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ABSTRACT. In the past few years, artificial neural networks (ANNs) have
been investigated as a tool for time series analysis and forecasting. The most popular
architecture is the multilayer perceptron, a feedforward network often trained by back-
propagation. The forecasting performance of ANNs relative to traditional methods is
still open to question although many experimenters seem optimistic.

One problem with the multilayer perceptron is that, in its simplest form, it is similar
to a pure autoregressive type model, so it lacks the ability to account for any moving
average structure that may exist. By making a network recurrent, it is possible to
include such structure.

We present several examples showing how an ANN can be used to represent an
ARMA scheme and compare the forecasting abilities of feedforward and recurrent neu-

ral networks with traditional methods.

*Working Paper Series number 97-11. This paper was presented at the 1997 International Symposium on

Forecasting, Barbados.
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1. INTRODUCTION

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired
by the way the brain processes information. The key element of this paradigm is the novel
structure of the information processing system. It is composed of a large number of highly
interconnected processing elements (neurons) working in unison to solve specific problems.
ANNS, like people, learn by example. An ANN is configured for a specific application, such as
pattern recognition or data classification, through a learning process. Learning in biological
systems involves adjustments to the synaptic connections that exist between the neurons.
This is true of ANNs as well. For an introduction to ANNs see, for example, Hinton (1988),
Lippmann (1987), or Cheng and Titterington (1994).

Recently, ANNs have been investigated as a tool for time series forecasting. Examples
include Tang, et al. (1991), Hill, et al. (1996), and Faraway and Chatfield (1995). The most
popular class is the multilayer perceptron, a feedforward network trained by backpropaga-
tion. This class of network consists of an input layer, a number of hidden layers and an
output layer. Figure 1 is an example of an ANN of this type with 3 neurons in the input
layer, a single hidden layer with 2 neurons, and 1 neuron in the output layer. The first step
in using an ANN concerns the choice of structure, known as the architecture of the network.
Neural Networks are known to be universal function approximators (Hornik, Stinchcombe,
& White, 1989), however, for an ANN to perform well, the inputs and number of nodes
in the hidden layer must be carefully chosen. Since they learn by example, it is vital that
the inputs characterize the important relationships and correlations in the time series being
modeled.

For a feedforward neural network with one hidden layer, the prediction equation, given by
Faraway and Chatfield (1995), for computing forecasts 7, using selected past observations,
Tyjys .., T—j,, at lags (j1,...,Jk) and h nodes in the hidden layer will be referred to as

NN{[j1,...,jk; h]. Thus, the network in Figure 1 is NN|1,12,13;2]. The functional form
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Figure 1: A feedforward neural network

may be written as

Ty = ¢o(Weo + Z WhoPn(Wep, + Z WinTy—j,))
h i

where {w.,} denote the weights for the connections between the constant input and the
hidden neurons and w,., denotes the weight of the direct connection between the constant
input and the output. The weights {w;,} and {wp,} denote the weights for the other con-
nections between the inputs and the hidden neurons and between the neurons and the out-
put respectively. The two functions ¢, and ¢, denote the activation functions that define

the mappings from inputs to hidden nodes and from hidden nodes to output(s) respec-

1
1+e—7

tively. The logistic function, y = ¢(z) = is widely used in the ANN literature.
Faraway and Chatfield (1995) recommend, for forecasting applications, that ¢, be logistic
and ¢g linear. Forecasts are generated iteratively by performing successive one-step ahead
forecasts using previous forecasts as estimates of observables. This approach represents a

neural network implementation of a non-linear autoregressive (NLAR) model of order k

as Ty = f(@4—j, Ttjpo - -, T4y, €r) Where {e;} is a sequence of IID random variables and
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f @ R R, Tt should be noted that the literature on ANNs rarely speaks in terms of
random variables, or of any assumptions about them. However, almost all applications use
the least squares criterion for fitting so that, by implication, the errors are assumed to be at
least uncorrelated with equal variances. Further, the use of ANNs for forecasting requires
constancy of model structure for future observations, implying temporal invariance of f.
This NLAR network, in its simplest form, will have zero nodes in the hidden layer. The

resulting prediction equation for computing a forecast for x; becomes

-’%t — ¢o(wco + Z wioxtfji)

where ¢, is a linear function, w,., denotes the weight of the direct connection between the
constant input and the output and {w;,} are the weights of the connections between the input
neurons and output neuron. This equation corresponds to the traditional autoregressive

(AR) forecasting function
Ty = c+ Qrx_j, + Gowy_j, + 0+ Gpy_j, -

were k is the number of input nodes in the corresponding neural network at lags (ji, ..., jk).
So, in its simplest form, the neural network architecture reduces to the standard AR type
model. The benefit of implementing a neural network is that it can account for nonlinear
in addition to linear relationships between the inputs and output when a hidden layer is
included.

A problem now arises when comparing neural networks and traditional time series meth-
ods in that the latter can account for moving average structure in addition to autoregressive
structure. Although the neural network model with a non-zero number of nodes in the
hidden layer can account for non-linear structure, it cannot model a moving average as in
an ARMA scheme. Since an MA model can be expressed as an infinite order AR model,
some moving average structure may be accounted for by using a neural network with a large

number of inputs. However, trying to model an MA series in such a way is hampered by
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both short series and long computational time. So, to be able to make a fair comparison
between neural network and ARMA forecasts, the neural network should be able to reduce
to an ARMA form. Thus, it is necessary to consider another class which does account for
moving average structure in a series.

This paper presents the recurrent neural network for modeling and forecasting time series.
Section 2 of this paper reviews the Box-Jenkins method and then introduces recurrent neural
networks and shows how they can be reduced to represent ARMA type models in Section
3. Section 4 shows empirical results comparing ARMA, feedforward and recurrent neural
network forecasting abilities on some benchmark series. Section 5 presents the conclusions

and suggests some areas for future work.

2. BOX-JENKINS METHOD
The Box-Jenkins method is a well known paradigm used to identify the moving average,
autoregressive and seasonal components of a stationary time series. The following is an
explanation of model types and how they are integrated into a single linear model framework.
The first type of linear model is called the moving average. A moving average process of

order ¢ is characterized by
Ty = M + Et — 018,5,1 — 028,5,2 — ... — gqé‘t,q

which is a weighted average of random shocks spanning ¢ periods. Each of the random
shocks is assumed to be independent and identically distributed. A moving average model
is used when there is a linear dependence on past performance. It is interesting to note that
the system has a g-period memory meaning that a random shock persists for only ¢ periods.

A second type of linear model is the autoregressive scheme. An autoregressive process of

order p is characterized by

Ty =C+ Q11 + Qoo + ...+ PpTy_p + &y
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which is a weighted average of the past performance of a time series. Such a model is
used when the change in the series at any point in time is linearly correlated with previous
changes.

Combining the two models above results in the mized autoregressive-moving average

model characterized by
Ty =cC+ ¢1-’Et71 + ...+ — 018,5,1 — ... gqgtfq-

This type of scheme is used when both moving average and autoregressive tendencies are
present.

This can be extended into a seasonal ARMA(P,Q) model when defined as
Ty — q)lxtfs - ... (I)Pyt,ps = (St — 918,5,5 — ... @Qﬁt,qu + e

In general, when allowing for the series to be transformed and differenced, the Box-Jenkins
method provides guidelines to follow when choosing the parameters to identify a model of
the form:

$(B)®(B*)V'V (1, — ¢) = 0(B)O(B%)e,

The experimenter identifies several possible models and then chooses which is best based
upon a set of diagnostics. Forecasts are then based on the selected model. A more detailed
explanation of the concepts just presented can be found in Box, et al. (1994).

The linear models can be extended to non-linear models. In Section 1, we saw that z;
follows a nonlinear autoregressive model if there exists a function f : RPT'— R such that 7, =
f(mt,1 Tp9,. .., Tpp,Ep), t € Z, where {e;} is a sequence of IID random variables. Similarly,
we may have a non-linear moving average (NLMA) model where Z; = g(ey,61-1,...,61¢).

Combining the two non-linear modeling schemes results in the non-linear autoregressive

moving average (NLARMA) model Z; = h(zy_1, %49, ..., Tpp, €1, -1+ - - -, Et—gq)-
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3. RECURRENT NEURAL NETWORKS

Recurrent Neural Networks are useful in situations when there is a temporal (time dependent)
relationship in data. Classes of this architecture type were introduced in Jordan (1986) and
Elman (1990). They are constructed by taking a feedforward network architecture and
adding feedback connections to previous layers. Such networks are trained by the standard
backpropagation algorithm except that patterns must always be presented in time sequential
order (see the seminal paper by Rumelhart, Hinton and Williams (1986) for a description
of the backpropagation algorithm). The one difference in structure is that there are some
extra nodes next to the input layer that are connected to the hidden layer just like the other
input nodes. These extra nodes hold the contents or representation of the contents of one
of the layers as it existed when the previous pattern was trained. In this way the network
sees previous knowledge it had about previous inputs. This extra set of nodes are called the
network’s contert units and are sometimes referred to as a network’s long term memory for
reasons explained later.

The primary types of recurrent networks are:

e Input Layer Fed Back Into Input Layer: The context units remember the new input

data and use it when the next pattern is processed.

e Hidden Layer Fed Back Into Input Layer: The context units remember the hidden
layer, which contains features detected in the raw data of previous patterns. It is also

known as an Elman Recurrent Network.

e Qutput Layer Fed Back Into Input Layer: The context units remember outputs previ-

ous network outputs. It is also known as a Jordan Recurrent Network.

Figure 2 is an example of a Jordan recurrent neural network with the network output fed
back into the context unit and Figure 3 is an example of an Elman recurrent network with

the hidden layer fed back into the context layer. The adjustment of the weights in each
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Figure 2: A Jordan recurrent neural network

successive iteration of the learning algorithm is a function of both the input vector as well as
a compressed representation of all preceding inputs. If there is no temporal structure in the
data, using a recurrent network will not work as well as a feedforward network because the
long term memory nodes will be considered random noise to the net. If a recurrent network
does not work well, there may not be time dependencies in the data.

It has been shown that a feedforward neural network has the ability to represent an AR
type model. To use such a network to account for moving average structure, the investigator
can use the ability to represent an MA scheme as an infinite order AR type model, however,
trying to model a series in this fashion will result in a computationally infeasible number of
nodes. However, adding recurrence to a network can accomplish the same end with far fewer
processing nodes.

The forecasting function for a recurrent neural networks may be represented as
Ty = Po(Weo + Y WhoPn(Wen + Y winty—j, + Y winhjs—1))
h i ]

where all coefficients are as previously defined with addition of w;, which denotes the weights
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Figure 3: An Elman recurrent neural network

for connections between context and hidden neurons and h;,_; which denotes the value of
the network output from the previous time unit from a Jordan recurrent network or the
value of hidden node j from the previous time unit from an Elman recurrent network.

Modified or extended versions of these architectures define h;;,_; as a convex function of
the output from the recurrent nodes and value of the context units from the previous time
unit. For example, the value of the context unit for a Jordan recurrent neural network is
given by

hji—1 = MZi—1 + Aahjo

where A, Ay € [0,1] and A\ + Ay = 1. In this architecture, the context unit contains a
compressed version of the long term behavior of the network along with a portion of the short
term information. The lambda values, called decay parameters, are adjusted according to the
importance the investigator puts on either the long or short term behavior information. In
this case, the context unit serves as a simple lowpass filter whose output is a weighted value

of some of its more recent past inputs. In the case of the Jordan context unit, the output
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is obtained by summing the past values multiplied by a scalar which decays exponentially
over time. These context units are called long term memory units, because they remember
past events. In general, Ay is set to 1 — %; k > 0, where k is the number of time samples to
remember.

Once again, consider the simplest neural network of this type. This network, shown in
Figure 4, will have 1 input neural, 0 neurons in the hidden layer, 1 neuron in the output layer

and 1 context unit. In Bulsari and Saxen (1993), it is shown that its forecasting function is

Figure 4: A simple recurrent neural network

given by

T4(1) = woz + wizw, + wazhy

which can be transformed as:

(1) = woz + (wiz + waz)wy — waz(xy — hy)
= w3 + (w13 + waz)xy — woz(xy — Ty)

= w3 + (w13 + wa3) Ty — Wazey
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If we let ¢ = wq3, ¢ = w3 + we3 and 6 = we3, then
f/‘t(]_) =c-+ Qsmt — 96,5

which is the forecasting equation for an ARMA(1,1) scheme. Further AR terms can be
added by including the desired lags as inputs. For example, Figure 5 is a neural network
representation of an ARMA(2,1) scheme. It is important to mention that, with this type
of architecture, namely one direct connection from the output neuron to the context unit,

we are restricted to a single order moving average structure. It is also important to note

T

Figure 5. A neural network representation of an ARMA(2,1) scheme

that although what has been presented are neural network representations of ARMA-type
schemes, the neural network coefficients are not constrained by stationarity conditions as

they are for the conventional linear model.

4. EXAMPLES
For the first example, consider the Box-Jenkins airline series. Figure 6 is a plot of the series.

The Box-Jenkins analysis of this monthly series entails taking one seasonal and one non-



USING RECURRENT NEURAL NETWORKS FOR TIME SERIES FORECASTING 12

Passengers (n thousands)
40 50
| |

30
|

100
|

T T T T
1950 1952 1954 1956 1958 1960

Time in years

Figure 6: Box-Jenkins Series GG : International Airline Passengers : Monthly Totals for

January 1949-December 1960

seasonal difference and moving average of the logarithm of the original series. This model is
known as the airline model and is written (0,1,1) x (0,1,1);2. The following is a summary
table of the forecasts generated by the various methods being compared. The model is fit on
the first 132 data points and used to forecast the remaining 12. The neural network methods
were performed on the original series and incorporated the same lags (1, 12 and 13) as the
airline model using a Jordan neural network with decay parameters set as Ay = 0.6 and

A2 = 0.4 for the RNN. The table summarizes the accuracy of the forecasts shown in Figure

7.
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Modeling Type Boz-Jenkins Feedforward ANN — Recurrent ANN
Model (0,1,1)x(0,1,1), lags=1, 12, 18 lags=1, 12, 13
# Hidden Neurons NA 2 2
# Parameters 2 11 13
SSkrEs 1.079 0.9994 1.1751
o 0.095 0.0962 0.1053
AIC -555.7 -546.786 -523.5157
BIC -546.1 -505.216 -487.28
FMSE 315.3 310.5 306.3
FMAD 12.5 14.1 12.9

Although the within sample forecasts are not as good as the other methods, the recurrent
network achieves the best mean out-of-sample forecasts. From the plot, it is interesting to
note that each method does better than the rest for some forecasted values, but based on
the FMSE, the recurrent network provides marginally better results. The FMAD tells us
that the Box-Jenkins and recurrent network methods are comparable while the feedforward
network performed significantly worse.

For another example, consider the Box-Jenkins Series A, chemical process concentration
readings at 2 hour intervals, shown in Figure 8. Box et al. (1994) analyze this series and
choose an ARMA(1,1) as a parsimonious model. For comparison, a feedforward neural
network with one input at lag 1, two nodes in the hidden layer and one output node is
created. For the recurrent network, a connection is added from the output node to a context
unit with decay parameters A\; = 0.9 and Ay = 0.1. The following table is a summary of the
forecasts shown in Figure 9. The networks are trained on the first 191 observations and all

three methods are used to forecast the final 6 values.
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Figure 7: Actual and forecasted values of last 12 observations from Airline series
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Figure 8: Box-Jenkins Series A : Chemical Process Concentration Readings : Every 2 Hours

Modeling Type Boz-Jenkins  Feedforward ANN  Recurrent ANN
Model (1,0,1) lags=1 lags=1
# Hidden Neurons NA 2 2
# Parameters 2 7 9
SSkEs 19.188 21.56 19.208
o 0.314 0.337749 0.320494
AIC -451.47 -418.626 -437.266
BIC -442.914 -395.341 -407.443
FMSE 0.157935 0.264902 0.1576944
FMAD 0.3256333 0.463793 0.3288155

Once again, the Box-Jenkins and recurrent neural network methods perform comparably
while the feedforward network performs significantly worse. Moreover, perhaps the key result
in both examples is that the recurrent ANN is able to match the performance of the ARIMA
model, whereas the feedforward ANN does not.
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5. CONCLUSIONS AND FUTURE WORK

This paper shows how some ARMA models can be implemented with neural networks.
Most of the research regarding neural networks for time series forecasting has been done
with feedforward networks which are analogous to a non-linear autoregressive model. By
adding recurrence, it is possible to account for moving average structure inherent in a time
series. Neural networks may perform marginally better, based on the FMSE, provided the
moving average-like structure can be incorporated into the ANN, via recurrent networks
or some other scheme. Such improvements are possible since ANNs can include non-linear
relationships. However, this slight improvement does come at a cost in that the recurrent
neural network takes considerably longer to train than a feedforward network or the time
needed to estimate the linear model coefficients.

The literature on linear model selection is vast compared to that on choosing neural
network architecture. As with conventional models, neural networks must also be constructed
parsimoniously to avoid adding unnecessary noise into the system. Though much work has
been done on architecture selection, it is essentially a trial and error process. By using the
techniques for linear model selection, it should be possible to construct a neural network
that will perform at least as well as the corresponding linear model. This architecture will
not necessarily be the best, but will provide a good lower bound for further exploration.

Future research areas in this field include implementation of neural network architec-
tures to account for higher order moving average structure and using statistical methods
for detecting linear and non-linear relationships between variables to aid in architecture

construction.
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