(t− t� ) sin {v(t− t� )}F(ẋ(t� ), ẍ(t� )) dt� .
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Then,

x(t)= (1/v)S(2)(t), ẋ(t)=S(1)(t)− (n/v)S(2)(t) and

ẍ(t)= [(n2/v)−v]S(2)(t)−2nS(1)(t)+F(ẋ(t), ẍ(t)). (4.5)

As F is a non-linear function of ẋ and ẍ these coupled integral equations cannot be solved
exactly. Instead, one can recognize that they may be solved iteratively.

One assumes that F(ẋ(t), ẍ(t)) may be approximated by F(ẋ(t), ẍ(t))=Fj for
( j−1)DtQ tQ jDt, for sufficiently small time steps Dt. Then the integrals S(1) and S(2)(t)
may be written in terms of their values at previous time steps as

S(1)
j =T2S(1)

j−1 −T1S(2)
j−1 + (T6 +T3)Fj (4.6a)

and

S(2)
j =T1S(1)

j−1 +T2S(2)
j−1 + (T4 −T5)Fj , (4.6b)

where

T1 = e−nDtsin (vDt), T2 = e−nDt cos (vDt), T3 =v e−nDt sin (vDt),

T4 =v[1−e−nDt cos (vDt)], T5 = n e−nDt sin (vDt), T6 = n[1−e−nDt cos (vDt)].

(4.6c)

T2 is the largest of the terms, with a value of order unity. The terms T1, T3 and T5 are
of order Dt and the remaining two terms are negligible.

To iterate, one starts by putting Fj =Fj−1 and uses this to calculate ẋ and ẍ. Then one
recalculates Fj based on these values. When the iteration has converged, S(1) and S(2) are
reset; only the most up to date of these values need be stored. The values for F0 and ẍ
at t=0 are calculated iteratively, based on setting the block velocity ẋ(0)=0. In the first
iteration, the block acceleration ẍ(0) is taken as zero.

In the model described above it has been tacitly assumed that the initial conditions of
the system were, (i) that the spring was unstrained, x(0)=0, and (ii) that the slip velocity
was equal to the belt velocity, ẋ(0)=0. It is clear that there are other physically possible
initial conditions, and it is of interest to investigate these. Further, the results of this
investigation show that the long term system dynamics are dependent on the initial
conditions. The standard way to adapt the solution for non-zero initial conditions is
to include two terms in the solution, with constants determined by solving the
homogeneous equation with those initial conditions. However, it is rather more elegant
to move to the frame of reference of the initial conditions. So, if x(0)= x0 and ẋ(0)= v0,
one can write

ẋ*= ẋ− v0 and x*= x− x0 − v0t, (4.7)

and thus obtain

ẍ*+2nẋ*+ x*=F*(ẋ*(t), ẍ*(t)), (4.8)

where F*(ẋ*(t), ẍ*(t))= {F(ẋ(t), ẍ(t))−2nv0 − (x0 + v0t)}. The problem can now be
solved exactly as before, but in terms of x* and F*.



Quasi-periodic
motion

Stick
phase

Unstable limit
cycle

Steady
slip

x·

x

Slip
phase

. . 332

T 1

Numerical simulation data

Symbol l t F
Value 3·0 0·1×z10 1·0

5. RESULTS OF THE NUMERICAL SIMULATIONS

Numerical simulations were performed on the system defined in equation (4.1), with the
data given in Table 1. Various initial conditions were selected and the subsequent motions
inspected. In this study interest is in the long behaviour of the system, so by using a process
of trial and error, initial conditions were finally chosen so that the system quickly settled
into steady behaviour.

Figure 8 shows a schematic of the type of results presented below. The outer loop
represents stick–slip oscillation; the fixed point represents steady slip at constant velocity.
When initial conditions are sufficiently large (in x or ẋ), the motion of the system will
increase so that the trace on the phase plane will spiral out to meet it. This represents an
increase in the combined energy of the system (kinetic energy in the block and potential
energy in the spring). The source of this energy is the belt drive. It is transmitted to the
spring–mass–damper system by the frictional force, and it is great enough to overcome
the energy losses through the damper. It is important to note that this input of energy is
self-limiting, and this is achieved by the friction. This has been discussed in greater detail
by Heckl and Abrahams [18]. The angular frequency of motion may be estimated by
dividing 2p by the number of time steps in one loop. The word ‘‘squeal’’ is applied in this
context to suggest that the increased motion of the block would imply an increased
intensity in any noise generated by the system.

If the initial conditions are close to the fixed point representing steady slip, the trace
will spiral in to meet that condition. Thus the friction and the damping combine to act
as a mechanism for removing energy from the system. In this case any noise generated
because of initial disturbance would become softer. It is clear that there must be an
unstable limit cycle which divides the initial conditions leading to the steady slip condition
and those which give rise to squeal.

Figure 8. Schematic phase plane plot showing key features.
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Figure 9. Phase plane plot for system with n=10−3.

The results presented in Figure 9 are for a system with non-dimensional damping
n=10−3. The unstable limit cycle is rather small, and in particular, does not enclose the
point (0, 0), which might be considered as the ‘‘usual initial condition’’. That is, if the
system is started with zero spring displacement and block velocity (or any initial condition
falling outside of the unstable limit cycle) oscillations will develop until at large time they
spiral out to meet the outer loop. One might consider this system to be prone to squeal
and stick–slip, with a frequency of about 0·96 rad s−1. However, if the initial conditions
are within the unstable limit cycle, then the long term behaviour will be steady slip.

The results for a similar system having damping of an order of magnitude higher
n=10−2 are given in Figure 10. In this case the unstable limit cycle is very much larger
and encloses the point (0, 0), so is prone to steady slip behaviour. However, given
sufficiently energetic initial conditions it can be made to stick–slip, with a frequency of
about 0·98 rad s−1, and this outer loop is rather similar to that in Figure 9. Since the
unforced frequency of both of these systems is 1 rad s−1, the friction excitation mechanism
is ‘‘pitch flattening’’, a phenomenon described by McIntyre and Woodhouse [16] in relation
to the dynamics of bowed string instruments. The more lightly damped system is more
greatly affected.

In both Figures 9 and 10 the step in the outer loop occurs when
0Q sgn (ẍ)(ẋ− l)Q 2=ẍ =t, i.e., when the relative velocity is passing though zero and the
friction becomes ‘‘quasi-static’’. The graphs presented show only one cycle and slight
discontinuities are visible where the end of the cycle does not perfectly overlap with the
beginning. Subsequent cycles (not shown) have similar, but not identical paths and
durations, and the position of the step can shift along the top surface. In some cycle there
may be more than one step. Although the motion is not strictly periodic, it is clear that

Figure 10. Phase plane plot for system with n=10−2.
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the phase plane paths are confined to lie within a finite band, so it may be classified as
‘‘quasi-periodic’’. This is a consequence of hysteresis in the friction law. To understand
this, consider what happens when the spring–mass–damper system has enough energy that
the block can overtake the belt, the hysteresis allows this for a short period of time before
the ‘‘stick’’ friction terms comes into play, and then energy is removed from the system.
If this happens towards the left hand side of the loop, then there is still potential energy
in the spring, which might be enough to accelerate the block above the belt velocity again,
and cause another step within the same cycle. The location of the final step affects the
amount of energy left in the system, and this determines the lower portion of the path,
during which the friction law is given by the ‘‘slip’’ term and energy is put back into the
system. The finite band would be defined by the left and right extremes of final step
position.

The pronounced step feature is not observed in experiment; however, it should be
remembered that friction is an inherently random process, due to the spatial variation of
the surface profiles and the interaction of the surfaces (ploughing, generating new
asperities, local temperature and chemcial composition fluctuations, etc.). The hysteresis
in the friction model presented serves to introduce some uncertainty into timing of the
‘‘stick’’ phase to generate a similar effect. A more stochastic model of the ‘‘stick’’ term
might give rise to a phase plane curve closer in shape to that observed experimentally;
however, it may be rather difficult to implement computationally.

If there were no hysteresis the loop would be bounded above by the line ẋ= vB because
there would be no mechanism for the block to exceed the belt velocity. Furthermore, once
this velocity is attained, subsequent motion will be completely determined; subsequent
motion is determined by the limit cycle. Thus, it may be of interest to construct a
non-hysteretic friction model but with =vR =w 0 behaviour similar to that of the model
proposed above. The friction is given by

F(ẋ, ẍ)= −(2/p) arctan [(ẋ− l)/=ẍ =t]

+6− =ẍ =t/(ẋ− l)
sin [(F− p)(ẋ− l)/ẍt)]/sin F,

if = (ẋ− l) =q =ẍ =t
otherwise. 7. (5.1)

The simulation results for this shown in Figure 11 are for n=10−3. The unstable limit cycle
is of a similar size to that in Figure 9, as might be expected, and the outer loop is flat
topped, but otherwise similar to those shown in Figures 9 and 10.

Figure 11. Phase plane plot for non-hysterical system with n=10−3.
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6. CONCLUSIONS

In this work it has been demonstrated that if another variable besides velocity (in this
case acceleration) is considered in the friction model, it is possible to see more than one
type of dynamical behaviour for any given system, and that the type of long term
behaviour excited will depend critically on the initial conditions.

It was previously thought that better modelling of the phenomenon of hysteresis would
lead to a better understanding of the conditions required for the onset of squeal, however
it seems that while hysteresis affects the nature of the stick–slip induced sound, it has little
effect on the size of the unstable limit cycle which divides the stick–slip and steady slip
phenomena.
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