
Mobile devices have evolved to a point
where interactive 3D graphics is becom-

ing feasible. The first standardized 3D programming
interfaces for mobile devices—OpenGL ES for native
C/C++ and Mobile 3D Graphics (M3G) for Java appli-

cations—are now available to hard-
ware vendors and application
developers. The interfaces comple-
ment rather than compete with
each other and can share the same
underlying rendering engine,
whether implemented in hardware
or software.

Three-dimensional graphics on
mobile devices is still about con-
verting descriptions of geometry,
material, and illumination into pix-
els shown on a raster display, using
the same fundamental algorithms
as elsewhere. However, mobile
devices’ limited capabilities must be

reflected in the realizations of those algorithms, as well
as in the overall graphics system design.

In this article, we describe a design that attempts to
take on that challenge, consisting of OpenGL ES, a low-
level API, and M3G (also known as JSR-184), a high-

level API for Java. We describe how the two interfaces
relate to each other and existing graphics architectures
on the desktop, and how they attempt to provide opti-
mal features and performance across the whole gamut
of different devices. OpenGL ES and M3G, as well as
our presentation of them in this article, derive from a
long tradition of graphics systems design. Particularly
relevant examples of such previous work are
OpenGL,1,2 OpenInventor,3 Iris Performer,4 VRML, and
Java 3D.

Background
The most compelling and common use of mobile 3D

graphics is familiar: gaming (see Figure 1 for an exam-
ple). Besides that, 3D graphics can help make the most
effective use of the small display in various applications
and make a product’s user interface more attractive.

Until about 2002, most handheld devices were hardly
capable of rendering a Gouraud-shaded cube, let alone
displaying it in color (see the “Previous Work” sidebar).
Now, display resolutions have reached the level of home
computers in the 1980s, while the color depths and com-
puting capacity are on par with a PC in the early 1990s.
This is a far cry from today’s desktop standards: In terms
of fill rate, for example, we are talking about kilopixels
rather than gigapixels per second.

Feature Article

The authors describe two

3D graphics interfaces for

mobile devices and highlight

key design decisions and

nonobvious approaches

taken during their

standardization.

Kari Pulli, Tomi Aarnio, Kimmo Roimela,
and Jani Vaarala
Nokia

Designing Graphics
Programming
Interfaces for
Mobile Devices

66 November/December 2005 Published by the IEEE Computer Society 0272-1716/05/$20.00 © 2005 IEEE

Previous Work
3D graphics on mobile phones was first commercialized

in 2001 by the Japanese operator JPhone, the company that
introduced HI Corp.’s Mascot Capsule engine. Other
Japanese operators soon adopted the same engine. Mascot
Capsule was initially restricted to event-driven control of
skeletally animated characters, using only orthographic
projection and z-sorted polygons, but it was later extended
with a more generic and robust feature set as well as a
lower level API.

Outside of Asia, no proprietary 3D engine ever became a
de facto standard. Motorola adopted the Mascot Capsule
engine; Sony Ericsson has used Synergenix’s Mophun and,
more recently, Mascot Capsule; Siemens, Sagem, and
Alcatel have used In-Fusio’s ExEn. Nokia had its own 3D

engine in several monochrome phone models in 2002, but
that engine was only used for screen savers exported from
Autodesk’s 3ds Max and there was no public API.

Representing a slightly different approach, Fathammer’s
X-Forge engine ships with the games instead of the devices.
X-Forge is used in a number of games on the Nokia N-Gage
and Tapwave Zodiac platforms.

Publicly available information on these systems is
generally restricted to marketing material, making it hard to
judge their merits relative to each other and to our
approach.

The first software implementations of OpenGL ES and
M3G came from Nokia, Hybrid Graphics, HI Corporation,
and Superscape. By late 2004 there were also several
hardware designs targeted at these APIs.

There are good reasons why the computational capac-
ity is limited, and continues to be so. An often-cited rea-
son is that mobile devices need to be inexpensive. This
is true, but a more fundamental reason is that they are
small and run on battery power. Battery capacity
improves only 5 to 10 percent per year, and even if lots
of power were available, compact devices couldn’t use
it without overheating. Thus, processing units and exter-
nal memories are clocked at relatively low frequencies,
while the silicon area available to memories and pro-
cessing units is scarce. That precious space will not be
filled with floating-point or 3D graphics functions unless
there is a clear consumer demand.

One obvious difference between desktop and mobile
devices is the display. Mobile displays’ smaller size trans-
lates to fewer pixels, bringing down the requirements
on raw fill rate and polygon throughput. If we are will-
ing to accept the low resolution, mobile devices today
offer fairly good processing power relative to the num-
ber of pixels, making software-based rendering a feasi-
ble approach. For the next several years, most low-end
mobile devices supporting 3D graphics will do so by
means of a software rendering engine running on an
integer-only CPU.

On the other hand, to make the most of each pixel on
the small screen, the quality and amount of per-pixel
processing would ideally have to be higher than on a
desktop device.5 Techniques such as antialiasing and
per-pixel shading become important in high-end devices
(gaming devices in particular), which clearly calls for
dedicated graphics hardware. A compelling reason to
employ such hardware also in mid-range devices is that
it will use less power than the same computations on a
general-purpose CPU. Furthermore, the same piece of
hardware can also accelerate bitmap operations. Sev-
eral companies have seized that opportunity, and the
number of different graphics hardware designs avail-
able to device manufacturers has risen from only a few
in 2003 to about 10 by the end of 2004. We predict that
most high-end and many mid-range devices will include
graphics hardware acceleration in five years’ time.

Given the rapid development of high-end graphics
hardware and the growing importance of low-end soft-
ware rendering, available devices will soon span a range
of three orders of magnitude in terms of rendering per-
formance. Designing an API to cater to such a variety of
devices is clearly a challenge. Yet there is no real alter-
native: Having a different API for each performance
category would be unacceptable to almost all parties
involved.

Two APIs for two environments
Mobile appliances, such as mobile phones, have tra-

ditionally been closed platforms in the sense that no
new applications can be installed after the device is pur-
chased. Another type of closed system is game consoles,
where manufacturers carefully control who can devel-
op and offer games for the system, and titles are tai-
lored for custom hardware. With this situation, there
is limited demand for open-standard APIs.

Mobile devices are opening up, however. Some oper-
ating systems—for example, Symbian, embedded

Linux, Palm, and Windows CE—allow the installation
of native applications written in C or C++, or even assem-
bler, while otherwise closed devices now allow instal-
lation of Java midlets. The mobile Java 2 Platform,
Micro Edition (J2ME) allows the same applications to
run on many different devices and operating systems.
Figure 2 illustrates our approach: two different APIs that
together provide for both of these worlds.

An open operating system allows installation of native
applications, and anyone can, in principle, implement
an efficient 3D software engine and the applications
using it. What device manufacturers can do, however,
is to define and implement a low-level API offered as an
operating system service and potentially optimized for

IEEE Computer Graphics and Applications 67

1 Snowboarding game running on an off-the-shelf ARM9-based mobile
phone with no hardware support for 3D graphics or floating-point
arithmetic. The game is written in Java, using M3G. The underlying M3G
implementation sits atop OpenGL ES (Common profile).

Java virtual machine (CLDC 1.1)

M3G MIDP 2.0

Java applications

Native applications

OpenGL ES

Operating systemGraphics hardware

2 Software architecture for a high-end mobile terminal. M3G enables 3D
graphics for Java midlets, while OpenGL ES serves both native applications
and the M3G implementation.

184 Expert Group (EG) made a good start in simplify-
ing Java 3D, it appeared that they would have to not only
make a subset of it but modify and extend it so much
that it would have become a different API in the end.

The JSR-184 EG then completely redid the design of
M3G, retaining many good design choices of preexist-

begin with, the potentially costly preprocessing step is
avoided. Applying these optimizations (and similar ones
for matrices and other state information) allows the ver-
tex processing costs to be brought down almost to the
level of a raw fixed-point pipeline.

OpenGL ES solution. The OpenGL ES Common
profile replaces all doubles with floats and introduces a

Java, on the other hand, is available on many low-
end devices that have no support for installable native
applications. To make M3G attractive to as broad a
range of devices as possible, some of the less common
features of OpenGL ES were dropped from the initial
version, blending modes were replaced with predefined
combinations, and fragment test functions (depth and
alpha) were hardcoded to defaults that can only be
enabled or disabled. The aim of this was to provide a
useful set of features while bringing the combinatorial
complexity of state settings down to a level that can still
be managed without the complexities of runtime code
generation.

Batch processing
The performance implications of fine-grained state

management and rendering operations have been rec-
ognized in the established native rendering APIs. Dis-
play lists, vertex arrays, and
vertex buffer objects in OpenGL,
as well as state blocks, vertex
buffers, and index buffers in
DirectX, provide means of group-
ing rendering state and geome-
try into blocks that can be
effected with a single function
call. We use OpenGL terminolo-
gy in the following discussion.

The foremost benefit of vertex
arrays and buffers is that, espe-
cially with indexed primitives,
data can be efficiently shared
and the number of vertex trans-
formations greatly reduced. This
led to dropping the begin-end
paradigm, where vertex data is
input one vertex at a time, from
OpenGL ES 1.0. Leaving just vertex arrays and indexed
primitives greatly simplified the OpenGL state machine
and reduced the number of API entry points required.
OpenGL ES 1.1 adds buffer objects, allowing vertex data
to be stored in server-side memory for faster access and
more optimal data layout.

In theory, display lists can further speed up render-
ing by allowing implementations to optimize the encap-
sulated state settings and by reducing the number of API
calls. In practice, there is little room for optimization if
the operations are sensible to begin with. Also, the num-
ber of native function calls is a nonissue on modern
CPUs. Given the added code complexity and memory
use, there was not enough justification for including dis-
play lists in OpenGL ES.

Unlike in native code, minimizing the number of func-
tion calls does pay off in Java. Calling native functions
from Java, in particular, is costly because of the extra
levels of indirection and the extra code required to pass
arguments back and forth.

M3G reflects this by batching rendering primitives
and state settings into component classes that, in turn,
are collected into container classes for rendering, much
like in Java 3D. For example, the Appearance container
contains rasterization and fragment processing compo-

nents Material, CompositingMode, PolygonMode, Fog,
and Texture2D. The rendering primitives are con-
structed from vertex and index buffers. The distribution
of state settings in the components attempts to group
logical sections of the OpenGL rendering pipeline
together to enhance object reuse.

Optimize data
Memory resources on mobile devices are scarce, and

memory accesses are also expensive in terms of per-
formance and power consumption. To allow more com-
pact data, OpenGL ES defines two extensions over
OpenGL 1.3: byte coordinates and paletted textures.
For many low-polygon models, even the 8-bit vertex
precision is sufficient without any visual degradation.
Paletted textures are defined as a built-in format for the
compressed textures supported by OpenGL ES, with
other formats to be defined by vendor-specific exten-

sions. Paletted textures can often
be 75 percent smaller than
equivalent 32-bit RGBA or
padded RGB textures, which in
turn often take half or more of
the total memory consumption.

In M3G, all data is stored
inside the API objects. Beyond
the application setup phase,
nothing is accessed from user
arrays for rendering. This design
allows implementations to opti-
mize the storage formats and
locations of different kinds of
data—for example, vertex data
can be stored in OpenGL ES
buffer objects. It also encourages
sharing of data: The same build-
ing blocks are used for both

immediate mode and retained mode rendering, and
objects such as the Appearance component classes, tex-
ture images, and vertex buffers can be shared by an
unlimited number of both scene graph and immediate
mode objects.

Various texture compression formats were also con-
sidered for both standards, but since no method that
would be free of patents was identified, no texture com-
pression format was mandated.

Optimize the interface
Desktop OpenGL has a total of 98 different entry

points for specifying the current color, texture coordi-
nate, vertex, and normal. These redundant entry points
differ in their parameter types, requiring code to con-
vert to the selected internal representation. In Java the
cost of a large number of entry points is even more
expensive. Library method declarations are stored in
text strings and take more space, and the declarations
are repeated in any application that uses the methods.
Because only a few entry points are really needed in
practice, eliminating redundancy does not affect the
usability of either API much.

Another subtle issue with Java is garbage collection,
which automatically releases memory by reclaiming

Feature Article

72 November/December 2005

In M3G, all data is stored inside

the API objects. Beyond the

application setup phase, nothing

is accessed from user arrays for

rendering. This design allows

implementations to optimize the

storage formats and locations of

different kinds of data.

objects no longer referenced by the application. Depend-
ing on the implementation, this might result in a rela-
tively long pause while the garbage collection algorithm
runs—this is highly undesirable in an interactive appli-
cation. For this reason, the user allocates all arrays for
returning data from M3G, and the number of items in
each input array is passed as a separate parameter (even
though Java arrays include length information). This
allows the application to recycle the parameter arrays,
reducing the need for garbage collection.

Built-in animation engine
The majority of interactive 3D content today relies on

keyframe animation and vertex deformation for game
characters and objects. Implementing morphing,
keyframe interpolation or skinning as part of a mobile
Java application is infeasible in light of constraints on
performance and download size. Also, a fair bit of math-
ematics is required, for example,
for keyframe interpolation of ori-
entations.6 To make these tech-
niques widely available to mobile
Java applications, they are pro-
vided as an integral part of M3G.

Flexible keyframing. The
M3G keyframe animation system
enables step, linear, and spline
interpolation of all vector, scalar,
and quaternion properties in
scene graph nodes and other
objects. Animation blending is
also included, and multiple ani-
mation tracks can target the
same property with weighted
contributions. The flexible animation engine again
serves to reduce application size, as relatively complex
effects can be achieved using the animation system
alone.

To keep the animation data compact, no tangent vec-
tors or other control parameters are included. For lin-
ear and step interpolation, this is obvious. For spline
interpolation, we use Catmull-Rom splines for scalar
and vector valued properties, and a similar scheme
described elsewhere6 (often dubbed squad) for quater-
nions. Both cases allow nonuniform keyframe timing.
Although this requires extra keyframes for precise
control of animation paths, it generally produces
smooth motion with minimal data and reduced API
complexity.

Character animation. Morphing and skinning are
provided as dedicated subclasses of the basic static mesh
class. Morphing is fashioned after the morph node in
Java 3D, enabling weighted linear blending between
multiple vertex buffers. This is commonly associated
with facial animation, but is also usable, for example,
for animation of low-polygon game characters in gen-
eral, of which Figure 1 is one example. The morph tar-
get weights can also be animated via the keyframe
animation system.

Skinning enables each vertex to be transformed by a

weighted blend of several transformations. Somewhat
unconventionally, the bones in M3G skinning are regu-
lar scene graph nodes. This automatically enables
attachments on skinned meshes, such as a torch with a
light source that a character is holding, without any
extra application code.

Application control. M3G leaves the application
in full control of execution. Both animation and ren-
dering are invoked explicitly from the application, with-

use. Leaving the window-binding API unspecified would
have caused even more variations than on the desktop.

Because OpenGL was adopted as the basis for the core
API, it was a natural choice to take GLX-like APIs as a
starting point for the cross-platform windowing API,
called EGL. EGL supports most of the functionality in
GLX, but in a cross-platform way. It is left for the oper-

References
1. M. Segal and K. Akeley, The Design of the OpenGL Graphics

Interface, tech. report, Silicon Graphics, 1994.
2. M.J. Kilgard, “Realizing OpenGL: Two Implementations of

One Architecture,” Proc. ACM Siggraph/Eurographics
Workshop Graphics Hardware, ACM Press, 1997, pp. 45-55.

3. P.S. Strauss and R. Carey, “An Object-Oriented 3D Graph-
ics Toolkit,” Proc. 19th Ann. Conf. Computer Graphics and
Interactive Techniques, ACM Press, 1992, pp. 341-349.

4. J. Rohlf and J. Helman, “Iris Performer: A High Perfor-
mance Multiprocessing Toolkit for Real-Time 3D Graph-
ics,” Proc. 21st Ann. Conf. Computer Graphics and Interactive
Techniques, ACM Press, 1994, pp. 381-394.

5. T. Akenine-Möller and J. Ström, “Graphics for the Masses:
A Hardware Rasterization Architecture for Mobile Phones,”
ACM Trans. Graph., vol. 22, no. 3, 2003, pp. 801-808.

6. K. Shoemake, “Animating Rotation with Quaternion
Curves,” Proc. 12th Ann. Conf. Computer Graphics and Inter-
active Techniques, ACM Press, 1985, pp. 245-254.

Kari Pulli is a research fellow at
Nokia Research Center and a visiting
scientist at the Massachusetts Institute
of Technologyt at nnsit 9(e)]TJ
-1.8653 - Tc
0.010501 T
[(ofientis)icst P(ib]TJ9(he Mat)-7.8(er snol3D GrT)79(e)-)]Th.

