
NEURAL NETWORKS: WHAT NON-LINEARITY TO CHOOSE

Vladik Kreinovich, Chris Quintana
Computer Science Department

University of Texas at El Paso, El Paso, TX 79968, USA

Abstract. Neural networks are now one of the most successful learning formalisms. Neurons
transform inputs x1, ..., xn into an output f(w1x1 + ... + wnxn), where f is a non-linear function
and wi are adjustable weights. What f to choose? Usually the logistic function is chosen, but
sometimes the use of different functions improves the practical efficiency of the network.

We formulate the problem of choosing f as a mathematical optimization problem and solve
it under different optimality criteria. As a result, we get a list of functions f that are optimal
under these criteria. This list includes both the functions that were empirically proved to be the
best for some problems, and some new functions that may be worth trying.

1. FORMULATION OF THE PROBLEM.

Neural networks are now one of the most successful learning formalisms (see, e.g., the recent
survey in [Hecht-Nielsen 1991]). After the initial success of linear neural models, in which the
output y is equal to the linear combination of the input signals xi, i.e. y = w1x1 + w2x2 + ...,
it was shown in [Minsky Papert 1968] that if we only have linear neurons, then we end up with
only linear functions and this severely limits the number of problems that we can solve using the
network. The next step, then, is to consider non-linear neurons, in which the output signal is
equal to f(w1x1 +w2x2 + ...), where f(y) is a given non-linear function. A natural question arises:
what function f(y) do we choose?

Why is this problem important? It is a very important problem because although
neural networks help us to design good learning procedures, these procedures are far from being
reliable. Sometimes these procedures do not work; sometimes they work but demand too much
time, and too big a sample, to learn. Naturally, we might think that this is because the function
f that we used was not the best one. Sometimes the use of different functions can improve the
practical efficiency of the network (see, e.g., [Wasserman 1989, pp. 15-16]). If a simple guess can
really improve the learning performance, then it is natural to suppose that deep mathematical
optimization will lead to even better results.

Why is this problem difficult? We want to find a function f for which some characteristics
J of learning, such as average learning time or average number of errors, is optimal (in these cases

1

minimal). The problem is that even for the commonly used logistic function (see below), we do
not know how to compute any of these possible characteristics. How can we find f for which J(f)
is optimal if we cannot compute J(f) even for a single f? There does not seem to be a likely
answer.

However, we will show that this problem is solvable (and give the solution) using advanced
math, namely, group theory.

The results of this paper first appeared in [Kreinovich Quintana 1991b]. For a general idea
of this approach, see [Kreinovich 1990].

2. WHAT IS KNOWN.

The first non-linear neuron was proposed in [Cowan 1967]. Cowan chose the logistic function,
s0(y) = 1/(1 + exp(−y)), because it leads to a good approximation of the behavior of real (i.e.
biological) neurons. The properties of neural networks with different f were studied by Grossberg
(see, e.g., [Grossberg 1988]) who showed that the logistic function has several nice properties useful
for learning and is therefore an adequate choice. His analysis restricted the class of possible
functions, but there are still many other functions with the same properties. So we still have to
make a choice. Another attack was undertaken by Hecht-Nielsen, who in [1987] added a demand
that any function must be approximable by some neural network. This approach leads to non-
trivial mathematics, but the final result (see, e.g., [Kreinovich 1991]) is that any smooth function
f will work, so this additional demand does not help us to choose f .

3. WHAT DO WE PROPOSE

3.1. Motivations of the proposed mathematical definitions.

We must choose a family of functions, not a single function. We speak about
choosing f , but the expression for f(y) will change if we change the units in which we measure
all the signals (input, output and intermediate), so in mathematical terms, it is better to speak
about choosing a family of functions f . It is reasonable to suggest that if an f belongs to
this family, then this family must contain kf for positive real numbers k. This corresponds to
changing units. Also, it must contain f + c, where c is a constant. This is equivalent to adding
a constant bias and therefore does not change the abilities of the resulting network. Since we
are talking about non-linear phenomena, we can also assume that some non-linear ”rescaling”
transformations x → g(x) are also applicable, i.e., the family must include the composition
g(f(y)) for each of functions f . This family must not be too big, therefore, it must be determined
by finitely many parameters and should ideally be obtained from one function f(y) by applying all
these transformations. Without loss of generality, we can assume that this set of transformations

2

is closed under composition and under inverse, i.e., if z → g1(z) and z → g2(z) are possible
transformations, then z → g1(g2(z)) and z → g−1

1 (z) are possible transformations, where by g−1
1

we denoted an inverse function g−1
1 (z) = w if and only if g1(w) = z. In mathematical terms this

means that these transformations form a group, and therefore a family is obtained by applying

to some function f(y) all transformations from some finite-dimensional transformation group G

that includes all linear transformations (and maybe some non-linear ones).

All these transformations correspond to appropriate ”rescalings”. Rescaling is something that
is smoothly changing the initial scale. This means that if we have two different transformations,
there must be a smooth transition between them. In mathematical terms, the existence of this
continuous transition is expressed by saying that the group is connected, and the fact that both
the transformations and the transitions are smooth is expressed by saying that this is a Lie group

(see, e.g., Chevalley, 1946).

What family is the best? Among all such families, we want to choose the best one. In
formalizing what ”the best” means we follow the general idea outlined in [Kreinovich 1990]. The
criteria to choose may be computational simplicity, efficiency of training, or something else. In
mathematical optimization problems, numeric criteria are most frequently used, when to every
family we assign some value expressing its performance, and choose a family for which this value
is maximal. However, it is not necessary to restrict ourselves to such numeric criteria only. For
example, if we have several different families that have the same training ability A, we can choose
between them the one that has the minimal computational complexity C. In this case, the actual
criterion that we use to compare two families is not numeric, but more complicated: a family

F1 is better than the family F2 if and only if either A(F1) > A(F2) or A(F1) = A(F2) and

C(F1) < C(F2). A criterion can be even more complicated. What a criterion must do is to allow
us for every pair of families to tell whether the first family is better with respect to this criterion
(we’ll denote it by F1 > F2), or the second is better (F1 < F2) or these families have the same
quality in the sense of this criterion (we’ll denote it by F1 ∼ F2). Of course, it is necessary to
demand that these choices be consistent, e.g., if F1 > F2 and F2 > F3 then F1 > F3.

Another natural demand is that this criterion must choose a unique optimal family (i.e.,
a family that is better with respect to this criterion than any other family). The reason for
this demand is very simple. If a criterion does not choose any family at all, then it is of no
use. If several different families are ”the best” according to this criterion, then we still have a
problem to choose among those ”best”. Therefore, we need some additional criterion for that
choice. For example, if several families turn out to have the same training ability, we can choose
among them a family with minimal computational complexity. So what we actually do in this
case is abandon that criterion for which there were several ”best” families, and consider a new

3

”composite” criterion instead: F1 is better than F2 according to this new criterion if either it was
better according to the old criterion or according to the old criterion they had the same quality
and F1 is better than F2 according to the additional criterion. In other words, if a criterion does
not allow us to choose a unique best family it means that this criterion is not ultimate; we have
to modify it until we come to a final criterion that will have that property.

The next natural condition that the criterion must satisfy is connected with the following.
Suppose that instead of a neuron with the transformation function f(y) we consider a neuron with
a function f̄(y) = f(y+a), where a is a constant. This new neuron can be easily simulated by the
old ones: namely, the output of this new neuron is f̄(w1x1 +w2x2 + ...) = f(w1x1 +w2x2 + ...+a),
so it is equivalent to an old neuron with an additional constant input a. Likewise, the old neuron
is equivalent to the new neuron with an additional constant input −a. Therefore, the networks
that are formed by these new neurons have precisely the same abilities as those that are built
from the old ones. We cannot claim that the new neurons have the same quality as the old ones,
because adding a can increase computational complexity and thus slightly worsen the overall
quality. But it is natural to demand that adding a does not change the relative quality of the
neurons, i.e., if a family {f(y)} is better that a family of {g(y)}, then for every a the family
{f(y + a)} must be still better than the family {g(y + a)}.

3.2. Definitions and the main result. By a transformation we mean a smooth (differentiable)
function from real numbers into real numbers. By an appropriate transformation group G we
mean a finite-dimensional connected Lie group of transformations. By a family of functions we
mean the set of functions that is obtained from a smooth (everywhere defined) non-constant
function f(y) by applying all the transformations from some appropriate transformation group
G. Let us denote the set of all the families by F .

A pair of relations (<,∼) is called consistent [Kreinovich 1990, Kreinovich Kumar 1990] if it
satisfies the following conditions: (1) if a < b and b < c then a < c; (2) a ∼ a; (3) if a ∼ b then
b ∼ a; (4) if a ∼ b and b ∼ c then a ∼ c; (5) if a < b and b ∼ c then a < c; (6) if a ∼ b and b < c

then a < c; (7) if a < b then b < a or a ∼ b are impossible.

Assume a set A is given. Its elements will be called alternatives. By an optimality criterion

we mean a consistent pair (<,∼) of relations on the set A of all alternatives. If a > b, we say that
a is better than b; if a ∼ b, we say that the alternatives a and b are equivalent with respect to
this criterion. We say that an alternative a is optimal (or best) with respect to a criterion (<,∼)
if for every other alternative b either a > b or a ∼ b.

We say that a criterion is final if there exists an optimal alternative, and this optimal alter-
native is unique.

4

Comment. In the present section we consider optimality criteria on the set F of all families.

By the result of adding a to a function f(y) we mean a function f̄(y) = f(y + a). By the
result of adding a to a family F we mean the set of the functions that are obtained from f ∈ F

by adding a. This result will be denoted by F + a. We say that an optimality criterion on F

is shift-invariant if for every two families F and G and for every number a, the following two
conditions are true:

i) if F is better than G in the sense of this criterion (i.e., F > G), then F + a > G + a;

ii) if F is equivalent to G in the sense of this criterion (i.e., F ∼ G), then F + a ∼ G + a.

Comment. As we have already remarked, the demands that the optimality criterion is final and
shift-invariant are quite reasonable. The only problem with them is that at first glance they may
seem rather weak. However, they are not, as the following Theorem shows:

By a logistic function we mean s0(y) = 1/(1 + exp(−y)).

THEOREM 1. If a family F is optimal in the sense of some optimality criterion that is final

and shift-invariant, then every function f from F is equal either to a+bs0(Ky+ l) for some a, b, K

and l, or a linear function a + bx, or to a + b exp(Kx) for some a, b, K.

Comments. 1. Logistic, hyperbolic-tangent, linear and exponential functions are really among
the most popular [Kosko 1992].

2. We assumed that f must be smooth. If we consider f that can be not smooth in some
points, then it is natural to assume that on the intervals on which f is smooth, it must coincide
with one of these functions. Such piecewise smooth functions have also been successfully used,
the most popular are threshold functions that are obtained from the smooth ones by restricting
their values to [0,∞) or [0, 1] [Kosko 1992].

(The proofs are given in Section 5).

4. OPTIMIZATION OF NEURAL NETWORKS: RELATED RESULTS

4.1. Scale-invariance instead of shift invariance. In the above text we assumed that the
optimality criterion is shift-invariant. The same arguments can be used to motivate the demand
that the optimality criterion is invariant with respect to scaling transformations f(y) → f(ay)
for some a > 0. Let us analyze the consequences of this demand.

Definition. By the result of rescaling a function f(y) by a real number a > 0 we mean
a function f̄(y) = f(ay). By the result of rescaling a family F by a we mean the set of the

5

functions, that are obtained from rescaling f ∈ F by a. This result will be denoted by aF . We
say that an optimality criterion on F is scale-invariant if for every two families F and G and for
every number a the following two conditions are true:

i)′ if F is better than G in the sense of this criterion (i.e., F > G), then aF > aG;

ii)′ if F is equivalent to G in the sense of this criterion (i.e., F ∼ G), then aF ∼ aG.

THEOREM 2. If a family F is optimal in the sense of some optimality criterion that is final

and scale-invariant, then every function f from F is equal to f(y) = (A+By−α)/(C +Dy−α) for

some A,B, C, D and α > 0.

Comments. 1. In particular, for A = 0, B = C = D = 1 and α = 2 we get the Cauchy function
f(y) = 1/(1 + y2), that is used in neural networks (see, e.g., [Hecht-Nielsen 1991]. If B = 0 and
α is an integer, α > 1, we get ratio-polynomial signal functions that have also been successfully
used [Kosko 1992]. For α = 1, B = 0 and A = C = D = 1 this function equals to the expression
x/(1 + x), which was analyzed in [Munro 1986]. So this Theorem gives a list of possible optimal
non- linear neurons that generalizes Cauchy and ratio-polynomial functions.

2. By comparing the results of Theorems 1 and 2 one can conclude that a scale-invariant
criterion cannot be shift-invariant: indeed, in this case we could apply Theorem 2, so f must
be described by the above expression. But these functions are different from the functions from
Theorem 1, and so due to Theorem 1 this criterion is not shift-invariant.

But what if we still want our criterion to be both shift- and scale-invariant? For standard
neurons with non-linearity of the type y = f(w1x1 + ... + wnxn) it is impossible; in section 4.3
we’ll show that it is possible for a more general type of neurons.

4.2. More general families of neurons. A natural way to define a finite-dimensional family
of functions is to fix finitely many functions fi(y) and consider their arbitrary linear combinations∑

i Cifi(y).

Definition. Let’s fix an integer m. By a basis we mean a set of m smooth functions
fi(y), i = 1, 2, ..., m. By a m-dimensional family of functions we mean all functions of the type
f(y) =

∑
i Cifi(y) for some basis fi(y), where Ci are arbitrary constants. The set of all m-

dimensional families will be denoted by Fm.

Our definitions of the optimality criterion, final criterion and shift-invariant criterion can be
applied to these families.

THEOREM 3. If an m-dimensional family F is optimal in the sense of some optimality criterion

that is final and shift-invariant, then every function f from F is equal to a linear combination of

6

the functions of the type yp exp(αy) sin(βy + φ), where p is a non-negative integer, α, β and φ

are real numbers.

Comment. In particular, for p = 1, α = β = 0 we get linear functions; for p = β = 0 we get
exponential functions; for p = α = φ = 0 we get a sine function, that has been successfully used
[Braham 1989, Braham Hamblen 1990].

4.3. What if we demand scale-invariance and shift-invariance of the optimality cri-

terion? Neurons with different non-linearity. In all the above cases we considered neurons
that transform the input signals x1, ..., xn into f(w1x1 + ... + wnxn). This means that we added
only one type of non-linearity: y → f(y) for some non-linear f . Let us consider neurons with
the most general type of non-linearity y1, ..., yp → f(y1, ..., yp), where f is an arbitrary non-linear
function of p variables. As in the above case, linear transformations are easy to implement,
therefore we can consider neurons of the type

x1, ..., xn → f(w11x1 + ... + w1nxn, w21x1 + ... + w2nxn, ..., wp1x1 + ... + wpnxn),

where wij are weights.

Definition. Let’s fix integers m and p. By a basis we mean a set of m smooth functions
fi(y1, ..., yp), i = 1, 2, ..., m. By a m-dimensional family of functions of p variables, or m, p-

family for short, we mean a family that is formed by all functions of the type f(y1, ..., yp) =∑
i Cifi(y1, ..., yp) for some basis fi(y1, ..., yp), where Ci are arbitrary constants. The set of all

m, p-dimensional families will be denoted by Fm,p.

Comment. Since it is easy to implement arbitrary linear transformations, it is reasonable to
demand (like we did above) that the relative quality of the family does not change if we apply a
shift or a rescaling to all its functions. So we arrive at the following definitions:

Definitions. Suppose that a vector ~a = (a1, ..., ap) is given. By the result of adding ~a to a
function f(y1, ..., yp) we mean a function f̄(y1, ..., yp) = f(y1 + a1, ..., yp + ap). By the result of

adding ~a to a family F we mean the set of the functions, that are obtained from f ∈ F by adding
~a. This result will be denoted by F + ~a.

By the result of rescaling a function f(y1, ..., yp) by a vector ~a = (a1, ...) with ai > 0 we mean
a function f̄(y1, ..., yp) = f(a1y1, ..., apyp). By the result of rescaling a family F by ~a we mean
the set of the functions, that are obtained from rescaling f ∈ F by ~a. This result will be denoted
by ~aF .

Now we can apply the definitions of the optimality criterion, final criterion, shift- and scale-
invariant criterion to m-dimensional families.

7

THEOREM 4. If an m, p-dimensional family F is optimal in the sense of some optimality

criterion that is final, shift- and scale-invariant, then every function f from F is equal to a

polynomial of y1, ..., yp.

Comment. So if we consider neurons with a more complicated non-linearity, we get the GMBH
network (see [Hecht-Nielsen 1991, Section 5.6.1]), which historically is the first commercially
successful non-linear neuron.

4.4. A related question: how to modify the weights during the training? This question
is related to the following problem: usually during training weights are changed linearly (like
w → w + c for some constant a). However, sometimes some weights become so big that the
output of the corresponding neurons is close to 1. These neurons are called saturated (see, e.g.,
[Wasserman 1989, pp. 90-91]. Saturation extends the training time, bringing the whole training
process into a paralysis. To overcome paralysis, non-linear weight transformations are used:
w → g(w) for some non-linear g. The main purpose of this transformation is to get rid of big
values, i.e., to transform the whole set of real numbers (−∞,∞) into some limited interval of
values [−∆, ∆]. But there are many functions with this property. So the natural question arises:
what g is the best to choose?

The same arguments as in Sections 2 and 3 can be used to conclude that what we really need
to choose is a family of functions, not just a function g, and that it is reasonable to assume that
this family is obtained from some function g(w) by applying all the transformations from some
appropriate transformation group.

If a function g is better than a function ḡ, then it is reasonable to assume that it will still
be better if we first make one more standard training step w → w + a and only then apply
the non-linear transformation. These two consequent steps are equivalent to one transformation
w → g(w+a). So the above demand means that if g(w) is better than ḡ(w), then g1(w) = g(w+a)
must be better than ḡ1(w) = ḡ(w + a). In other words, the optimality criterion must be shift-
invariant. Let’s turn to formal definitions.

Definitions. Let us fix some real number ∆ > 0. We say that a function is bounded if
its values always belong to [−∆, ∆]. By a family of weight transformations we mean the set of
functions that is obtained from a smooth (everywhere defined) non-constant bounded function
f(w) by applying all the transformations from some appropriate transformation group G. Let us
denote the set of all such families by Fw. Let us consider optimality criteria on this set Fw.

THEOREM 5. If a family Fw is optimal in the sense of some optimality criterion that is final

and shift-invariant, then every bounded function g from F is equal to a + bs0(Kw + l) for some

a, b, K and l.

8

Comment. Such functions really proved to be the best in overcoming paralysis [Wasserman 1989,
pp. 90–91].

5. PROOFS.

Proof of Theorem 1. The idea of this proof is as follows: first we prove that the appropriate
transformation group consists of fractionally-linear functions (in part 1), then we prove that the
optimal family is shift-invariant (in part 2), and from that in part 3 we conclude that any function
f from F satisfies some functional equations, whose solutions are known.

1. By an appropriate group we meant a connected finite-dimensional Lie group of transfor-
mations of the set of real numbers R onto itself that contains all linear transformations. Norbert
Wiener asked to classify such groups for an n-dimensional space with arbitrary n, and this clas-
sification was obtained in [Guillemin Sternberg 1964] and [Singer Sternberg 1965]. In our case
(when n = 1) the only possible groups are the group of all linear transformations and the group
of all fractionally-linear transformations x → (ax + b)/(cx + d). In both cases the group consists
only of fractionally linear transformations (the simplified proof for the 1-dimensional case is given
in [Kreinovich 1987]; for other applications of this result see [Kreinovich Kumar 1990, 1991],
[Kreinovich Corbin 1991], [Kreinovich Quintana 1991a]).

2. Let us now prove that the optimal family Fopt exists and is shift-invariant in the sense
that Fopt = Fopt + a for all real numbers a. Indeed, we assumed that the optimality criterion
is final, therefore there exists a unique optimal family Fopt. Let’s now prove that this optimal
family is shift-invariant (this proof is practically the same as in [Kreinovich 1990]). The fact that
Fopt is optimal means that for every other F , either Fopt > F or Fopt ∼ F . If Fopt ∼ F for some
F 6= Fopt, then from the definition of the optimality criterion we can easily deduce that F is also
optimal, which contradicts the fact that there is only one optimal family. So for every F either
Fopt > F or Fopt = F .

Take an arbitrary a and let F = Fopt + a. If Fopt > F = Fopt + a, then from the invariance
of the optimality criterion (condition ii) we conclude that Fopt − a > Fopt, and that conclusion
contradicts the choice of Fopt as the optimal family. So Fopt > F = Fopt + a is impossible, and
therefore Fopt = F = Fopt + a, i.e., the optimal family is really shift- invariant.

3. Let us now deduce the actual form of the functions f from the optimal family. If f(y)
is such a function, then the result f(y + a) of adding a to this function f belongs to F + a, and
so, due to 2., it belongs to F . But all the functions from f can be obtained from each other by
fractionally linear transformations, so f(y + a) = (A + Bf(y))/(C + Df(y)) for some A,B, C

and D. So we arrive at a functional equation for f . Let us reduce this equation to a one with

9

a known solution. For that purpose, let us use the fact that fractionally linear transformations
are projective transformations of a line, and for such transformations the cross ratio is preserved
[Aczel 1966, Section 2.3], i.e., if g(y) = (A + Bf(y))/(C + Df(y)), then

g(y1)− g(y3)
g(y2)− g(y3)

g(y2)− g(y4)
g(y1)− g(y4)

=
f(y1)− f(y3)
f(y2)− f(y3)

f(y2)− f(y4)
f(y1)− f(y4)

for all yi. In our case this is true for g(y) = f(y + a), therefore for all a the following equality is
true:

f(y1 + a)− f(y3 + a)
f(y2 + a)− f(y3 + a)

f(y2 + a)− f(y4 + a)
f(y1 + a)− f(y4 + a)

=
f(y1)− f(y3)
f(y2)− f(y3)

f(y2)− f(y4)
f(y1)− f(y4)

.

The most general continuous solutions of this functional equation are given by Theorem 2.3.2
from [Aczel 1966]: either f is fractionally linear, or f(y) = (a + b tan(ky))/(c + d tan(ky)) for
some a, b, c, d, or f(y) = (a + b tanh(ky))/(c + d tanh(ky)), where tanh(z) = sinh(z)/ cosh(z),
sinh(z) = (exp(z)− exp(−z))/2) and cosh(z) = (exp(z) + exp(−z))/2).

If f(y) is fractionally linear f(y) = (a + by)/(c + dy) and d 6= 0, then the denominator is
equal to zero for y = −c/d. The only way for the function to be defined for this y is that the
numerator should also be zero, i.e., a + by = a + b(−c/d) = 0. But in this case a = b(c/d),
therefore a + by = b(c/d + y) = (b/d)(c + dy), and the fraction f(y) is always equal to a constant
b/d. But we assumed that f is not a constant. So d = 0 and f is linear.

Let us prove that the expressions with tangent are impossible. Indeed, the denominator
must be not identically equal to zero, therefore either c 6= 0, or d 6= 0. If d 6= 0, then for
ky = arctan(−c/d) we have tan(ky) = −c/d, and the denominator is equal to zero. As in the
linear case we can then conclude that in this case f is constant, and that contradicts to our
assumption that it is not. So d = 0 and f(y) = (a/d) + (b/d) tan(ky). Hence either b = 0 and
f = const, or b 6= 0, and f is not defined, when tan(ky) = ∞, i.e., when ky = π/2 and y = π/(2k).
So expressions with tangent are really impossible.

Let us now consider the case of hyperbolic tangent. If k = 0, then f is constant, which
is impossible. So k 6= 0. If k < 0, then we can take k̄ = −k and use the fact that tanh is
an odd function, so tanh(ky) = − tanh(k̄y). Therefore, in the following we can assume that
k > 0. Multiplying both the denominator and the numerator by cosh(z), we conclude that
f(y) = (a cosh(ky)+ b sinh(ky))/(c cosh(ky)+d sinh(ky)). We then substitute the expressions for
sinh and cosh in terms of exp, and conclude that f(y) = (A exp(ky)+B exp(−ky))/(C exp(ky)+
D exp(−ky)) for some A,B, C, D. Multiplying both denominator and numerator by exp(−ky),
we arrive at f(y) = (A + B exp(−2ky))/(C + D exp(−2ky)). If D = 0, then we get a linear
transformation of the exponential function. If C = 0, then f(y) = (B/D) + (A/D) exp(2ky),

10

which is also a linear transformation of the exponential function. Let us now consider the case,
when both C and D are different from 0.

If C and D have different signs, then for exp(2ky) = −D/C the denominator equals to
zero, and so, just like in the tangent case, we conclude that f is either identically constant,
or not defined in this point y = ln(−D/C)/(2k). If C and D have the same signs, then for
l = − ln(D/C) we have C +D exp(−2ky) = C(1+(D/C) exp(−2ky)) = C(1+exp(−(2ky+ l)). If
we substitute exp(−2ky) = exp(−(2ky + l)) exp(l) = (C/D) exp(−(2ky + l)) into the numerator,
we get A+(BC/D) exp(−(2ky + l)), and therefore f(y) = (A+(BC/D) exp(−(2ky + l)))/(C(1+
exp(−(2ky + l))). One can check (by substituting the expression of the logistic function s0 in
terms of exp) that this expression is equal to (A/C) + (B/D − A/C)s0(2ky + l). So we get the
desired expression for K = 2k. Q.E.D.

Proof of Theorem 2. Just like in the proof of Theorem 1, we conclude that f(ay) = (A +
Bf(y))/(C + Df(y)). This functional equation is almost the same as the one we solved in
Theorem 1, with the only exception being that here we have a product instead of a sum. It is
well known that if we turn to logarithms, then the logarithm of a product is equal to the sum of
logarithms. So in order to reduce this case to the one already analyzed, let us introduce the new
variable Y = ln y (so that y = exp Y), and a new function F (Y) = f(exp(y)). For this function,
the above functional equation takes the following form: for every E there exist A,B,C, D such
that F (Y + E) = (A + BF (Y))/(C + DF (Y)) (E = ln a). In the proof of Theorem 1, we have
already enumerated the solutions of this equation, so F (Y) is either a fractionally-linear function,
or a fractionally-linear transformation of tan(ky) or tanh(ky). If we know F , then using the
equation F (Y) = f(exp(y)), we can reconstruct f(y) = F (ln y) for y > 0. Similar expressions
can be obtained for y < 0: in this case we need to use Y = ln |y|. So in order to complete the
proof, we must substitute ln y into the expressions enumerated above, and choose those that are
defined everywhere.

Let us first consider the case when F (Y) = (a + bY)/(c + dY). Substituting ln y instead of
Y , we get f(y) = (a + b ln y)/(c + d ln y). This function must be smooth. Let us compute the
derivative f ′: f ′(y) = ((b/y)(c + d ln y) − (d/y)(a + b ln y))/(c + d ln y)2. If b/c − a/d = 0, then,
as in Theorem 1, we can conclude that f is identically constant. If b/c− a/d 6= 0, then for y → 0
this derivative tends to ∞, so such functions f are not smooth at 0.

The fact that the expressions with tangent are impossible is proved just like in Theorem 1.
So the only remaining case is the case of tanh, in which the function F (Y) can be reduced to
F (Y) = (A + B exp(−2kY))/(C + D exp(−2kY)). Substituting Y = ln y, and using the fact that
exp(−2k ln y)) = (exp(ln y))−2k = y−2k, we conclude that f(y) = (A+By−α)/(C +Dy−α), where
α = 2k. Q.E.D.

11

Proof of Theorem 3. As in the proof of Theorem 1, we come to a conclusion that the optimal
family Fopt exists and is shift-invariant. In particular, for every i the result fi(y + a) of shifting
fi(y) must belong to the same family, i.e., fi(y+a) = Ci1(a)f1(y)+Ci2(a)f2(y)+...+Cim(a)fm(y)
for some constants Cij , depending on a. Let us first prove that these functions Cij(a) are dif-
ferentiable. Indeed, if we take m different values yk, 1 ≤ k ≤ m, we get m linear equations for
Cij(a):

fi(yk + a) = Ci1(a)f1(yk) + Ci2(a)f2(yk) + ... + Cim(a)fm(yk),

from which we can determine Cij using Kramer’s rule. Kramer’s rule expresses every unknown as
a fraction of two determinants, and these determinants polynomially depend on the coefficients.
The coefficients either do not depend on a at all (fj(yk)) or depend smoothly (fi(yk +a)) because
fi are smooth functions. Therefore these polynomials are also smooth functions, and so is their
fraction Cij(a).

We have an explicit expression for fi(y + a) in terms of fj(y) and Cij . So, when a = 0,
the derivative of fi(y + a) with respect to a equals to the derivative of the expression. If we
differentiate it, we get the following formula: f ′k(y) = ci1f1(y) + ci2f2(y) + ... + cimfm(y), where
cij = C ′ij(0). So the set of functions fi(y) satisfies the system of linear differential equations with
constant coefficients. The general solution of such system is well known [Bellman 1970], so we
get the desired expressions. Q.E.D.

Proof of Theorem 4. Just like in Theorem 1, we conclude that an optimal family exists and is
both shift- and scale-invariant. This means that the results of adding ~a to fi and rescaling fi by
~a also belong to this optimal family F .

For shift-invariance this means that

fi(y1 + a1, y2 + a2, ..., yp + ap) = Ci1(~a)f1(y1, y2, ..., yp) + ... + Cim(~a)fm(y1, ..., yp).

In particular, if we take a2 = ... = ap = 0, we conclude that

fi(y1 + a1, y2, ..., yp) = Ci1(a1)f1(y1, y2, ..., yp) + Ci2(a1)f2(y1, ..., yp) + ... + Cim(a1)fm(y1, ..., yp).

If we fix some values y2, ..., yp and denote gi(y1) = fi(y1, y2, ..., yp), we conclude that gi(y1 +a1) =
Ci1(a1)g1(y1) + ... + Cim(a1)gm(y1). So the functions gi satisfy the same equations that we have
already solved in the proof of Theorem 3, and therefore each of gi is equal to the linear combination
of the functions yp

1 exp(αy1) sin(βy1 + φ) from the formulation of Theorem 3.

Likewise scale-invariance means that

fi(a1y1, a2y2, ..., apyp) = Ci1(~a)f1(y1, y2, ..., yp) + Ci2(~a)f2(y1, ..., yp) + ... + Cim(~a)fm(y1, ..., yp).

12

If we take a2 = ... = ap = 1, we conclude that gi(a1y1) = Ci1(a1)g1(y1)+...+Cim(a1)gm(y1). This
functional equation is almost the same as for shift-invariance, the only difference is that we have
a product instead of a sum. We already had such a situation, when we proved Theorem 2, and so
we know what trick to apply: we must introduce a new variable Y = ln y1 (so that y1 = exp(Y)),
and new functions Gi(Y) = gi(exp(Y)) (so that gi(y1) = Gi(ln y1)). Then for these new functions
this functional equation takes the form Gi(A + Y) = C̄i1(A)G1(Y) + ... + C̄im(A)Gm(Y). This
is precisely the system of functional equations that we already know how to solve. So we can
conclude that Gi(Y) is a linear combination of these functions Y p exp(αY) sin(βY + φ) from
Theorem 3. When we substitute Y = ln y1, we conclude that gi(y1) = Gi(Y) = Gi(ln y1) is a
linear combination of the functions (ln y1)p exp(α ln y1) sin(β ln y1 + φ). This expression is rather
complicated. The only simplification that we can apply is to change exp(α ln y1) to (exp(ln y1))α =
yα
1 , so we conclude that gi is a linear combination of the functions (ln y1)pyα

1 sin(β ln y1 + φ).

So for the same functions gi we have two different expressions obtained from the demands
of shift-invariance and scale-invariance. When can a function gi satisfy both conclusions, i.e.,
belong to both classes? If it contains terms with logarithms, it cannot be a linear combi-
nation of the functions from Theorem 3, because there are no logarithms among them. The
same if it contains sines of logarithms. So the only case when a linear combination of the
functions (ln y1)pyα

1 sin(β ln y1 + φ) is at the same time the linear combination of the functions
yp̄
1 exp(ᾱy1) sin(β̄y1 + φ̄) is when p = β = 0. In this case the above expression turns into yα

1 , and
from the equality of these expressions we conclude that α = p̄. But p̄ is necessarily a non-negative
integer, and therefore α is non-negative integer as well. So gi(y1), which is equal to a linear com-
bination of such terms, is equal to the linear combination of the terms yα

1 for non-negative integers
α, i.e., gi(y1) is a polynomial. So the dependency of fi on y1 is polynomial.

Similarly we can conclude that fi polynomially depends on all other variables y2, ..., yp, and
therefore all the functions fi are polynomials of yi. Every function f from F is a linear combination
of these polynomials, and therefore a polynomial itself. Q.E.D.

Proof of Theorem 5. We can repeat the proof of Theorem 1 and come to a conclusion that
all these functions are either linear, or exponential, or a logistic function. Neither linear, nor
exponential functions are bounded, so only a logistic function is left. Q.E.D.

Acknowledgments. This research was supported by NSF grant No. CDA-9015006, NASA
Research grant NAG 9-482 and a grant from the Institute for Manufacturing and Materials
Management. The authors are also thankful to Dr. R. Hecht-Nielsen (San Diego, CA) for
encouragement, to Dr. G. E. Hinton (Toronto) for interesting preprints, and to all participants

13

of the NSF II Workshop (Purdue, 1991), especially to Dr. Lokendra Shastri (Philadelphia) for
valuable discussions.

References

Aczel, J. Lectures on functional equations and their applications. Academic Press, NY-
London, 1966.

Bellman, R. Introduction to matrix analysis. McGraw-Hill, N. Y., 1970.

Braham, R. Numerical analysis of neural networks, in Proceedings of the International Joint
Conference on Neural Networks, IEEE Press, Washington, DC, 1989, pp. 1428–1432.

Braham, R. and J. O. Hamblen The design of a neural network with a biologically motivated

architecture. IEEE Transactions on Neural Networks, 1990, Vol. 1, No. 3, pp. 251–262.

Chevalley, C. Theory of Lie groups, Princeton University Press, Princeton, NJ, 1946.

Cowan, J. D. A mathematical theory of central nervous activity. Ph. D. Dissertation, Univ.
London, 1967.

Guillemin, V. M. and S. Sternberg. An algebraic model of transitive differential geometry,
Bulletin of American Mathematical Society, 1964, Vol. 70, No. 1, pp. 16–47.

Grossberg, S. Nonlinear neural networks: Principles, mechanisms and architectures. Neural
Networks, 1988, Vol. 1, pp. 17–61.

Hecht-Nielsen, R. Kolmogorov’s mapping neural network existence theorem. Proceedings of
IEEE International Conference on Neural Networks, 1987, vol. 3, pp. 11–13.

Hecht-Nielsen, R. Neurocomputing. Addison-Wesley, Reading (MA), 1991.

Kosko, B. Neural networks and fuzzy systems. Prentice Hall, Englewood Cliffs, NJ, 1992.

Kreinovich, V. A mathematical supplement to the paper: I. N. Krotkov, V. Kreinovich and
V. D. Mazin. A general formula for the measurement transformations, allowing the numerical

methods of analyzing the measuring and computational systems, Measurement Techniques, 1987,
No. 10, pp. 8–10.

Kreinovich, V. Group-theoretic approach to intractable problems. Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, Vol. 417, 1990, pp. 112–121.

Kreinovich, V. Arbitrary nonlinearity is sufficient to present all functions by neural networks:

a theorem. Neural Networks, 1991, vol. 4, pp. 381–383.

14

Kreinovich, V. and J. Corbin, Dynamic tuning of communication network parameters: why

fractionally linear formulas work well. University of Texas at El Paso, Computer Science Depart-
ment, Technical Report UTEP-CS-91-4, 1991.

Kreinovich, V. and S. Kumar, Optimal choice of &- and ∨- operations for expert values.

Proceedings of the 3rd University of New Brunswick Artificial Intelligence Workshop, Fredericton,
New Brunswick, Canada, 1990, pp. 169–178.

Kreinovich, V. and S. Kumar, How to help intelligent systems with different uncertainty

representations communicate with each other. Cybernetics and Systems: International Journal,
1991, vol. 22, No. 2, pp. 217–222.

[Kreinovich Quintana 1991a] Kreinovich, V. and C. Quintana. How does new evidence change

our estimates of probabilities: Carnap’s formula revisited. Submitted to Cybernetics and Systems.

[Kreinovich Quintana 1991b] Kreinovich, V. and C. Quintana. Neural networks: what non-

linearity to choose. Proceedings of the 4th University of New Brunswich Artificial Intelligence
Workshop, Fredercton, New Brunswick, 1991 (to appear).

Minsky, M. and S. Papert. Perceptrons. MIT Press, Cambridge (MA), 1968.

Munro, P. W. State-dependent factors influencing neural plasticity: a partial account of the

critical period. In: J. L. McClelland, D. E. Rumelhart et al Parallel distributed processing, MIT
Press, Cambridge, MA, 1986, Vol. 2, pp. 471–487.

Singer, I.M. and S. Sternberg. Infinite groups of Lie and Cartan, Part 1, Journal d’Analyse
Mathematique, 1965, Vol. XV, pp. 1–113.

Wasserman, P. Neural computing: Theory and Practice. Van Nostrand Reinhold, N.Y., 1989.

Wiener, N. Cybernetics, or Control and Communication in the animal and the machine, MIT
Press, Cambridge MA, 1962.

15

