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ABSTRACT

In this paper, a voice activity detector (VAD) for variable rate
speech coding is decomposed into two parts, a decision rule and
a background noise statistic estimator, which are analysed sepa-
rately by applying a statistical model. A robust decision rule is
derived from the generalized likelihood ratio test by assuming that
the noise statistics are known a priori. To estimate the time-varying
noise statistics, allowing for the occasional presence of the speech
signal, a novel noise spectrum adaptation algorithm using the soft
decision information of the proposed decision rule is developed.
The algorithm is robust, especially for the time-varying noise such
as babble noise.

1. INTRODUCTION

Many speech coding applications such as digital voice stor-
age, code division multiple access (CDMA) wireless net-
works, and packetized communication systems allow vari-
able rate transmission. To reduce the average bit rate, the
speech coders in such systems usually employ a voice ac-
tivity detector (VAD), so that less or no bits can be assigned
in the absence of speech.

The most widely used feature for voice activity detec-
tion is the difference between speech and background noise
in temporal variations of statistics [1]. Typical statistics are
the second order moments such as energy, subband ener-
gies and power spectrum. The temporal variations of back-
ground noise statistics are assumed to be much smaller than
those of speech, which makes it possible to estimate the
time-varying noise statistics in spite of the occasional pres-
ence of a speech signal. The noise statistics are updated dur-
ing the absence of speech [2], or continuously adapted while
imposing some constraints on the adaptation [3][4]. Then,
a very sensitive VAD can be designed by formulating a de-
cision rule that compares the estimated noise statistics and
the observed signal statistics. Figure 1 shows a paradigm of
such VADs. Well known examples of VADs include those
employed by 8 kbps and 13 kbps QCELP speech coders in
the IS-95 standard, the EVRC in the IS-127 standard, and
the VAD adopted for the discontinuous transmission (DTX)
mode of the GSM standard.
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Figure 1: Block diagram of a VAD employing a noise statistic
estimator.

Because the performance of a VAD depends on both the
decision rule and the noise statistic estimation algorithm,
which are coupled together, we optimized each of them sep-
arately by applying a statistical model.

2. DECISION RULES OF THE VOICE ACTIVITY
DETECTOR

The decision rule of a VAD can be formulated by adecision
statistic, which is a quantity that measures the difference
between noise and observed signal statistics, and adeci-
sion threshold, which is often determined empirically. In
this section, we derive a decision statistic from the general-
ized likelihood ratio test (LRT) by assuming that the noise
statistics are givena priori by the noise statistic estimator
discussed in the following section. We do not consider any
hangover or threshold adaptation scheme during the com-
parison, as these can be added in a heuristic way after the
design of the decision rule.

As most current low bit-rate speech coders operate on
a frame basis, voice activity detection is also performed for
each frame ofL samples over which speech is assumed to be
stationary. We use the statistical model in which the speech
and noise signals are Gaussian random processes that are in-
dependent of each other, then the discrete Fourier transform
(DFT) coefficients of each process are asymptotically inde-
pendent Gaussian random variables [5]. TheL-dimensional
coefficient vectors of speech, noise, and noisy speech are
denoted asS, N, andX, with their kth elementsSk, Nk,
andXk, respectively. In this statistical model, the variances



of Nk andSk are given by [5]:

�N (k) = SN (2�k=L) (1)

�S(k) = SS(2�k=L) (2)

whereSN (!) andSS(!) denote the true power spectra of
noise and speech, respectively. The variance ofXk is given
by:

�2X (k) = �N (k) + �S(k) (3)

As mentioned before, the noise statistics�N (k)s are as-
sumed to be knowna priori. Then, the two hypotheses of
the voice activity detection problem are as follows:

H0 : speech absent: X =N

H1 : speech present: X =N+ S

whereH1 is a composite hypothesis with a set ofL un-
known parameters,� = f�S(k) : k = 0; : : : L � 1g. The
joint probability density functions conditioned onH0, and
onH1 and� are given by:
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The generalized LRT, which is one of the most powerful
methods for composite hypothesis testing [6], replaces�
with its maximum likelihood estimate,̂� = f�̂S(k) : k =

0; : : : ; L � 1g, where�̂S(k)s are obtained by the power
subtraction method, i.e.,

�̂S(k) = jXkj
2 � �N (k) (6)

and the corresponding decision rule using the log likelihood
ratio is obtained by substituting Eq. (6) into Eq. (5) as
follows:
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which can be recognized as a discrete approximation of the
Itakura-Saito distortion (ISD) measure or as the cross en-
tropy between background noise and observed signal [7].

The VAD used for the DTX mode of GSM estimates the
spectral shape of noise in aP th order linear predictive cod-
ing (LPC) filter form and the corresponding residual energy
[2]. The inverse of the LPC filter is used as a noise sup-
pression filter, and the residual energy of the output of the

inverse filter is compared with the estimate of noise resid-
ual energy to decide whether a signal is speech or noise. If
we ignore the memory of the noise suppression filter, the
decision rule of the VAD can be formulated as follows:
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whereAN (k) is the kth DFT coefficient of the impulse
response of the noise suppression filter, which has length
P + 1, �2N is the estimated noise residual energy andL >
M + P � 1 for frame lengthM . If we recognize that
�2n=jAN (k)j

2 is a kind of estimator of�N (k), a generalized
form of Eq. (8) is given by:
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The decision statistic of Eq. (9) can be identified as an aver-
age ofL subband signal to noise ratios (SNRs). This is al-
most the same as the statistic proposed by Yang [8]. He used
the average subbanda priori SNR obtained by the power
subtraction method.

The VADs of QCELP and EVRC are based on estimates
of full band and two subband energies of background noise,
respectively [3][4]. Their decision rules can be also inter-
preted as averaged SNRs over one or two subbands. It can
be shown that increasing the number of subbands toL yields
the decision rule of Eq. (9), which shows the best perfor-
mance.

Comparing Eq. (7) and (9) reveals that the average sub-
band SNR-based decision statistic of Eq. (9) is the same as
the ISD except for the term(1=L)

P
logfjXkj

2=�N (k)g.
This term becomes dominant only whenjXkj2=�N (k) is
much less than unity, which is not true in either theH1 case
(because speech is added to the noise), or theH0 case. Fig-
ure 2 compares these two statistics when the VAD operates
on noisy speech in Fig. 2(c).�N (k)’s are estimated us-
ing a periodogram with analysis windowing. Although the
ISD shows more consistent values than the average subband
SNR during the absence of speech, these two statistics show
similar discrimination performance. Therefore, the decision
statistic based on the average subband SNR is a good ap-
proximation of the ISD in the voice activity detection prob-
lem.

3. ESTIMATION OF NOISE STATISTICS

To estimate or track slow time-varying statistics of non-
stationary signals, time averaging with exponential or rect-
angular weighting is commonly used. In the voice activ-
ity detection problem, however, some constraints should be
imposed on the tracking to prevent the estimate from be-
ing affected by the occasional speech signal. The VADs of
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Figure 2: Comparison of the average subband SNR and ISD
statistics. The statistics are plotted in log scale. (a) Average sub-
band SNR vs. ISD plus one. (b) Original clean speech, which is
shown for easy discrimination by sight. (c) Noisy speech corrupted
by vehicular noise at maximum SNR 10 dB. The vehicular noise
is obtained from the NOISEX-92 set, NOISE-ROM-0 signal.023.

QCELP and EVRC continuously adapt the noise energy es-
timate but restrict the rate of increase of the estimate, since a
large signal energy indicates the presence of speech. How-
ever, as the number of parameters to be estimated is in-
creased by more subband splitting, as in Eq. (9), this heuris-
tic method fails to adapt the spectral shape adequately.

The VAD used in the GSM system updates the noise
statistics during the noise-only periods. A secondary VAD
is employed to determine the noise-only periods. It is sim-
ple but should be designed to be more conservative than the
primary decision rule in assuming the presence of speech
[2]. It performs well when the noise spectrum changes very
slowly such as in vehicular noise. However, as the back-
ground noise becomes less stationary, the secondary VAD
misses many noise frames and the noise spectrum estimate
rapidly becomes outdated. As a result, the decision statistic
of the primary decision rule is increased during the absence
of speech, and the VAD often false-alarms the speech pres-
ence [1].

3.1. Noise Spectrum Adaptation Using Soft Decision In-
formation

The optimal estimate of the variance of the background noise
Fourier expansion coefficients�N (k) in terms of the mini-
mum mean square error is given by:

�̂N (k) = E(�N (k)jXk)

= E(�N (k)jH0)P (H0jXk) +E(�N (k)jH1)P (H1jXk)
(10)

Using Bayes rule:
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=
1

1 + "�(k)
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where" = P (H1)
P (H0)

and�(k) = p(XkjH1)=p(XkjH0). Sim-
ilarly, the following holds:
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Substituting Eq. (11) and Eq. (12) into Eq. (10) yields:
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Since the estimation is performed for each frame, we add
the superscript(m) so that�(m)

N (k) denotes�N (k) at the
mth frame. To obtain a feasible estimator of�N (k) rather
than Eq. (13), we use the current frame measurementjX

(m)
k j

instead ofE(�
(m)
N (k)jH0) when speech is absent. When

speech is present, for the observed informationjX
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k j not
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sive formula for�̂N (k) is obtained as follows:
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As we have no estimate of the speech parameter set�, it
seems reasonable to use the generalized likelihood ratio in-
stead of�(m)(k) in Eq. (14), which is defined as:

�(m)
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Since the decision is not made for each frequency bandk,
but made once by observing all the frequency bands, we
replace the�g(k)s with their geometric mean�g in Eq. (7),
as follows:
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If �(m) were fixed for frame indexm, Eq. (16) would be
an estimator of the time-varying spectrum with an exponen-
tially weighted averaging. However in this case it can be
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Figure 3:Performance comparison of the two noise spectrum es-
timation methods. ISDs are plotted in log scale. Only the original
speech signal is shown. (a) Soft decision-based adaptation method.
(b) Secondary VAD-based update method.

identified as a first order time-varying infinite impulse re-
sponse (IIR) filtering. Equation (16) implies that the closer
the observed signal spectrum is to the current estimate, the
faster is the convergence speed of the adaptation system.
Also, " can be interpreted as a system parameter that deter-
mines the convergence speed rather than thea priori prob-
ability ratio. Using the soft decision information�g , the
noise spectrum is continuously adapted whether speech is
present or not present.

3.2. Experimental Results

Babble noise, which is commonly encountered in the mo-
bile communication environment, is known as a time-varying
signal [1] and is less stationary than vehicular noise. Bab-
ble noise is added to a clean speech signal at maximum SNR
10 dB. ISDs are measured for the noisy speech to compare
the two noise spectrum estimation methods, the secondary
VAD-based update and the soft decision-based adaptation
method. Results are shown in Fig. 3. Because the sec-
ondary VAD requires long periods of noise to determine
the noise-only periods, it cannot update the noise spectrum
during short silence intervals such as between speech ut-
terances or before plosives. Therefore, the ISDs are found
to be large after a burst of speech utterances, while the soft
decision-based adaptation method tracks the noise spectrum
properly.

4. DISCUSSION AND CONCLUDING REMARKS

To analyse a VAD, we decomposed it into two parts: the
decision rule and the noise statistic estimation algorithm.
These are optimized separately by applying a statistical model.
We derived a robust decision rule from the generalized LRT

by assuming that the noise statistics are knowna priori. For
the noise statistic estimation part, a robust noise spectrum
adaptation method is developed by using the soft decision
information of the proposed decision rule. This shows bet-
ter tracking performance than existing methods, especially
for time-varying noise such as babble noise.

When our VAD is used in an LPC-based speech coder,
the noise spectrum can be estimated using an LPC model to
eliminate the DFT operations that require a large amount of
computation. The ISD between the noise LPC model and
the observed signal spectrum is approximated by the mod-
ified ISD. Procedures for the efficient computation of the
modified ISD are discussed in [9]. With this approximation,
the adaptation of the noise spectrum can be performed in the
autocorrelation domain, since the relationship between the
current and previous noise estimates in Eq. (16) is linear.
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