
DEE: an architecture for distributed virtual environment gaming

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 Distrib. Syst. Engng. 5 107

(http://iopscience.iop.org/0967-1846/5/3/004)

Download details:

IP Address: 178.158.187.54

The article was downloaded on 02/05/2012 at 21:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0967-1846/5/3
http://iopscience.iop.org/0967-1846
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

Distrib. Syst. Engng 5 (1998) 107–117. Printed in the UK PII: S0967-1846(98)95406-7

DEE: an architecture for distributed
virtual environment gaming

Simon Powers, Mike Hinds and Jason Morphett

PP 7.2, MLB 3/7, BT Laboratories, Martlesham Heath, Ipswich IP5 3RE, UK

Received 6 March 1998

Abstract. This paper presents a distributed virtual environment architecture
targeted specifically at network games. It outlines the requirements for supporting a
game genre known as graphical multi-user dungeons or dimensions, and shows
how these requirements can be met by a novel approach to the distribution of the
game environment model. An implementation of the architecture is covered,
together with the initial conclusions drawn from the implementation process.

1. Introduction

1.1. Background

Gaming has proved to be one of the more successful
applications of distributed virtual environments (DVEs).
Titles such as Doom and Quake have not only dominated
the game sales charts† and gaming press, but have even
penetrated the cultural mainstream. Books, television
features and even movie licences have all been off-
shoots of their phenomenal success. With the home PC
now offering network connectivity and sophisticated 3D
graphics as standard, there is every sign that this type of
DVE application will continue to grow in popularity.

In terms of DVE architecture design, games are
a fascinating area to explore. Because they are a
comparatively recent phenomenon, standards have not yet
had time to develop. Each title uses its own proprietary
architecture, message formats, databases, etc. Hence, any
new design has a clean sheet to draw upon, without the
constraints of supporting predefined interfaces.

This design freedom is particularly useful because
of the demanding requirements games place on a DVE
architecture. Players have a predefined set of expectations
about the experience a game should provide. This includes
factors such as a rapid speed of response, detailed and fluid
graphics, complex interaction with both the environment
and its inhabitants, large environments to explore and
structured content that provides an entertaining experience.
Hence, multiplayer gaming provides both a useful and
tough yardstick to measure any DVE architecture against.

The current developers of commercial gaming DVEs
have a background predominantly concerned with produc-
ing single-player titles. This means they tend to focus heav-
ily on the graphics engine (their traditional skillbase) and
neglect development of the network and distributed pro-
cessing architecture. By taking experience and skills from

† id software reports that over 15 million shareware copies of Doom have
been downloaded since its launch.

the academic and industrial DVE design arena into the gam-
ing community, the opportunity exists to combine the best
of both areas, and produce a showcase DVE.

1.2. Multi-user dungeons or dimensions

Mass market penetration of multiplayer gaming was
achieved with visually appealing, graphically rich games
such as Doom, Quake, Duke Nuke’em, etc. These
are generically called Doom-style games after their most
successful variant. However, whilst the resultant interest
in multiplayer games is welcome, shared virtual gaming
environments, in the form of multi-user dungeons or
dimensions (MUDs) [1], have been around since the 1970s.

MUDs are one of the earliest types of DVEs, and their
method of modelling a virtual environment reflects this.
A single central server maintains a database containing
text descriptions of all possible locations, together with the
objects found in each location. Players use a single text
channel to communicate with the MUD server, and issue
simple commands to control their playing personae (e.g.
go west, take sword, say hello, etc). The MUD server
is responsible for updating its database in response to the
player’s commands, and describing any relevant changes to
the players.

Whilst using a very simple architecture (see figure 1),
MUDs have a number of interesting features not found in
the more modern Doom-style titles.
• Persistence. The environment continues to exist

irrespective of the presence of players. Changes made by
players can persist long after they have logged off.
• Many simultaneous connections. With sufficient

server and network capacity hundreds of players can
explore the same environment apparently simultaneously.
• Size. A MUD environment, whilst subdivided into

distinct locations, appears to be a single large world. By
contrast, most Doom-style titles have a collection of distinct
small levels with defined start- and endpoints.

0967-1846/98/030107+11$19.50 c© 1998 The British Computer Society, The Institution of Electrical Engineers and IOP Publishing Ltd 107

S Powers et al

Figure 1. MUD architecture.

• Emphasis on interplayer communication. Whilst most
graphical games focus on the simple task of annihilating
the opposition, MUDs tend to set more complex goals, and
hence encourage both cooperation and competition between
players.
• User authored content. Experienced MUD players are

often allowed to add or modify locations within a MUD,
producing a more organic, evolutionary environment.

The combination of these features makes MUDs more
than simple competitive gaming spaces. They can become
complex on-line societies, where factors such as politics,
economics, crime and even romance can flourish.

1.3. Distributed entertainment environment

We believe there is a potentially lucrative new gaming
genre to explore, found in the crossover between MUDs and
Doom-style games. This game style is termed a graphical
MUD, and attempts to combine the appeal of interactive
graphical environments with the complex social dynamics
found in a MUD.

Distributed Entertainment Environment (DEE) was
established to explore this new game style. The primary
goal of DEE is to design and implement a DVE architecture
that can support a graphical MUD. Additionally it is hoped
DEE will provide useful ideas that can be applied to
other, nongaming DVEs. Derived from the key features
of both the MUD and Doom-style game genres, we set the
following requirements for DEE.

(1) Environment modelled as a 3D space which players
can visualize and interact with in real-time (i.e.>10 frames
per second (fps)).

(2) Tight consistency maintained between the player’s
visualization and the environment’s actual state. Consis-
tency is one of the classic problems of DVEs [2], and dif-
ferent approaches result in varying degrees of consistency
between clients. Loosely consistent systems allow clients
to temporarily diverge in their views of the environment
and resynchronize them either after a set time or when the
divergence becomes too great. Whilst this normally in-
creases the responsiveness of the client interface, it can
mean two clients temporarily show different interpretations
of the same scene. In the case of a game, where players

quickly form playing strategies on the basis of what they
see, this is not acceptable.

(3) Scaleable to include>100 players simultaneously.
Indefinitely scaleable with respect to the environment
volume.

(4) Balancing facilitated during run-time. Achieving
an environment balance is a problem unique to persistent
multiplayer games. In a single-player game the game
designer can control what a player encounters at each stage
of the game. In this way the game can be structured
to provide a progressive challenge. However, once a
persistent environment has been inhabited and modified by
players, the designer has very little control on the individual
experience of each player. Hence, the designer’s task
becomes one of balancing the behaviour and replication rate
of each entity† within the environment in order to provide
a self-sustaining environment all players can enjoy.

(5) High integrity. To produce an environment players
can believe in, and become immersed in, it is vital that
integrity cannot be breached by players attempting to cheat
the system [3]. Any breaches in an on-line game’s integrity
(e.g. players able to make themselves indestructible) are
always quickly exploited by players eager for an advantage,
ruining the game for others.

(6) Persistency.
(7) Real-time dynamic interactions between entities

(e.g. collision, bounce, rebound, etc). DEE should not
simply be a visual front-end for a standard MUD.

(8) Extensible during run-time, so not only can new
content can be introduced, but also the size of the
environment grown to include new areas.

(9) Robust and predictable. The environment should
behave as its designer intended for all clients. Clients with
poor performance and/or poor network links should not
impact on the predictability of the environment for other
clients.

(10) Maximum component re-use between game titles.

† An entity is anything that can be placed within the virtual environment
(VE). This includes everything from avatars, through movable objects, to
fixed scenery.

108

DEE: an architecture for distributed virtual environment gaming

2. Architecture

2.1. Network

Before designing a DVE architecture it is necessary to
determine the network infrastructure that will support it.
Factors such as expected latency, bandwidth, facilities
offered and the topology will all greatly influence the final
architecture.

A graphical MUD, in order to establish any sizeable
playing community, must be accessible over a wide area
network (WAN). The dominant WAN currently available
is the Internet, based around the Internet protocol (IP)
standard. However, the suitability of the Internet for
supporting highly interactive services is very much open
to question. Both its latency and bandwidth can be highly
variable, making it difficult to maintain a consistent shared
environment with the sort of rapid interaction and complex
behaviour that a game player expects.

DEE is therefore targeted at a WAN designed
specifically to support on-line gaming. Called WireplayTM,
it uses the well-defined characteristics of the public
switched telephone network (PSTN) to guarantee the
latency and bandwidth between any two nodes. Using
PCs with standard 28.8 kbit s−1 modems Wireplay can
deliver consistent latency of around 120 ms between any
two clients anywhere in the UK. The Wireplay architecture
has the additional advantage of a known central aggregation
point, which allows servers to be located at a fixed packet
propagation time from all clients. By contrast the topology
of the Internet is far more variable, making it difficult to
specify a single ideal location for a server.

2.2. Environment model

We propose that a graphical MUD environment may be
treated and implemented as three distinct models. These
are the conceptual model, the dynamic model and the visual
model.

The conceptual model describes the high-level game
related concepts, and how entities relate beyond their spatial
interaction. Typical examples of this might be as follows.
• A door can be opened with a key.
• Guns hold bullets, and pulling the trigger produces a

bullet with a high velocity.
• Avatars† with a particular item of treasure get bonus

points.
It is through the conceptual model that the designer

can specify game goals and plotlines, and controls how the
environment entities can be used to achieve these goals.

The dynamic model describes the interaction of the
environment at the spatial level. Included in this model are
factors such as collision management, trajectory/rebound
calculations and movement. Where the conceptual model
of a door describes that it can be opened by avatars, the
dynamic model describes the volume it occupies and how
this volume changes as the door swings open.

The visual model describes the environment with
respect to the information and behaviour required to allow

† An avatar is the graphical representation of a player’s on-line personae.

Figure 2. Coupling between models.

a player to access it. This includes the geometric data
required for rendering and the actions that the player can
perform on each entity. Thus, where the conceptual model
knows that a door can be opened, and the dynamic model
knows how it opens, the visual model knows what it looks
like as it opens.

2.2.1. Coupling models. The three types of models are
coupled together by message channels. This coupling, for
a system with three clients connected, is shown in figure 2.
For any single instance of a game one conceptual model
and one dynamic model will exist. By contrast a visual
model will be created for every client.

Typical examples of the information flow between these
models are shown in figure 3.

Information flow A.Conceptual model requests a change to
the dynamic model. This might occur due to a timer event
or because a predetermined set of conditions have been
met. The dynamic model evaluates the request for potential
conflicts within its description of the environment, and
assuming it is valid, performs the requested modification.
The dynamic model then communicates its changing state
to all relevant visual models.

An example of this scenario might be a door to a special
game area that only opens for a short time period each day.
The conceptual model knows when the door should open
and close, and sends the necessary requests to the dynamic
model. The dynamic model handles the opening, ensuring
the door responds correctly to any collisions, and informs
the visual models, allowing players to perceive the changed
state. Note that a single request from the conceptual model
might map into numerous updates between the dynamic
and visual models. For example, in the case of an opening
door, the dynamic model might generate both a ‘start hinge
rotation’ message and a ‘stop hinge rotation’ message.

Information flow B.Client 2 places a request, via its visual
model, with the conceptual model. The conceptual model
evaluates the request and maps it into a modification to the

109

S Powers et al

Figure 3. Example of information flow between models.

dynamic model. From this point the sequence of events
is the same as A. For example, a player wishing to open
a door would place the request with the conceptual model.
The conceptual model would decide if this was an allowable
action (e.g. does the player have the key?) and then send
the necessary ‘open door’ requests to the dynamic model.

Information flow C. The conceptual model registers an
interest in a specific set of dynamic conditions. When
these conditions are attained the dynamic model informs
the conceptual model. An example of this scenario might
be a treasure room that players are awarded points for
reaching. The conceptual model indicates to the dynamic
model that it wishes to know about any avatars entering
the specified area. Feedback from the dynamic model, as
it detects avatars entering the room, could then be used to
allocate points to the relevant players.

Information flow D.Client 1, via its visual model, places a
request to modify the dynamic model. The dynamic model
may either trust the client and accept the modification, or
perform some validation on the request prior to acceptance.
An example of request validation might be ensuring that
strict collision rules are observed when moving an entity.
Having modified its internal state the dynamic model
informs all relevant visual models. This scenario would
be enacted when a player wishes to move their avatar.

Information flow E.Visual model 1 requests a temporary
modification to visual model 2. Such an information flow
could be utilized for exchanging temporary modifications
to the avatar’s state (e.g. making avatars graphically emote
at their player’s request).

Note that an exchange of information between models
can have a number of different contexts. In the simplest
case information is simply a statement of fact. For example,
in information flow C the message from the dynamic to the
conceptual model states that a particular state condition has
arisen. The dynamic model neither requires nor expects

any response to this message. Alternatively the information
exchange may be in the request/response form, where the
originator can make no assumptions about the result of its
request. For example, in information flow B, when the
conceptual model requests an entity move to a specific
position. Since the new position may be invalid due to
object collision, the conceptual model must stall further
operations on that entity until the dynamic model has
informed it of the request’s result.

In a few cases a request/response/rollback mechanism
must be utilized. For example, in information
flow D, where a player is making changes to the
dynamic environment via their visual model, enforcing a
request/validate/respond mechanism would heavily impact
the responsiveness of the client–user interface. Hence, the
visual model would allow changes to be performed locally,
but be prepared to rollback to a previous state if the dynamic
model rejects any particular modification. Note that
rollback mechanisms in game scenarios should normally
be avoided, as they break the consistency requirement
specified in section 1.3. It is therefore envisaged that clients
would carry out as much local validation to player input as
possible (using their visual model), before assuming the
request is valid and sending it to the dynamic model.

2.2.2. Advantages of environment model split.
Separating the conceptual/dynamic modelling from the
client side visual modelling offers a number of advantages
with respect to the requirements laid out in section 1.3.
• The client can concentrate its processing power on

producing high-quality rapidly updating visuals.
• The conceptual and dynamic models provide a

point of sequencing for environment modification requests,
allowing consistency to be maintained.
• Implementations can be both robust and predictable,

as clients reflect the status of the servers rather than provide
environment modelling of their own. Hence, an unreliable
client will merely offer a poor visualization affecting just
its user, rather than impact on other clients.

110

DEE: an architecture for distributed virtual environment gaming

• Integrity is achievable, as end users can only access
the environment state description through a predefined
interface (the visual model to the conceptual/dynamic
model coupling).
• Persistence is provided by holding a complete

description of the environment on a set of central servers.
Separating the environment into separate conceptual

and dynamic models also offers a number of important
advantages. These primarily derive from the fact that
both models have very different sets of problems to solve,
and separation allows each implementation to be optimized
differently.

A single dynamic model is re-usable across multiple
game titles, as features such as collision handling and
projectile trajectory calculation tend to be common to all.
Dynamic modelling is also traditionally highly processing
intensive, requiring a tuned and optimized compiled code
to support real-time interactions. It therefore makes sense
to invest time and energy in a single optimized dynamic
model implementation, and not attempt to support extensive
modification between game titles.

By contrast the conceptual model will require extensive
modification between game titles to support the new rules
and ideas that make each game unique. It is also
possible that the conceptual model will need extensive
modification during the life of a game to support balancing
by the designer (requirement 4 in section 1.3). A good
implementation of the conceptual model will therefore aim
for clarity over performance, and offer facilities such as
dynamic linking of new behaviour. This approach is
feasible as the processing required to support the conceptual
model should be far lower than that for the dynamic model.
For example, a player moving around collecting treasure
will be constantly making dynamic modifications to the
environment by virtue of their avatar motion. However,
the conceptual model only handles the occasional requests
to gather the treasure.

The dynamic/conceptual split also potentially aids
scalability. Modelling the behaviour of a VE on a
single processing unit gives a nonscalable system, where
the number of entities that can be placed within the
environment is limited by the power of the single processing
unit. A standard solution to this problem is to treat each
entity in the environment as having a limited range of
interaction over a predefined time period. This allows
entities to be grouped on the basis of their spatial proximity,
and each grouping allocated to a separate processing unit.

Whilst this allows the model of the environment to be
distributed, its basic premise is not tenable for a graphical
MUD. The game rules and puzzles within a MUD may
cause a large number of interactions between entities with
no clear spatial relationship. For example, a typical
game puzzle might involve setting a collection of widely
spaced switches/levers/buttons into a certain configuration.
Achieving the correct settings would result in a modification
to another part of the environment, allowing players access
to a new area. Hence, nonspatially proximate entities would
be affecting each other. An alternative example exists for
a game requiring support of an economy. As items in
the world are destroyed, sold to nonplayer characters or

hoarded by players, it is necessary to introduce new items
and control their selling price to ensure an effective game
balance. This again introduces coupling between entities
with no spatial relationship.

By utilizing separate dynamic/conceptual models the
manner in which each model is subdivided can be varied.
For the dynamic model, with the potentially high-load
associated with dynamic simulation, the entity aggregation
groups can be defined by spatial proximity. This will
result in comparatively small but numerous entity groups,
allowing the dynamic model to be scaled across many
processing units. In contrast the conceptual model, which
is not expected to generate a high processing load, may
be supported from a single processing unit, with the entire
model held in a single address space. Alternatively, if the
game consisted of a number of separate ‘levels’ or ‘worlds’,
each of these could be used to determine the division of the
conceptual model.

Note that this approach to splitting the environment
is only feasible because of the nature of the network
available. Without low latency between the client and
servers the coupling proposed is not feasible, and more
of the environment behaviour would have to move out to
the clients.

2.3. Entity representation

To implement the three coupled models of the VE we
propose an approach termed entity representation.

As stated previously, an entity is anything that can
be placed within the VE. This includes everything from
avatars, through movable objects, to fixed scenery. Entities
are usually defined by a derivation from a generic entity
type, and this derived type will determine both their
behaviour and the state they possess.

For example, a switch might be implemented as a
switch entity. Its behaviour would include the ability to
render itself, to toggle on and off (together with appropriate
animations) and to trigger behaviour on another entity
when switched on. Its state would specify the geometry
data required to render it, its location, its setting (on or
off) and the entity instance to inform when being toggled
on. Multiple instances of the switch entity type would
be created within the environment to represent different
switches.

We propose that rather than define entities through
a single type, and instance it at a single location, each
entity is defined by a triplet of representatives. Each
of these representatives is associated with a particular
environment model (i.e. conceptual, dynamic and visual).
The combination of three representative types defines an
entity type, and an entity instance is produced by instancing
its three different representatives.

This approach, for a door entity in a system with two
clients, is shown in figure 4. The door entity is defined
by the triplet〈door dynamic rep, door conceptual rep, door
visual rep〉, and to simulate it within the environment each
model instances a representative of the appropriate type.

The function of each representative is to characterize its
entity, through provision of appropriate state and behaviour,

111

S Powers et al

Figure 4. Door entity representatives.

in a manner appropriate to the instancing model. This
functionality, for each different representative type, can be
broadly categorized as follows.
• Visual representative. Holds the description of the

entity appearance and the actions a player can perform on
the entity. Able to provide visual description to client
rendering engine, map player requests to the appropriate
dynamic/conceptual representative and provide animation
effects.
• Dynamic representative. Holds the description of

the entity collision volume together with factors such as
velocity, spin, position, orientation, etc. Able to model
movement and collision of entity.
• Conceptual representative. Holds the behaviour and

state specified by the game designer to make the entity
perform correctly with respect to the rules of the game.

2.3.1. Entity representative coupling The information
exchange between models is performed relative to each
entity instance. Each representative possesses a reliable and
ordered communication channel to all other representatives
of the same entity. All requests or modifications to entity
state are communicated via this message channel.

For example, a player wishing to open a door would
use the client interface to place an ‘open’ request with the
door’s visual representative. This request would be passed
to the door’s conceptual representative for assessment.
If the conceptual representative decides the player can
perform this action, the conceptual representative informs

the dynamic representative of the request. The dynamic
representative then models the opening action, providing
any necessary updates to the door’s visual representations.

In addition to the reliable communication channels
between representatives, an unreliable channel should also
be available. This is useful for transmitting sequences of
rapid state changes which are transitory in nature.

For example, a dynamic model wishes to inform visual
models about a moving entity. Since each position update
will be invalidated by the next, unreliable messaging can
be used for each update. If position updates are lost
consistency is only temporarily affected. Note that the final
position message in the sequence must be sent reliably to
ensure all visual models maintain long-term consistency.

This approach helps make effective use of limited
bandwidth links.

All interaction between entities is handled within the
context of a single model, with the representative of one
entity unable to message to the representative of another in
a different model. Any communication between entities
occurs through method invocations within the various
models. For example, in the case of a switch which opens a
door, the switch’s conceptual representative would instruct
the door’s conceptual representative to open. It would not
message directly to the door’s dynamic representative (see
figure 5). This approach makes a necessary separation
between the interface used to make requests to an entity and
the coupling needed between representatives to accurately
model the entity as a whole.

112

DEE: an architecture for distributed virtual environment gaming

Figure 5. Opening a door from a switch.

2.3.2. Representative hierarchies. The type of entity is
defined by the triple of its representative types. However,
it is not expected that a unique representative type will be
defined in each model for each required entity type. Instead,
representative types will be re-reusable between different
entities.

In terms of object orientated (OO) design, these
representative types are drawn from a class hierarchy
unique to each model. An example of a possible set of class
hierarchies to support two different styles of door (sliding
and swinging) and two different styles of gun (revolver and
machine gun) is shown in figure 6.

The representative types from figure 6 would be
combined as follows.
• Revolver entity= 〈revolver conceptual rep, mobile

dynamic rep, gun visual rep〉.
• Machine gun entity= 〈machine gun conceptual rep,

mobile dynamic rep, gun visual rep〉.
• Sliding door entity= 〈door conceptual rep, sliding

door dynamic rep, animator visual rep〉.
• Swing door entity= 〈door conceptual rep, swing

door dynamic rep, animator visual rep〉.
All hierarchies are rooted by a single representative

type, termed a generic representative. This provides the
common features required by all representatives in each
model (e.g. providing rendering information to the client’s
scene graph† for the visual representative). The generic

† A scene graph is a tree-like data structure holding the description of a
3D scene. It contains polygon datasets, colour information, texture maps,
etc. To produce a 2D image of a scene its scene graph is traversed, feeding
its contents into a rendering pipeline.

representative also provides the functionality for messaging
between different instances of an entity’s representatives.

Conceptually, a revolver and a machine gun are
different in their behaviour both when fired and reloaded.
Hence, in the conceptual model, whilst they share a
common base class (gun), they are defined as different
types. However, in visual and dynamic terms they are
remarkably similar. Assuming factors such as recoil are
ignored, both can be treated in the dynamic model as mobile
entities occupying a specified volume of space. Visually,
they share features such as ‘muzzle flash’ when fired, and
hence can be modelled with a single visual representative
type. Note, that whilst both gun types share a common
visual representative type, this does not mean different
instances of the guns will look the same. By modifying the
geometry data references different gun instances maintain,
they can be varied in appearance whilst sharing common
behaviour.

In contrast, both types of door can share the same
conceptual representative as they both perform the same
function on a conceptual level—act as movable barriers
that avatars can open and close. However, in the dynamic
model the two doors are not similar, with very different
behaviours. Hence, two different dynamic representatives
are defined, each capable of handling the necessary
movement and collision handling for their particular type
of door. Within the visual model it might not even be
necessary to have a special type of representative for a
door. A more generic representative, capable of generating
a smooth animation between defined geometry keyframes,
would probably suffice.

Note that whilst the hierarchy shown in figure 6

113

S Powers et al

Figure 6. Example of class hierarchies.

was produced to support the door and gun entity types,
the flexibility of the approach allows other entities to
be supported from the representative types shown. For
example, a rock could be instanced in the environment
by using the representative triplet as follows:〈mobile
conceptual rep, mobile dynamic rep, mobile visual rep〉.

3. Implementation

The first version of DEE was implemented as follows.

• Conceptual model—Java, running on a Sun
UltraSparc.
• Dynamic model—C++, running across a number of

Silicon Graphics Workstations.
• Visual model—C++ with OpenGL, running on a

Windows 95 PC.
Java was chosen for the conceptual model as many of its

features (e.g. garbage collection, run-time linking, dynamic
class loading, etc) are highly suited to the sort of balancing
and tuning we expect during the life of a game title. For

114

DEE: an architecture for distributed virtual environment gaming

the dynamic model, which should not require modification
during the life of a game title, performance was a greater
issue and hence C++ was selected.

The machines used to handle the dynamic and
conceptual models were connected together via IP over an
ATM network. The PCs running the visual model were
connected though the Wireplay system using 28.8 kbit s−1

modems.

3.1. Scalability

Separating the environment into conceptual and dynamic
sections aids scalability. For the conceptual model, which
should handle far less player requests than the dynamic
model, scalability was not considered an issue. Therefore,
all conceptual representatives are instanced within a single
process running on an UltraSparc. This simplifies the task
of the game designer, as all the objects representing the
environment are available within one process.

By contrast, the dynamic model must handle two issues
associated with a DVEs scalability.
• Distributing the load associated with calculating the

results of changes to the dynamic model (e.g. movement
and collision).
• Constraining the amount of traffic that must be sent

to a client to allow it to visualize the environment.
To handle these problems DEE divides the dynamic

environment into a number of zones, each zone being a
predefined volume of space. This is one of the standard
approaches to achieving scalability, used in systems such as
NPSNET [4] and Spline [5]. Every dynamic representative
is associated with a single zone by virtue of its position. A
zone therefore has state (the sum of the state of its dynamic
representatives), processing requirements (the updates to
the dynamic state) and a network traffic volume (the
messaging between the dynamic representatives and the
other representative types). By distributing the management
of each zone between separate processes (potentially on
different processor hosts), we achieve distribution of the
processing load. Additionally, by treating each client
to have visibility of only a limited number of zones,
centred around the player’s viewpoint, we can allow the
environment size to increase without increasing the network
load on each client.

Whilst straightforward in principle, the environment
subdivision proved highly complex in practice, and for
reasons of brevity the details are not covered here [6].
Figure 7 shows the distribution of processes between hosts
for the complete system. Note that a new process is
introduced in figure 7, termed the world manager. This is
necessary to provide intelligent routing of messages from
the conceptual model to the distributed dynamic model.

3.2. Representative messaging

To couple the various representatives together we used a
fairly simple wire protocol. Each message header specifies
a particular representative within a model and a method to

invoke on that representative†. The message data is then
passed to the specified representative as a variable length
byte list. Any unpacking and marshalling of this data is
performed within the invoked method, using a set of utility
in lines.

Although simple, this approach offered the advantage
of great flexibility. Whilst more formal remote procedure
call technologies were considered (e.g. CORBA), it was
felt that the problems of sequencing requests from
representatives moving between processes and handling
unreliable transport technologies was better served through
a message based approach.

4. Conclusions

It is currently too early to provide quantitative measurement
of the DEE system’s performance. Whilst an implementa-
tion has been produced, it does not yet support sufficient
features for a typical game. Hence, without realistic con-
tent it was felt that any measurements taken would not be
representative of a final configuration.

However, a number of key points have arisen from the
implementation to date.
• In terms of content authoring and game balancing,

the Java implementation of the conceptual model works
very well. It offers a clear view of the game rules and
allows them to be easily modified either prior to or during
run-time. The grouping of all conceptual representatives
into a single process makes setting up complex puzzles
involving multiple entities comparatively simple. New
types of entities can be quickly added to the environment
by extending a conceptual representative type and re-using
existing dynamic and visual representative types.
• The time taken for a request to propagate from

a client’s visual model, through the conceptual model
and the dynamic model, back to the visual model (e.g.
an ‘open door’ request) must be minimized. The main
area for concern in this loop is the propagation through
the Java based conceptual model. If the conceptual
model is performing numerous complex calculations it
can significantly increase this time, which the user will
perceive as an unresponsive visual interface. Threading the
conceptual model implementation, optimizing its message
handling, providing a sufficiently powerful machine to run
it on and avoiding processing intensive game rules are
therefore all recommended.
• Some commonly found game features do not easily fit

the approach of splitting the conceptual and dynamic. For
example, intelligent creatures who roam the environment
making decisions on the basis of what is happening around
them. Whilst they have highly dynamic behaviour, their
decision making process is something a game designer will
want to customize and balance for each game. However,
attempting to place their ‘brains’ into the conceptual model
would require their conceptual representative to be kept
fully informed of their dynamic surroundings. This breaks
the dynamic/conceptual split and would place too high

† Because of the distribution of the dynamic model (see section 3.1), the
message header also contains sequencing information to allow message
streams between representatives to be ordered correctly.

115

S Powers et al

Figure 7. Distribution of system amongst processing hosts.

a processing and network load on the conceptual model.
Whilst we believe this problem can be resolved by treating
such intelligent creatures in the same way as players,
placing their behaviour in a server side client style process,
it is an area requiring further research.
• The separation of the dynamic model simplifies

plugging in a variety of standard libraries to support the
dynamic modelling. This means that not only can different
libraries be easily assessed against each other, but the final
selection can be modified depending on the processing
power available for the dynamic model and the number
of players expected at any one time.
• Distributing the dynamic model across multiple

processing hosts is vital. For anything other than
trivial dynamic behaviour (i.e. anything more than simply
distributing position updates) a single processing host
quickly becomes a bottleneck. Handling this distribution
is definitely nontrivial, and a rich area of further research.
• Validating all client changes to the dynamic model, in

order to guarantee environment integrity, creates too great a
load on the dynamic model. Instead a variable level of trust
should be assigned to each client, and the dynamic model
validate only the input of untrusted clients (e.g. checking
that they are not moving their avatars through walls). The
trust level could be set either on the basis of feedback from
players (e.g. complaints about a particular avatar) or on
the basis of random sampling of change requests from all
clients.
• Not all entities need a triplet of representatives. For

immobile scenery that a user cannot perform any actions
on (e.g. walls), a conceptual representative is not necessary.
Alternatively, dynamic sensors (which allow the conceptual
model to sample some aspect of the dynamic state) require
no visual representative. Hence, some entities can be
defined with a representative pair.

• To maximize performance it is important to minimize
the number of interactions between the various models.
For example, firing a gun could be treated as an example
of projectile creation, where the conceptual model creates
each bullet and specifies a velocity to the dynamic model.
However, with potentially hundreds of players running
around repeatedly firing at each other, this would place
a heavy load on the conceptual model and its link to the
dynamic model. Instead, if clients distribute the fire request
via the dynamic model all relevant clients can perform the
animation and assess if they have been hit. The conceptual
model then assesses the result of a bullet strike when it
has been informed of one from a client. Note that this
alternative implementation raises the issue of integrity, with
clients being trusted to perform collision detection. Game
designers must therefore ensure the performance gains
acquired are necessary before adopting such approaches.

4.1. Further work

Future work on the DEE design will concentrate on three
main areas.

Producing quantitative results to show how equipped it
is to meet the requirements laid down in section 1.3. This
involves implementing enough entity types to allow pro-
duction of an environment that is representative of a typical
game. It will also require research on producing dummy
clients that can generate realistic input into the system.

Specifying a framework for each environment model to
facilitate authoring different game titles. The current design
allows authoring of a game titles at a number of levels.
• Design of a world around existing entity types.
• Extending conceptual model class hierarchy to

implement new entities.
• Extending dynamic model class hierarchy to support

different types of dynamic behaviour.

116

DEE: an architecture for distributed virtual environment gaming

• Implementing a client for a specific game title
to provide a custom graphical user interface (GUI) and
rendering pipeline.

The different model frameworks should aim to support
all of these authoring approaches by providing and
formalizing the base functionality all game titles will
demand.

Determining the scalability of the dynamic model.
As covered in section 3.1, scaling the dynamic model
across multiple processing hosts is a nontrivial task. We
therefore aim to focus on testing the value of the current
implementation’s approach, and determining if it has uses
in other DVE architectures or applications.

Acknowledgments

Thanks to Tim Regan, Graham Walker and Chris Seal for
their help and support.

References

[1] Curtis P 1992 Mudding: social phenomena in text-based
virtual realitiesProc. Directions and Implications of
Advanced Compuing (DIAC’92) Symp. (May 2-3,
Berkeley, CA)

[2] Lea R, Honda Y, Matsuda K and Rekimoto J 1995
Technical Issues in the Design of a Scalable Shared
Virtual World (Sony Research Forum SRF’95, Tokyo)

[3] Morningstarr C and Farmer F 1990The Lessons of
Lucasfilm’s Habitat. Cyberspace: First Steps(Cambridge,
MA: MIT Press)

[4] Macedonia M R, Zyda M J, Michael J P, David R, Barham
P T and Zeswitz S 1994 NPSNET: a network software
architecture for large scale virtual environments
Presence3

[5] Barrus J W, Waters R C and Anderson D B 1996 Locales
and beacons: efficient and precise support for large
multi-user virtual environmentsIEEE Virtual Reality Int.
Symp. (VRAIS)

[6] Powers S J, Hinds M and Morphett J 1997 Distributed
entertainment environmentBT Tech. J.15

117

