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Using Recurrent Neural Networks for Time Series Forecasting 21. IntroductionAn Arti�cial Neural Network (ANN) is an information processing paradigm that is inspiredby the way the brain processes information. The key element of this paradigm is the novelstructure of the information processing system. It is composed of a large number of highlyinterconnected processing elements (neurons) working in unison to solve speci�c problems.ANNs, like people, learn by example. An ANN is con�gured for a speci�c application, such aspattern recognition or data classi�cation, through a learning process. Learning in biologicalsystems involves adjustments to the synaptic connections that exist between the neurons.This is true of ANNs as well. For an introduction to ANNs see, for example, Hinton (1988),Lippmann (1987), or Cheng and Titterington (1994).Recently, ANNs have been investigated as a tool for time series forecasting. Examplesinclude Tang, et al. (1991), Hill, et al. (1996), and Faraway and Chat�eld (1995). The mostpopular class is the multilayer perceptron, a feedforward network trained by backpropaga-tion. This class of network consists of an input layer, a number of hidden layers and anoutput layer. Figure 1 is an example of an ANN of this type with 3 neurons in the inputlayer, a single hidden layer with 2 neurons, and 1 neuron in the output layer. The �rst stepin using an ANN concerns the choice of structure, known as the architecture of the network.Neural Networks are known to be universal function approximators (Hornik, Stinchcombe,& White, 1989), however, for an ANN to perform well, the inputs and number of nodesin the hidden layer must be carefully chosen. Since they learn by example, it is vital thatthe inputs characterize the important relationships and correlations in the time series beingmodeled.For a feedforward neural network with one hidden layer, the prediction equation, given byFaraway and Chat�eld (1995), for computing forecasts x̂t using selected past observations,xt�j1 ; : : : ; xt�jk , at lags (j1; : : : ; jk) and h nodes in the hidden layer will be referred to asNN [j1; : : : ; jk; h]: Thus, the network in Figure 1 is NN [1; 12; 13; 2]: The functional form
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may be written as x̂t = �o(wco +Xh who�h(wch +Xi wihxt�ji))where fwchg denote the weights for the connections between the constant input and thehidden neurons and wco denotes the weight of the direct connection between the constantinput and the output. The weights fwihg and fwhog denote the weights for the other con-nections between the inputs and the hidden neurons and between the neurons and the out-put respectively. The two functions �h and �o denote the activation functions that de�nethe mappings from inputs to hidden nodes and from hidden nodes to output(s) respec-tively. The logistic function, y = �(x) = 11+e�x is widely used in the ANN literature.Faraway and Chat�eld (1995) recommend, for forecasting applications, that �h be logisticand �0 linear. Forecasts are generated iteratively by performing successive one-step aheadforecasts using previous forecasts as estimates of observables. This approach represents aneural network implementation of a non-linear autoregressive (NLAR) model of order kas bxt = ef(xt�j1 ; xt�j2; : : : ; xt�jk ; "t) where f"tg is a sequence of IID random variables and



Using Recurrent Neural Networks for Time Series Forecasting 4ef : <k+1! <: It should be noted that the literature on ANNs rarely speaks in terms ofrandom variables, or of any assumptions about them. However, almost all applications usethe least squares criterion for �tting so that, by implication, the errors are assumed to be atleast uncorrelated with equal variances. Further, the use of ANNs for forecasting requiresconstancy of model structure for future observations, implying temporal invariance of ef:This NLAR network, in its simplest form, will have zero nodes in the hidden layer. Theresulting prediction equation for computing a forecast for xt becomesx̂t = �o(wco +Xi wioxt�ji)where �o is a linear function, wco denotes the weight of the direct connection between theconstant input and the output and fwiog are the weights of the connections between the inputneurons and output neuron. This equation corresponds to the traditional autoregressive(AR) forecasting function̂xt = c+ �1xt�j1 + �2xt�j2 + � � �+ �pxt�jk :were k is the number of input nodes in the corresponding neural network at lags (j1; : : : ; jk).So, in its simplest form, the neural network architecture reduces to the standard AR typemodel. The bene�t of implementing a neural network is that it can account for nonlinearin addition to linear relationships between the inputs and output when a hidden layer isincluded.A problem now arises when comparing neural networks and traditional time series meth-ods in that the latter can account for moving average structure in addition to autoregressivestructure. Although the neural network model with a non-zero number of nodes in thehidden layer can account for non-linear structure, it cannot model a moving average as inan ARMA scheme. Since an MA model can be expressed as an in�nite order AR model,some moving average structure may be accounted for by using a neural network with a largenumber of inputs. However, trying to model an MA series in such a way is hampered by



Using Recurrent Neural Networks for Time Series Forecasting 5both short series and long computational time. So, to be able to make a fair comparisonbetween neural network and ARMA forecasts, the neural network should be able to reduceto an ARMA form. Thus, it is necessary to consider another class which does account formoving average structure in a series.This paper presents the recurrent neural network for modeling and forecasting time series.Section 2 of this paper reviews the Box-Jenkins method and then introduces recurrent neuralnetworks and shows how they can be reduced to represent ARMA type models in Section3. Section 4 shows empirical results comparing ARMA, feedforward and recurrent neuralnetwork forecasting abilities on some benchmark series. Section 5 presents the conclusionsand suggests some areas for future work.2. Box-Jenkins MethodThe Box-Jenkins method is a well known paradigm used to identify the moving average,autoregressive and seasonal components of a stationary time series. The following is anexplanation of model types and how they are integrated into a single linear model framework.The �rst type of linear model is called the moving average. A moving average process oforder q is characterized byxt = �+ "t � �1"t�1 � �2"t�2 � : : :� �q"t�qwhich is a weighted average of random shocks spanning q periods. Each of the randomshocks is assumed to be independent and identically distributed. A moving average modelis used when there is a linear dependence on past performance. It is interesting to note thatthe system has a q-period memory meaning that a random shock persists for only q periods.A second type of linear model is the autoregressive scheme. An autoregressive process oforder p is characterized byxt = c+ �1xt�1 + �2xt�2 + : : :+ �pxt�p + "t



Using Recurrent Neural Networks for Time Series Forecasting 6which is a weighted average of the past performance of a time series. Such a model isused when the change in the series at any point in time is linearly correlated with previouschanges.Combining the two models above results in the mixed autoregressive-moving averagemodel characterized byxt = c + �1xt�1 + : : :+ "t � �1"t�1 � : : :� �q"t�q:This type of scheme is used when both moving average and autoregressive tendencies arepresent.This can be extended into a seasonal ARMA(P,Q) model when de�ned asxt � �1xt�s � : : :� �Pyt�Ps = �t � �1"t�s � : : :��Q"t�Qs + "In general, when allowing for the series to be transformed and di�erenced, the Box-Jenkinsmethod provides guidelines to follow when choosing the parameters to identify a model ofthe form: �(B)�(Bs)rdrDs (xt � c) = �(B)�(BS)"tThe experimenter identi�es several possible models and then chooses which is best basedupon a set of diagnostics. Forecasts are then based on the selected model. A more detailedexplanation of the concepts just presented can be found in Box, et al. (1994).The linear models can be extended to non-linear models. In Section 1, we saw that bxtfollows a nonlinear autoregressive model if there exists a function ef : <p+1! < such that bxt =ef(xt�1; xt�2; : : : ; xt�p; "t), t 2 Z; where f"tg is a sequence of IID random variables. Similarly,we may have a non-linear moving average (NLMA) model where bxt = eg("t; "t�1; : : : ; "t�q):Combining the two non-linear modeling schemes results in the non-linear autoregressivemoving average (NLARMA) model bxt = eh(xt�1; xt�2; : : : ; xt�p; "t; "t�1; : : : ; "t�q):



Using Recurrent Neural Networks for Time Series Forecasting 73. Recurrent Neural NetworksRecurrent Neural Networks are useful in situations when there is a temporal (time dependent)relationship in data. Classes of this architecture type were introduced in Jordan (1986) andElman (1990). They are constructed by taking a feedforward network architecture andadding feedback connections to previous layers. Such networks are trained by the standardbackpropagation algorithm except that patterns must always be presented in time sequentialorder (see the seminal paper by Rumelhart, Hinton and Williams (1986) for a descriptionof the backpropagation algorithm). The one di�erence in structure is that there are someextra nodes next to the input layer that are connected to the hidden layer just like the otherinput nodes. These extra nodes hold the contents or representation of the contents of oneof the layers as it existed when the previous pattern was trained. In this way the networksees previous knowledge it had about previous inputs. This extra set of nodes are called thenetwork's context units and are sometimes referred to as a network's long term memory forreasons explained later.The primary types of recurrent networks are:� Input Layer Fed Back Into Input Layer: The context units remember the new inputdata and use it when the next pattern is processed.� Hidden Layer Fed Back Into Input Layer: The context units remember the hiddenlayer, which contains features detected in the raw data of previous patterns. It is alsoknown as an Elman Recurrent Network.� Output Layer Fed Back Into Input Layer : The context units remember outputs previ-ous network outputs. It is also known as a Jordan Recurrent Network.Figure 2 is an example of a Jordan recurrent neural network with the network output fedback into the context unit and Figure 3 is an example of an Elman recurrent network withthe hidden layer fed back into the context layer. The adjustment of the weights in each
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Figure 2: A Jordan recurrent neural network
successive iteration of the learning algorithm is a function of both the input vector as well asa compressed representation of all preceding inputs. If there is no temporal structure in thedata, using a recurrent network will not work as well as a feedforward network because thelong term memory nodes will be considered random noise to the net. If a recurrent networkdoes not work well, there may not be time dependencies in the data.It has been shown that a feedforward neural network has the ability to represent an ARtype model. To use such a network to account for moving average structure, the investigatorcan use the ability to represent an MA scheme as an in�nite order AR type model, however,trying to model a series in this fashion will result in a computationally infeasible number ofnodes. However, adding recurrence to a network can accomplish the same end with far fewerprocessing nodes.The forecasting function for a recurrent neural networks may be represented asx̂t = �o(wco +Xh who�h(wch +Xi wihxt�ji +Xj wlhhj;t�1))where all coe�cients are as previously de�ned with addition of wlh which denotes the weights
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for connections between context and hidden neurons and hj;t�1 which denotes the value ofthe network output from the previous time unit from a Jordan recurrent network or thevalue of hidden node j from the previous time unit from an Elman recurrent network.Modi�ed or extended versions of these architectures de�ne hj;t�1 as a convex function ofthe output from the recurrent nodes and value of the context units from the previous timeunit. For example, the value of the context unit for a Jordan recurrent neural network isgiven by hj;t�1 = �1bxt�1 + �2hj;t�2where �1; �2 2 [0; 1] and �1 + �2 = 1: In this architecture, the context unit contains acompressed version of the long term behavior of the network along with a portion of the shortterm information. The lambda values, called decay parameters, are adjusted according to theimportance the investigator puts on either the long or short term behavior information. Inthis case, the context unit serves as a simple lowpass �lter whose output is a weighted valueof some of its more recent past inputs. In the case of the Jordan context unit, the output



Using Recurrent Neural Networks for Time Series Forecasting 10is obtained by summing the past values multiplied by a scalar which decays exponentiallyover time. These context units are called long term memory units, because they rememberpast events. In general, �2 is set to 1� 1k ; k > 0, where k is the number of time samples toremember.Once again, consider the simplest neural network of this type. This network, shown inFigure 4, will have 1 input neural, 0 neurons in the hidden layer, 1 neuron in the output layerand 1 context unit. In Bulsari and Saxen (1993), it is shown that its forecasting function is
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Figure 4: A simple recurrent neural network
given by x̂t(1) = w03 + w13xt + w23htwhich can be transformed as:x̂t(1) = w03 + (w13 + w23)xt � w23(xt � ht)= w03 + (w13 + w23)xt � w23(xt � x̂t)= w03 + (w13 + w23)xt � w23"t



Using Recurrent Neural Networks for Time Series Forecasting 11If we let c = w03, � = w13 + w23 and � = w23, thenx̂t(1) = c + �xt � �"twhich is the forecasting equation for an ARMA(1; 1) scheme. Further AR terms can beadded by including the desired lags as inputs. For example, Figure 5 is a neural networkrepresentation of an ARMA(2; 1) scheme. It is important to mention that, with this typeof architecture, namely one direct connection from the output neuron to the context unit,we are restricted to a single order moving average structure. It is also important to note

Figure 5: A neural network representation of an ARMA(2,1) scheme
that although what has been presented are neural network representations of ARMA-typeschemes, the neural network coe�cients are not constrained by stationarity conditions asthey are for the conventional linear model.4. ExamplesFor the �rst example, consider the Box-Jenkins airline series. Figure 6 is a plot of the series.The Box-Jenkins analysis of this monthly series entails taking one seasonal and one non-
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Figure 6: Box-Jenkins Series G : International Airline Passengers : Monthly Totals forJanuary 1949-December 1960
seasonal di�erence and moving average of the logarithm of the original series. This model isknown as the airline model and is written (0; 1; 1)� (0; 1; 1)12. The following is a summarytable of the forecasts generated by the various methods being compared. The model is �t onthe �rst 132 data points and used to forecast the remaining 12. The neural network methodswere performed on the original series and incorporated the same lags (1, 12 and 13) as theairline model using a Jordan neural network with decay parameters set as �1 = 0:6 and�2 = 0:4 for the RNN. The table summarizes the accuracy of the forecasts shown in Figure7.



Using Recurrent Neural Networks for Time Series Forecasting 13Modeling Type Box-Jenkins Feedforward ANN Recurrent ANNModel (0 ; 1 ; 1 )� (0 ; 1 ; 1 )12 lags=1, 12, 13 lags=1, 12, 13# Hidden Neurons NA 2 2# Parameters 2 11 13SSRES 1.079 0.9994 1.1751b� 0.095 0.0962 0.1053AIC -555.7 -546.786 -523.5157BIC -546.1 -505.216 -487.28FMSE 315.3 310.5 306.3FMAD 12.5 14.1 12.9Although the within sample forecasts are not as good as the other methods, the recurrentnetwork achieves the best mean out-of-sample forecasts. From the plot, it is interesting tonote that each method does better than the rest for some forecasted values, but based onthe FMSE, the recurrent network provides marginally better results. The FMAD tells usthat the Box-Jenkins and recurrent network methods are comparable while the feedforwardnetwork performed signi�cantly worse.For another example, consider the Box-Jenkins Series A, chemical process concentrationreadings at 2 hour intervals, shown in Figure 8. Box et al. (1994) analyze this series andchoose an ARMA(1; 1) as a parsimonious model. For comparison, a feedforward neuralnetwork with one input at lag 1, two nodes in the hidden layer and one output node iscreated. For the recurrent network, a connection is added from the output node to a contextunit with decay parameters �1 = 0:9 and �2 = 0:1: The following table is a summary of theforecasts shown in Figure 9. The networks are trained on the �rst 191 observations and allthree methods are used to forecast the �nal 6 values.
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Figure 7: Actual and forecasted values of last 12 observations from Airline series
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Figure 8: Box-Jenkins Series A : Chemical Process Concentration Readings : Every 2 Hours
Modeling Type Box-Jenkins Feedforward ANN Recurrent ANNModel (1 ; 0 ; 1 ) lags=1 lags=1# Hidden Neurons NA 2 2# Parameters 2 7 9SSRES 19.188 21.56 19.208b� 0.314 0.337749 0.320494AIC -451.47 -418.626 -437.266BIC -442.914 -395.341 -407.443FMSE 0.157935 0.264902 0.1576944FMAD 0.3256333 0.463793 0.3288155Once again, the Box-Jenkins and recurrent neural network methods perform comparablywhile the feedforward network performs signi�cantly worse. Moreover, perhaps the key resultin both examples is that the recurrent ANN is able to match the performance of the ARIMAmodel, whereas the feedforward ANN does not.
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Figure 9: Actual and forecasted values of last 6 observations from the Chemical series



Using Recurrent Neural Networks for Time Series Forecasting 175. Conclusions and Future WorkThis paper shows how some ARMA models can be implemented with neural networks.Most of the research regarding neural networks for time series forecasting has been donewith feedforward networks which are analogous to a non-linear autoregressive model. Byadding recurrence, it is possible to account for moving average structure inherent in a timeseries. Neural networks may perform marginally better, based on the FMSE, provided themoving average-like structure can be incorporated into the ANN, via recurrent networksor some other scheme. Such improvements are possible since ANNs can include non-linearrelationships. However, this slight improvement does come at a cost in that the recurrentneural network takes considerably longer to train than a feedforward network or the timeneeded to estimate the linear model coe�cients.The literature on linear model selection is vast compared to that on choosing neuralnetwork architecture. As with conventional models, neural networks must also be constructedparsimoniously to avoid adding unnecessary noise into the system. Though much work hasbeen done on architecture selection, it is essentially a trial and error process. By using thetechniques for linear model selection, it should be possible to construct a neural networkthat will perform at least as well as the corresponding linear model. This architecture willnot necessarily be the best, but will provide a good lower bound for further exploration.Future research areas in this �eld include implementation of neural network architec-tures to account for higher order moving average structure and using statistical methodsfor detecting linear and non-linear relationships between variables to aid in architectureconstruction.
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