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Figure 1: Structure of a PLL.

1 Digital Phase Locked Loop (DPLL)

1.1 Continuous-time Phase Locked Loop

Figure 1 shows the general structure of a Phase Locked Loop (PLL)[1]. A generic PLL
consists of a phase detector, a loop £lter, and a voltage-controlled oscillator (VCO).
The phase detector produces the error signal that measures the difference between the
input and output of the PLL. The loop £lter averages the error and generates the control
signal to the VCO to produce the output signal.

Usually the input and output signals of the PLL are sinusoids with input

x(t) = Ax cos[2πfct+ φ(t)]

and output

y(t) = Ay sin
[
2πfct+ φ̂(t)

]

After an ideal phase detector, the output error signal is

e(t) = φ(t)− φ̂(t)

The loop £lter is characterized in s-domain (Laplace transform) as

C(s) = L(s)E(s)

where E(s) corresponds to the error signal e(t), L(s) is the transfer function of the
loop £lter, and C(s) corresponds to the control signal c(t). The VCO is basically a
sinusoidal signal generator with an instantaneous carrier phase given by

2πfct+ φ̂(t) = 2πfct+
∫ t

−∞
c(τ)dτ

Notice we assume the VCO gain is unity here. Any VCO gain will be lumped into the
loop £lter gain. Taking the derivative of the above we have

dφ̂(t)
dt

= c(t)

or equivalently in s-domain
sΦ̂(s) = C(s)



where on the LHS, we assumed φ̂(0) = 0. The loop transfer function is then

H(s) =
Φ̂(s)
Φ(s)

=
(1/s)C(s)
Φ(s)

=
(1/s)L(s)

[
Φ(s)− Φ̂(s)

]
Φ(s)

=
L(s)

s
[1− H(s)]

Solving the above, we have

H(s) =
L(s)/s

1 + L(s)/s
=

L(s)
s+ L(s)

A £rst-order PLL is characterized by the loop £lter of the form

L(s) = K

and the transfer function becomes

H(s) =
K

s+K

If we choose the loop £lter of the form

L(s) = K
s+K1

s+K2

the transfer function becomes

H(s) =
Ks+KK1

s2 + (K +K2)s+KK1

which is a second-order PLL. It is customary to express the denominator of H(s) in
the form[2]

s2 + 2ηωns+ ω2
n

where η is called the loop damping factor and ωn is called the natural frequency of the
loop. It is clear that

ωn =
√

KK1

η =
K +K2

2
√

KK1

the loop transfer function becomes

H(s) =
Ks+ ω2

n

s2 + 2ηωns+ ω2
n

When K2 = 0, we have a special second-order PLL with the loop £lter

L(s) = K
s+K1

s
(1)

and transfer function

H(s) =
Ks+KK1

s2 +Ks+KK1
=

2ηωns+ ω2
n

s2 + 2ηωns+ ω2
n

(2)
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Figure 2: General structure of a DPLL.

and the natural frequency and damping factor are

ωn =
√

KK1

η =
1
2

√
K

K1

respectively.
It is often useful to know the steady-state operating point of PLL. The steady-state

phase error is de£ned to be
ess = lim

t→∞ e(t)

Using the £nal value thereom of Laplace transform, we have

ess = lim
s→0

sE(s) = lim
s→0

sΦ(s) [1− H(s)] = lim
s→0

s2Φ(s)
s+ L(s)

1.2 General structure of DPLL

Figure 2 shows the structure of a Digital Phase Locked Loop. The phase detector is a
simple substractor. The error signal is

e(k) = φ(k)− φ̂(k)

or in z-domain
E(z) = Φ(z)− Φ̂(z)

Analogous to the differential equation for the VCO in the continuous PLL, we write
the difference equation

φ̂(k + 1)− φ̂(k) = c(k)

for the VCO in the DPLL. In z-domain, the above becomes

(z − 1)Φ̂(z) = C(z) = L(z)E(z) = L(z)
[
Φ(z)− Φ̂(z)

]

which can be reorganized to give the transfer function

H(z) =
L(z)

L(z) + z − 1
The steady state error is calculated as

ess = lim
k→∞

e(k) = lim
z→1

(z − 1)E(z) = lim
z→1

(z − 1)2Φ(z)
L(z) + z − 1 (3)
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1.3 First-order DPLL

For the £rst-order DPLL,
L(z) = K

the transfer function becomes

H(z) =
K

K + z − 1
The £rst-order DPLL is not quite suited for correcting the phase error caused by resid-
ual frequency offset as discussed in Section ??.

For example, if we assume the input sequence is of the form

φ(n) = ε0n

i.e. a residual frequency offset causing linear phase increment. To £nd out the z-
transform of the sequence, we notice that the above sequence is expressed by the dif-
ference equation

φ(k + 1)− φ(k) = ε0 k ≥ 0
and

φ(k) = 0 k ≤ 0
The z-transform of the RHS of the difference equation is

ε0

∞∑
n=0

1
zn
= ε0

z

z − 1

Performing z-transform on both sides of the difference equation yields

zΦ(z)− Φ(z) = ε0
z

z − 1
and thus the z-transform of the input sequence φ(n) is

Φ(z) = ε0
z

(z − 1)2

Substituting the sequence z-domain expression into the DPLL steady state error
expression (3), we have

ess = lim
z→1

(z − 1)2ε0 z
(z−1)2

K + z − 1 =
ε0
K

The steady state error is non-zero but it can be reduced by increasing the loop gain K.
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1.4 Second-order DPLL

1.4.1 Second-order DPLL structure

Noticing the discrete domain equivalent of s is z−1, we can construct a special second-
order DPLL similar to the PLL discussed before, whose loop £lter is, similar to (1),

L(z) = K
(z − 1) +K1

(z − 1)
and whose transfer function is, similar to (2),

H(z) =
K(z − 1) +KK1

(z − 1)2 +K(z − 1) +KK1

The £lter parameters can be matched with those used in [3] through
{

K = C2

K1 = C1/C2
i.e.

{
C1 = KK1

C2 = K

and the transfer function becomes

H(z) =
C2(z − 1) + C1

(z − 1)2 + C2(z − 1) + C1
(4)

Figure 3 shows the block diagram of the second-order DPLL.
Now if the input is

φ(n) = ε0n

the steady state error is

ess = lim
z→1

(z − 1)2ε0 z
(z−1)2

K
(
1 + 1

z−1K1

)
+ (z − 1)

= lim
z→1

ε0z(z − 1)
(z − 1)2 +K(z − 1) +KK1

= 0

To express the DPLL in term natural frequency ωn and damping factor η, we de£ne

{
C1 = ω2

n

C2 = 2ηωn
i.e.




ωn =
√

C1

η =
C2

2
√

C1

(5)
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Notice here we require C1 to be positive which as discussed later is a prerequisite for a
stable DPLL. With the de£nition, we can express the DPLL transfer function as

H(z) =
2ηωn(z − 1) + ω2

n

(z − 1)2 + 2ηωn(z − 1) + ω2
n

1.4.2 Second-order DPLL stable condition

To have a stable DPLL, all its poles must reside in the unit circle. The poles can be
found by solving the equation in the denominator of H(z),

(z − 1)2 + C2(z − 1) + C1 = 0

yielding the soluation of the form

z = 1 +
−C2 ±

√
C2

2 − 4C1

2
=
2− C2 ±

√
C2

2 − 4C1

2

When
C2

2

4
> C1

the solution is real and we require

−1 <
2− C2 ±

√
C2

2 − 4C1

2
< 1

Noticing that we only need to make the bigger pole to be less 1 and the smaller pole to
be bigger than −1, the above inequality is reduced to

2−C2+
√

C2
2−4C1

2 < 1
2−C2−

√
C2

2−4C1

2 > −1
From the £rst of the two inequalities, we £nd

0 <
√

C2
2 − 4C1 < C2

and futher
C1 > 0

From the second of the two inequalities, we £nd

4− C2 >
√

C2
2 − 4C1 > 0 ⇒ C2 < 4

and further
C1 > 2C2 − 4

Combine all above we have
C2

2

4
> C1

0 < C2 < 4
C1 > 0

C1 > 2C2 − 4
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Figure 4: Second-order DPLL real solution region. Horizontal axis is C2. Ver-
tical axis is C1.
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Figure 5: Second-order DPLL imaginary solution region. Horizontal axis is C2.
Vertical axis is C1.

The shaded region in Figure 4 shows the solution region.
When

C2
2

4
≤ C1

the poles are not on the real axis and we require∣∣∣∣∣
2− C2 ± j

√
4C1 − C2

2

2

∣∣∣∣∣ < 1

which is equivalent to
(2− C2)

2 +
(
4C1 − C2

2

)
< 4

reducing to
C1 < C2

The solution is shown as the shaded region in Figure 5.
Combining the two graphs, we £nd the overall solution for a stable second-order

DPLL in Figure 6. Mathematically, the DPLL parameters C1 and C2 must satisfy

C1 > 0, C1 > 2C2 − 4, C1 < C2
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Figure 6: Second-order DPLL solution region. Horizontal axis is C2. Vertical
axis is C1.

Referring to (5), we can also express everything in terms of natural frequency and
damping factor. Here since C1 and C2 are both positive, ωn and η must be of the
same sign. It doesn’t matter whether both of them are negative or positive because the
transfer function only depends on ω2

n and 2ηωn. We require both of them to be positive.
For the £rst case, we have η > 1, we have the stable condition

ωn > 0
η > 1

ηωn < 2
ω2

n + 4 > 4ηωn

From the third inequality, we have

ωn < 2/η < 2

From the last inequality, we have

ηωn <
ω2

n

4
+ 1
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Figure 7: Second-order DPLL solution region in terms of natural frequency ωn

and dampling factor η.

which combined with the condition ωn < 2 supercedes the second inequality above.
We can thus rewrite the condition as

η > 1
0 < ωn < 2

ηωn <
ω2

n

4
+ 1

(6)

For the second case, we have the stable condition

η ≤ 1
0 < ωn < 2η (7)

The solution region in terms of natural frequency and damping factor is shown in Fig-
ure 7.

10



References

[1] Edward A. Lee and David G. Messerschmit. Digital Communications. Kluwer
Academic Publishers, second edition, 1994.

[2] John G. Proakis. Digital Communications. Electrical Engineering Series.
McGraw-Hill, third edition, 1995.

[3] Y. R. Shayan and T. Le-Ngoc. All digital phase-locked loop: concepts, design and
application. IEEE Proc., 136(1), February 1989.

[4] Christian Stimming. Frequency offset tracking in mcma systems. Technical report,
Berkeley Wireless Research Center, May 2001.

11


