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AN IMPROVED STATISTICAL MODEL-BASED VAD ALGORITHM

WITH AN ADAPTIVE THRESHOLD
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ABSTRACT

A voice activity detection (VAD) algorithm with a fixed threshold cannot follow
fluctuations of signal and noise power level in a time-varying environment and the
inability to adapt to a time-varying environment severely limits the VAD performance.
Therefore, we need to employ an adaptive threshold with which the VAD will have
enhanced performance even in a time-varying SNR environment. In this paper, we
propose an improved statistical model-based VAD algorithm employing preprocess-
ing and an adaptive threshold.  We also perform extensive computer simulations to
demonstrate performance improvement of the proposed algorithm under various noise
environments, when compared to other algorithms.
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I. INTRODUCTION

As a means to reduce the average bit rate for
speech storage and transmission, silence suppression
techniques have been proposed (Srinivasan and
Gersho, 1993).  By assigning fewer or no bits while a
speaker is in a silent state, a speech coder employing
a voice activity detection (VAD) can reduce the re-
quired transmission or storage capacity significantly.
In a typical conversation, a speaker talks for less than
40% of the time and he or she is in silence for the
remaining period.  When the VAD algorithm is em-
ployed and discontinuous transmission is in operation,
the transmitter is switched off if silence is detected.
Utilizing this technique, mobile communication
systems, for example, can increase the system capac-
ity by reducing the required bandwidth and transmit-
ting power.

In systems where the background noise level is
very low, a simple energy level detecting algorithm
can be used to detect the silence period.  The most
well known VAD algorithm of this kind is the G.729B
VAD (ITU-T Recommendation, 1996).  On the other

hand, in systems where a large background noise is
present, it is impossible to distinguish noisy speech
from background noise by using the simple energy
level detection.  Yang (1993) proposed an improved
energy level-based VAD utilizing the average sub-
band a priori SNR.  However, its performance is not
good enough in the low SNR case.  Therefore, a more
intelligent algorithm is required.  To this end, a sta-
tistical model-based algorithm has been proposed
(Sohn and Sung, 1998) and further optimized (Sohn
et al., 1999) by employing the decision-directed
method to estimate the unknown parameters.

With the fixed threshold level, however, the
VAD cannot follow fluctuations of signal and noise
power level in a time-varying environment and the
inability to adapt to a time-varying environment se-
verely limits the VAD performance.  Therefore, we
need to employ an adaptive threshold with which the
VAD will have enhanced performance even in a time-
varying SNR environment.  In this paper, we propose
an improved statistical model-based VAD algorithm
employing preprocessing and an adaptive threshold.

This paper is organized as follows.  In section
II, we summarize a statistical model-based VAD
algorithm.  In section III, we present a preprocessing
algorithm employing power subtraction and matched
filter, and propose an improved statistical model-
based VAD algorithm with an adaptive threshold.
Finally, we evaluate the performance of the proposed
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algorithm by extensive computer simulations in sec-
tion IV, and discuss experimental results in the
conclusion.

II. EXISTING STATISTICAL MODEL-BASED
VAD ALGORITHMS

For each frame n, assuming that the clean speech
sn is degraded by uncorrelated additive noise vn, the
measured signal xn on the two hypotheses H 0 and H1

can be represented as follows:

H0 (speech absence): xn = vn

H1 (speech presence): xn = sn + vn. (1)

While a simple energy level-based algorithm can
be used to detect the silence period when background
noise level is very low, it is impossible to distinguish
noisy speech from background noise by using the
simple energy level detection when a large back-
ground noise is present.  Therefore, a more intelli-
gent algorithm is required.  To this end, a statistical
model-based algorithm has been proposed.

Under the assumption that the DFT coefficients
of noisy speech signals are asymptotically indepen-
dent Gaussian random variables (Ephraim and Malah,
1984), conditional probability density functions on
two hypotheses H 0 and H1 are given by

p(Xk, n Hn
0 ) = 1

π Vk, n
2 exp{–

Xk, n
2

Vk, n
2 } , (2)

p(Xk, n Hn
1 )

= 1
π( Sk, n

2 + Vk, n
2)

exp{–
Xk, n

2

Sk, n
2 + Vk, n

2 } ,

(3)

where Sk, n, Vk, n, and Xk, n are kth element of M point
DFT coefficient vectors of speech, noise, and noisy
speech at frame n, respectively.  Sohn and Sung
(1998) proposed a statistical model-based VAD al-
gorithm using a log likelihood ratio (LLR):

Λ n = log
p(Xn H 1 )
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= {
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The noise power of each frequency bin Vk, n
2 is es-

timated by the following recursive equation

Vk, n
2

= 1
1 + εΛ n

Xk, n
2 +

εΛ n
1 + εΛ n

Vk, n – 1
2   (5)

where ε = P(H1)/P(H 0) and P(H1) is the probability
that the measured signal xn is in state H1.  Thus, the
noise power can be updated in every frame without a
secondary VAD.  However, performance degradation
occurs in the speech offset regions.  To overcome this
problem, Cho and Kondoz (2001) proposed the fol-
lowing smoothed likelihood ratio (SLR)

Ψk, n = exp{κlogΨk, n – 1 + (1 – κ)logΛk, n},

0 ≤ κ  ≤ 1 (6)

where κ  is a smoothing factor, and a likelihood ratio
for each frequency bin k and frame n is given by Λk, n

= p(Xk, n|H1)/p(Xk, n|H 0), where p(Xk, n|H1) is the con-
ditional probability density function that Xk, n is in
state H1.  Then, the decision on the voice activity is
carried out by

Ψn = { Ψk, nΠ
k = 0

M – 1
}1/M ><

H 0

H 1

η . (7)

While this method can reduce detection error in
the speech offset regions, it shows increased false-
alarm probability and may have stability problems.

Despite all the efforts at improving decision
statistics, performance is still heavily dependent on
the threshold level η since the fixed threshold cannot
follow fluctuations of signal and noise power level.
Therefore, we need to employ an adaptive threshold
with which VAD shows good performance even in a
time-varying SNR environment.

III. PROPOSED VAD ALGORITHM

1. Preprocessing Using Power Subtraction and
Matched Filter

The simplest way of enhancing speech signal in
an additive noise environment is to perform a spec-
tral decomposition of a frame of noisy speech signal
and to attenuate particular spectral lines.  Under the
same hypothesis as in (1), the well known method is
the spectral decomposition using DFT and enhanc-
ing the speech signal by power subtraction (Mcaulay
and Malpass, 1980):

sm, n = 1
M Sk, nΣ

k = 0

M – 1
exp{ j2πkm

M } (8)

where

Sk, n = Xk, n
2 – Vk, n

2 Xk, n

Xk, n

, (9)
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where Vk, n
2 is the estimated noise power and Xk, n

is the kth  element of M point DFT coefficient vector
of noisy speech, and k, m, and n stand for frequency
bin, time, and frame index, respectively.

After the power subtraction speech enhancement
preprocessing, we consider 

^

Sk, n as the sum of the clean
speech signal Sk, n and residual noise ωk, n, i.e.  

^

Sk, n =
Sk, n + ωk, n.  Then, to further enhance the SNR of 

^

Sk, n

we utilize a matched filter.  The filtered signal ζn is
denoted by

ζ n = αk, nSk, nΣ
k = 0

M – 1
, (10)

where αk, n is the frequency response of the matched
filter.  To find the αk, n that maximizes the SNR of ζn,
we assume that the residual noise ωk, n in each fre-
quency bin is zero mean with power V k, n

2 and they
are uncorrelated with each other, then the noise power
σ n

2 in ζn becomes

σn
2 = αk

2 V k, n
2Σ

k = 0

M – 1
. (11)

and the SNR of ζn, |ζn|2/σ n
2 is maximized by Schwarz

inequality when

σ k, n =
Sk, n

*

V k, n
2 , (12)

where * stands for complex conjugation.
Therefore, the matched filtered signal 

~
Sk, n of

each frequency bin k becomes

Sk, n =
Xk, n

2 – Vk, n
2

V k, n
2

Xk, n

Xk, n

. (13)

Finally, we notice that the SNR of 
~
Sk, n is much

larger than that of 
^

Sk, n.  We also note that prepro-
cessing was employed not for speech coding but for
generating enhanced speech signal to help the follow-
ing VAD decide whether the speech component ex-
ists or not.  Therefore, the matched filtered signal is
not recognizable.

2. Proposed VAD Algorithm with an Adaptive
Threshold

When we employ the statistical model-based
VAD algorithm with the preprocessed signal (13), we
get the following modified LLR test Λn (Lee and Ahn,
2001)

Λ n = {
Sk, n

2

Vk, n – 1
2 – log
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2
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2 – 1}Σ

k = 0

M – 1

><
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(14)

where 
~
Sk, n denotes kth element of M-point discrete

Fourier transform coefficient vector of the prepro-
cessed speech signal ~sn and the noise power Vk, n

2 is
updated in the speech-absence frame with the help of
the secondary VAD.  It was shown that the VAD with
(14) as a decision statistic had better performance than
one with (4) (Lee and Ahn, 2001).  However, with a
fixed threshold η , (14) still cannot follow fluctuations
of noise power level and thus performance is limited.
To make matters worse, performance is heavily de-
pendent on that of the secondary VAD.  Therefore, to
achieve satisfactory performance in a time-varying
SNR environment, we need to employ an adaptive
threshold such that the threshold will be proportional
to the noise level.  In this paper, we propose a new
statistical model-based VAD algorithm with an adap-
tive threshold ηn:

Λ n = {
Sk, n

2
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2 – log
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2
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2 – 1}Σ

k = 0
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where
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Xk, n
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2
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2 )2 (16)

and the noise power Vk, n
2 is estimated by

Vk, n
2 = µ Vk, n – 1

2
+ (1 – µ) Sk, n – 1

2
,

0 < µ < 1 (17)

during speech-absence frame without secondary VAD.
We don’t need the secondary VAD, since with an
adaptive threshold ηn, the performance of the VAD
is good enough to estimate the noise power correctly
and the effect of the occasional decision errors will
be attenuated by the forgetting factor µ.  Generally,
forgetting factor µ is selected between 0.9 and 0.95
in a stationary environment such that the current es-
timate is affected by about 10 recent frames.  In this
paper, considering a non-stationary situation and simu-
lation results shown in Fig. 1, we choose µ = 0.82 to
track well the varying noise power and get the best
performance.  The forgetting factor µ can be decreased
more for highly non-stationary noise environments,
but this would make the VAD performance more sen-
sitive to the noise power estimation error.  In Fig. 1,
detection probability PD is the probability that speech
or noise frames are correctly detected [P(H1/H1) +
P(H 0/H 0)] and total error probability PE is the sum of
clipping error probability [P(H 0/H1)] and false-alarm
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probability [P(H1/H 0)].
The proposed adaptive threshold updating

algorithm is working as follows.  Within speech-ab-
sence frames, we store the LLR Λn and calculate the
mean  

–Λ and standard deviation σΛ.  Then, the thresh-
old is adaptively updated by the following recursive
equation:

ηn + 1 = µηn + (1 – µ)( 
–Λ + βnσΛ), 0 < µ < 1

(18)

where µ is a forgetting factor and βn is a weighting
factor and updated by the following procedure:

STEP 1: increase frame index n
STEP 2: verify ηn < (1 + 2INC)Λn

• if yes, increase weighting factor βn =
βn(1 + INC)

• if no,a) backup weighting factor βtemp

= βn

b) decrease weighting factor βn =
βn(1 – DEC)

c) calculate temporary threshold
η temp

d) verify η temp < (1 + 2INC)Λn

• if yes, restore weighting fac-
tor βn = βtemp

• if no, use decreased weight-
ing factor βn

STEP 3: verify n is final frame
• if yes, END
• if no, go to STEP 1,

where INC and DEC are an increasing factor and a
decreasing factor, respectively.  Different values are
employed to track the varying noise power more pre-
cisely at the onset and offset region of speech signal.
In general, the power of the speech signal is increas-
ing fast at onset regions and decreasing slowly at the
offset regions.  Therefore, INC must be larger than
DEC to track the varying noise power more precisely
at transitional regions.

IV. COMPUTER SIMULATIONS

Speech and noise samples are drawn from
Telecom DB (Si Pro Laboratory, 1995) and NOISEX-
92 DB (Varga and Steeneken, 1993), respectively.
Speech signals of two males and two females who
speak American English are selected from Telecom
DB, and white, babble, and vehicular (Volvo car)
noises are selected from NOISEX-92 DB.  We arrange
25 second-long speech signals by concatenating 4
different speaker’s signals and prepare total 125 sec-
ond-long speech signals by concatenating five 25 sec-
ond-long speech signal for the simulations.  Then, to
produce noisy signals at specific SNR, 125 second-
long noise signals are added to the 125 second-long
clean speech signals.  All signals are digitized at 8
KHz sampling frequency with 16-bit resolution.
Finally, we take 128 point fast Fourier transforms with
240 point-long Hamming windowed signal.

During the initial 128 frames, we store the LLR
Λn, estimate the mean  

–Λ and  standard deviation σΛ,
and update the weighting factor βn and ηn in every
frame since the VAD decisions are not reliable yet in
this period.  After that, we store the LLR Λn, estimate
the mean  

–Λ and standard deviation σΛ, and update the
weighting factor βn and ηn only in speech-absence
frames.

1. Effect of the Preprocessing

To see the effect of the preprocessing, we first
plotted histograms of the noise signal in Fig. 2.

We can observe the effect of the preprocessing
from Fig. 2 and Fig. 3, which confirm that the pre-
processing reduces noise power and increases the
output SNR.  Then we plotted LLR Λn of a noisy sig-
nal in Fig. 4.

We also notice that from Fig. 4, after prepro-
cessing, Λn of a speech-presence frame is much larger
than that of a speech-absence frame and thus the noise
margin is increased.  Noise margin is the difference
between the LLR Λn and the threshold ηn i.e. |Λn –
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ηn|.  This assures that the preprocessing can help VAD
correctly decide whether the speech component ex-
ists or not.

2. Effect of the Weighting Factor βββββn

Figure 5 shows the adaptation of the threshold
ηn when the weighting factor βn is fixed.

We observe that when βn is small the threshold
is updated too slowly to follow the LLR Λn variation,
and the false alarm rate will increase.  On the other
hand, when βn is large the threshold is updated so
fast that clipping error probability will increase.
Furthermore, when clipping error occurs, the thresh-
old will be updated in the speech-presence frame as
well and, as a result, noise power will be estimated
incorrectly.  Therefore, we need to update βn adaptively
to track the variation of the noise power level more
precisely.  On the basis of Kondoz (1999) and simu-
lation results shown in Fig. 6, we choose 1/8 and
1/32 as an increasing factor (INC) and a decreasing
factor (DEC), respectively.

3. Threshold Adaptation

To demonstrate the performance of the adaptive
threshold update algorithm, we present the simulation
results in two cases separately.  The first case, when
the initial period is composed of speech-absence frames,
is shown in Fig. 7 and the second case, when the initial
period is composed of speech-presence frames, is shown
in Fig. 8.  We can see that in both cases the threshold
is adapting well to the fluctuation of noise level in a
short time period.

4. Performance Comparison

It is common in modern VAD algorithms to use
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a hangover period of a few frames to delay any pre-
mature transition from speech to noise.  This is to
minimize the clipping error probability for low-power
unvoiced speech signals.  In this simulation, we
assigned 4 frames as a hangover period.  We per-
formed extensive computer simulations to demon-
strate the performance improvement of the proposed
algorithm under various noise environments and the
results are summarized in Fig. 9, Fig. 10, and Fig.
11.

V. CONCLUSIONS

To obtain good performance of VAD in a time-
varying SNR environment, we proposed an improved
VAD algorithm employing preprocessing and an
adaptive threshold.  We first derived the preprocess-
ing procedure, which is necessary to enhance the SNR
and to make the LLR of a speech-presence frame
much larger than that of a speech-absence frame, so
that the adaptive threshold update algorithm can be
applied.  Then we proposed an adaptive threshold up-
date algorithm using the mean and variance of the
modified LLR which are stored within speech-absence
frames.

After preprocessing, we first showed that the
threshold is adapting well to a time-varying SNR
environment in a short time period even with a speech-
presence initial period.  The simulation results sum-
marized in Fig. 9, Fig. 10, and Fig. 11 confirm that
the proposed statistical model-based VAD algorithm

with an adaptive threshold has better performance than
G.729B and statistical model-based algorithms with
fixed thresholds.  Especially, the proposed algorithm
has lower clipping error probability than other
algorithms, which is important for decoded speech
quality.  Finally, with an adaptive update of the pa-
rameters such as decision threshold and weighting
factor, we hope that the proposed VAD algorithm can
be applied in practical environments.
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