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1 Markov Process

A Markov process1 is a stochastic process (X(t), t ∈ T ), X(t) ∈ E ⊂ IR, such that

P (X(t)) ≤ x |X(t1) = x1, . . . , X(tn) = xn) = P (X(t) ≤ x |X(tn) = xn) (1)

for all x1, . . . , xn, x ∈ E, t1, . . . , tn, t ∈ T with t1 < t2 < · · · < tn < t.

Intuitively, (1) says that the probabilistic future of the process depends only on the current

state and not upon the history of the process. In other words, the entire history of the

process is summarized in the current state.

Although this definition applies to Markov processes with continuous state-space, we shall

be mostly concerned with discrete-space Markov processes, commonly referred to as Markov

chains .

We shall distinguish between discrete-time Markov chains and continuous-time Markov

chains.

1.1 Discrete-Time Markov Chain

A discrete-time Markov Chain (M.C.) is a discrete-time (with index set IN) discrete-space

(with state-space I = IN if infinite and I ⊂ IN if finite) stochastic process (Xn, n ∈ IN) such

that for all n ≥ 0

P (Xn+1 = j |X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = i) = P (Xn+1 = j |Xn = i) (2)

for all i0, . . . , in−1, i, j ∈ I.

From now on a discrete-time M.C. will simply be referred to as a M.C.

A M.C. is called a finite-state M.C. if the set I is finite.

A M.C. is homogeneous if P (Xn+1 = j |Xn = i) does not depend on n for all i, j ∈ I. If so,

we shall write
pij = P (Xn+1 = j |Xn = i) ∀i, j ∈ I.

pij is the one-step transition probability from state i to state j. Unless otherwise mentioned

we shall only consider homogeneous M.C.’s.

1A. A. Markov was a Russian mathematician.
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Define P = [pij] to be the transition matrix of a M.C., namely,

P =



















p00 p01 . . . p0j . . .
p10 p11 . . . p1j . . .
...

...
...

...
...

pi0 pi1 . . . pij . . .
...

...
...

...
...



















(3)

We must have

pij ≥ 0 ∀i, j ∈ I (4)
∑

j∈I

pij = 1 ∀i ∈ I. (5)

Equation (5) is a consequence of axiom (b) of a probability measure and says that the sum

of the elements in each row is 1. A matrix that satisfies (4) and (5) is called a stochastic

matrix .

If the state-space I is finite (say, with k states) then P is an k-by-k matrix; otherwise P has

infinite dimension.

Example 1.1 Consider a sequence of Bernoulli trials in which the probability of success

(S) on each trial is p and of failure (F) is q, where p + q = 1, 0 < p < 1. Let the state of

the process at trial n (i.e., Xn) be the number of uninterrupted successes that have been

completed at this point. For instance, if the first 5 outcomes where SFSSF then X0 = 1,

X1 = 0, X2 = 1, X3 = 2 and X4 = 0. The transition matrix is given by

P =



















q p 0 0 0 . . .
q 0 p 0 0 . . .
q 0 0 p 0 . . .
q 0 0 0 p . . .
...

...
...

...
...

...



















The state 0 can be reached in one transition from any state while the state i+ 1, i ≥ 0, can

only be reached from the state i (with the probability p). Observe that this M.C. is clearly

homogeneous.

♥

We now define the n-step transition probabilities p
(n)
ij by

p
(n)
ij = P (Xn = j |X0 = i) (6)

for all i, j ∈ I, n ≥ 0. p
(n)
ij is the probability of going from state i to state j in n steps.
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Result 1.1 (Chapman-Kolmogorov equation) For all n ≥ 0, m ≥ 0, i, j ∈ I, we have

p
(n+m)
ij =

∑

k∈I

p
(n)
ik p

(m)
kj (7)

or, in matrix notation,

P (n+m) = P (n) P (m) (8)

where P (n) :=
[

p
(n)
ij

]

. Therefore,

P (n) = P n ∀n ≥ 1 (9)

where P n is the n-th power of the matrix P .

2

The Chapman-Kolmogorov equation merely says that if we are to travel from state i to state

j in n+m steps then we must do so by first traveling from state i to some state k in n steps

and then from state k to state j in m more steps.

The proof of Result 1.1 goes as follows. We have

p
(n+m)
ij = P (Xn+m = j |X0 = i)

=
∑

k∈I

P (Xn+m = j,Xn = k |X0 = i) by axiom (b) of a probability measure

=
∑

k∈I

P (Xn+m = j |X0 = i,Xn = k)

×P (Xn = k |X0 = i) by the generalized Bayes’ formula

=
∑

k∈I

P (Xn+m = j |Xn = k)P (Xn = k |X0 = i) from the Markov property (2)

=
∑

k∈I

p
(m)
kj p

(n)
ik

since the M.C. is homogeneous, which proves (7) and (8).

Let us now establish (9). Since P (1) = P , we see from (8) that P (2) = P 2, P (3) = P (2) P = P 3

and, more generally, that P (n) = P n for all n ≥ 1. This concludes the proof.

Example 1.2 Consider a communication system that transmits the digits 0 and 1 through

several stages. At each stage, the probability that the same digit will be received by the next

7



stage is 0.75. What is the probability that a 0 that is entered at the first stage is received

as a 0 at the fifth stage?

We want to find p
(5)
00 for a M.C. with transition matrix P given by

P =

(

0.75 0.25
0.25 0.75

)

.

¿From Result 1.1 we know that p
(5)
00 is the (1, 1)-entry of the matrix P 5. We find p

(5)
0,0 =

0.515625 (compute P 2, then compute P 4 as the product of P 2 by itself, and finally compute

P 5 as the product of matrices P 4 and P ).

♥

So far, we have only been dealing with conditional probabilities. For instance, p
(n)
ij is the

probability that the system in state j at time n given it was in state i at time 0. We have

shown in Result 1.1 that this probability is given by the (i, j)-entry of the power matrix P n.

What we would like to do now is to compute the unconditional probability that the system

is in state j at time n, namely, we would like to compute πn(i) := P (Xn = i).

This quantity can only be computed if we provide the initial d.f. of X0, that is, if we provide

π0(i) = P (X0 = i) for all i ∈ I, where of course
∑

i∈I π0(i) = 1.

In that case, we have from Bayes’ formula

P (Xn = j) =
∑

i∈I

P (Xn = j |X0 = i)π0(i)

=
∑

i∈I

p
(n)
ij π0(i)

from Result 1.1 or, equivalenty, in matrix notation,

Result 1.2 For all n ≥ 1,

πn = π0 P
n. (10)

where πm := (πm(0), πm(1), . . .) for all m ≥ 0. From (10) we deduce that (one can also

obtain this result directly)

πn+1 = πn P ∀n ≥ 0. (11)

2
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Assume that the limiting state distribution function limn→∞ πn(i) exists for all i ∈ I. Call

it π(i) and let π = (π(0), π(1), . . .).

How can one compute π? Owing to (10) a natural answer is “by solving the system of

linear equations defined by π = π P” to which one should add the normalization condition
∑

i∈I π(i) = 1 or, in matrix notation, π 1 = 1, where 1 is the column vector where every

component is 1.

We shall now give conditions under which the above results hold (i.e., (πn(0), πn(1), . . .) has a

limit as n goes to infinity and this limit solves the system of equations π = π P and π 1 = 1).

To do so, we need to introduce the notion of communication between the states. We shall

say that a state j is reachable from a state i if p
(n)
ij > 0 for some n ≥ 1. If j is reachable

from i and if i is reachable from j then we say that i and j communicate, and write i↔ j.

A M.C. is irreducible if i↔ j for all i, j ∈ I.

For every state i ∈ I, define the integer d(i) as the largest common divisor of all integers n

such that p
(n)
ii > 0. If d(i) = 1 then the state i is aperiodic.

A M.C. chain is aperiodic if all states are aperiodic.

We have the following fundamental result of M.C. theory.

Result 1.3 (Invariant measure of a M.C.) If a M.C. with transition matrix P is irre-

ducible and aperiodic, and if the system of equations

π = πP

π 1 = 1

has a strictly positive solution (i.e., for all i ∈ I, π(i), the ith element of the row vector π,

is strictly positive) then

π(i) = lim
n→∞

πn(i) (12)

for all i ∈ I, independently of the initial distribution.

2

We shall not prove this result. The equation π = π P is called the invariant equation and π

is usually referred to as the invariant measure.
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1.1.1 A Communication Line with Error Transmissions

We consider an infinite stream of packets that arrive at a gateway of a communication

network, seeking admittance in the network. For the sake of simplicity we assume that the

packets may only arrive in the intervals of time (n, n + 1) for all n ≥ 0 (i.e., we assume

that packets do not arrive at times n = 0, 1, 2, . . .). Upon arrival, a packet enters a buffer

of infinite dimension. Let An ∈ {0, 1} be the number of packets arriving in the interval of

time (n, n + 1). We assume that for each n, An follows a Bernoulli r.v. with parameter a,

0 < a < 1.

We assume that one unit of time is needed to transmit a packet and that transmissions only

start at times n = 0, 1, 2, . . . provided that the buffer is nonempty (it does not matter which

packet is transmitted).

We assume that transmission errors may occur. More precisely, a packet transmitted in

any interval of time [n, n + 1) is transmitted in error with the probability 0 ≤ 1 − p < 1.

When this happens, the packet is retransmitted in the next time-slot and the procedure is

repeated until the transmission is a success eventually (which occurs with probability one

since 1− p < 1).

We assume that the r.v.’s (An)n are mutually independent r.v.’s, that transmission errors

are mutually independent, and further independent of the r.v.s’ (An)n.

Let Xn be the number of packets in the buffer at time n. Our objective is to compute

π(i) := limn→∞ P (Xn = i) for all i ∈ IN when this limit exists.

We have the following evolution equation for this system:

Xn+1 = An if Xn = 0 (13)

Xn+1 = Xn + An −Dn if Xn > 0 (14)

for all n ∈ IN, where Dn ∈ {0, 1} gives the number of packet transmitted with success in the

interval of time [n, n+ 1).

Since the r.v.’s An and Dn are independent of the r.v.’s (Ai, Di, i = 0, 1, . . . , n − 1), and

therefore of Xn from (13)-(14), it should be clear from (13)-(14) that (Xn, n ≥ 0) is a M.C.

We shall however prove this result explicitely.

We have for i = 0 and for arbitrary i0, . . . , in−1, j ∈ IN

P (Xn+1 = j |X0 = i0, . . . , Xn−1 = in−1, Xn = i)

= P (An = j |X0 = i0, . . . , Xn−1 = in−1, Xn = i) from (13)

10



= P (An = j)

from the independence assumptions. Hence, for i = 0, P (Xn+1 = j |X0 = i0, . . . , Xn−1 =

in−1, Xn = i) is equal to 0 if j ≥ 2, is equal to a if j = 1, and is equal to 1− a if j = 0. This

shows that P (Xn+1 = j |X0 = i0, . . . , Xn−1 = in−1, Xn = i) is not a function of i0, . . . , in−1.

Consider now the case when i ≥ 1. We have

P (Xn+1 = j |X0 = i0, . . . , Xn−1 = in−1, Xn = i)

= P (An −Dn = j − i |X0 = i0, . . . , Xn−1 = in−1, Xn = i) from (14)

= P (An −Dn = j − i) (15)

from the independence assumptions.

Clearly, P (An − Dn = j − i) in (15) is equal to 0 when |j − i| ≥ 2. On the other hand,

routine applications of Bayes formula together with the independence of An and Dn yield

P (An−Dn = j − i) is equal to (1− a)p when j = i− 1, is equal to ap+ (1− a)(1− p) when

i = j, and is equal to (1− p)a when j = i+ 1. Again, one observes that P (Xn+1 = j |X0 =

i0, . . . , Xn−1 = in−1, Xn = i) does not depend on i0, . . . , in−1 when i ≥ 1. This proves that

(Xn, n ≥ 0) is a M.C.

¿From the above we see that the transition matrix P = [pij] of this M.C. is given by:

p00 = 1− a

p01 = a

p0j = 0 ∀j ≥ 2

pii−1 = (1− a)p ∀i ≥ 1

pii = ap+ (1− a)(1− p) ∀i ≥ 1

pii+1 = a(1− p) ∀i ≥ 1

pij = 0 ∀i ≥ 1, j /∈ {i− 1, i, i+ 1}.

Let us check that this M.C. is irreducible and aperiodic.

Since pii > 0 for all i ∈ IN we see that this M.C. is aperiodic.

Let i, j ∈ IN be two arbitrary states. We first show that j is reachable from i. We know that

this is true if i = j since pii > 0. If j > i then clearly p
(j−i)
ij ≥ aj−i (1 − p)j−i > 0 if i > 0

and p
(j−i)
ij ≥ aj (1− p)j−1 > 0 if i = 0; if 0 ≤ j < i then clearly p

(i−j)
ij ≥ (1 − a)i−j pi−j > 0.

Hence, j is reachable from i. Since i and j can be interchanged, we have in fact established

that i↔ j. This shows that the M.C. is irreducible since i and j are arbitrary states.

11



We may therefore apply Result 1.3. This result says that we must find a strictly positive

solution π = (π(0), π(1), . . .) to the system of equations

π(0) = π(0) (1− a) + π(1) (1− a)p (16)

π(1) = π(0) a+ π(1) (ap+ (1− a)(1− p)) + π(2) (1− a)p (17)

π(j) = π(j − 1) a(1− p) + π(j) (ap+ (1− a)(1− p)) + π(j + 1)(1− a)p, ∀j ≥ 2 (18)

such that
∞
∑

j=0

π(j) = 1. (19)

It is easily seen that

π(1) =
a

(1− a) p
π(0) (20)

π(j) =
1

1− p

(

a (1− p)

p (1− a)

)j

π(0) ∀j ≥ 2 (21)

satisfies the system of equations (16)-(18) (hint: determine first π(1) and π(2) as functions

of π(0) by using equations (16) and (17), then use equation (18) to recursively determine

π(j) for j ≥ 3).

We must now compute π(0) such that (19) hold. Introducing the values of π(j) obtained

above in equation (19) gives after trivial algebra

π(0)



1 +
a

p (1− a)

∞
∑

j=0

(

a (1− p)

p (1− a)

)j


 = 1. (22)

Fix r ≥ 0. Recall that the power series
∑∞

j=0 r
j converges if and only if r < 1. If r < 1 then

∑∞
j=0 r

j = 1/(1− r).

Therefore, we see that the factor of π(0) in (22) is finite if and only if a (1− p)/p (1−a) < 1,

or equivalently, if and only if a < p. If a < p then

π(0) =
p− a

p
. (23)

In summary, we have found a strictly positive solution to the system of equations (16)-(19)

if a < p. We may therefore conclude from Result 1.3 that limn∞ P (Xn = i) exists for all

i ∈ IN if a < p, is independent of the initial state, and is given by π(i) for all i ∈ IN.
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The condition a < p is not surprising, since it simply says that the system is stable if

the mean number of arrivals in any interval of time (n, n + 1) is strictly smaller than the

probability of having a successful transmission in this interval.

We will assume from now on that a < p. When the system is stable, clearly the input rate

a must be equal to the throughput. Let us check this intuitive result.

Since a packet may leave the system (with probability p) only when the queue in not empty

(which occurs with probability 1− π(0)), the throughput T is given by

T = p (1− π(0))

= a

from (23), which is the expected result.

Let Q be the number of packets in the waiting room in steady-state, including the packet

being transmitted, if any. We now want to do some flow control. More precisely, we want

to determine the input rate a such that P (Q > k) < β where k ∈ IN and β ∈ (0, 1) are

arbitrary numbers.

Let us compute P (Q ≤ k). We have

P (Q ≤ k) =
k
∑

j=0

π(j).

After elementary algebra we finally obtain 2

P (Q ≤ k) = 1− a

p

(

a (1− p)

p (1− a)

)k

.

(Observe from the above result that limk→∞ P (Q ≤ k) = 1 under the stability condition

a < p, which simply says that the number of packets in the waiting room is finite with

probability one in steady-state.)

In conclusion, if we want P (Q > k) < β, we must choose a such that 0 ≤ a < p and

a

p

(

a (1− p)

p (1− a)

)k

< β.

Such a result is useful, for instance, for dimensioning the size of the buffer so that the

probability of loosing a packet is below a given threshold.

Other interesting performance measures for this system are E[Q], Var(Q), P (Xn = j) given

the d.f. of X0 is known (use Result 1.2), etc.

2Here we use the well-known identity
∑k

j=0 rj = (1− rk+1)/(1− r) for all k ≥ 0 if 0 ≤ r < 1.
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1.2 Continuous-Time Markov Chain

A continuous-time Markov chain (denoted as C-M.C.) is a continuous-time (with index set

[0,∞)), discrete-space (with state-space I) stochastic process (X(t), t ≥ 0) such that

P (X(t) = j |X(s1) = i1, . . . , X(sn−1) = in−1, X(s) = i) = P (X(t) = j |X(s) = i) (24)

for all i1, . . . , in−1, i, j ∈ I, 0 ≤ s1 < . . . < sn−1 < s < t.

A C-M.C. is homogenous if

P (X(t+ u) = j |X(s+ u) = i) = P (X(t) = j |X(s) = i) := pij(t− s)

for all i, j ∈ I, 0 ≤ s < t, u ≥ 0.

¿From now on we shall only consider homogeneous C-M.C.’s.

We have the following analog to Result 1.1:

Result 1.4 (Chapman-Kolmogorov equation for C-M.C.’s) For all t > 0, s > 0,

i, j ∈ I,

pij(t+ s) =
∑

k∈I

pik(t) pkj(s). (25)

2

The proof is the same as the proof of 1.1 and is therefore omitted.

Define

qii := lim
h→0

pii(h)− 1

h
≤ 0 (26)

qij := lim
h→0

pij(h)

h
≥ 0 (27)

and let Q be the matrix Q = [qij] (we will assume that these limits always exist. They will

exist in all cases to be considered in this course).

The matrix Q is called the infinitesimal generator of the C-M.C.. If I = IN, then

Q =



















−∑j 6=0 q0j q01 q02 · · · · · · · · · · · ·
q10 −∑j 6=1 q1j q12 · · · · · · · · · · · ·
...

...
...

...
...

...
...

qi0 · · · · · · qii−1
∑

j 6=i qij qii+1 · · ·
...

...
...

...
...

...
...



















.

14



In contrast with (5) note that
∑

j∈I

qij = 0 ∀i ∈ I. (28)

The quantity qij has the following interpretation: when the system is in state i then the rate

at which it departs state i is qii, and the rate at which it moves from state i to state j ,

j 6= i, is qij.

Define the row vector π(t) where its i-th component is P (X(t) = i) for all i ∈ I, t ≥ 0.

One can show that

π(t) = π(0) eQt

for all t ≥ 0. However, this result is not very useful in practice unless we are interested in

specific values of t.

In the rest of this section we shall only be concerned with the computation of limt→∞ P (X(t) =

i) for all i ∈ I, when these limits exist.

In direct analogy with the definition given for a M.C., we shall say that an homogeneous

C-M.C. is irreducible if for every state i ∈ I there exists s > 0 such that pii(s) > 0.

Result 1.5 (Limiting d.f. of a C-M.C.) If a C-M.C. with infinitesimal generator Q is

irreducible, and if the system of equations

πQ = 0

π 1 = 1

has a strictly positive solution (i.e., for all i ∈ I, π(i), the i-th component of the row vector

π, is strictly positive) then

π(i) = lim
t→∞

P (X(t) = i) (29)

for all i ∈ I, independently of the initial distribution.

2

We shall not prove this result. We may compare this result with our earlier equation for

discrete-time M.C.’s, namely, π P = π; here P was the transition matrix, whereas the

infinitesimal generator Q is a matrix of transition rates .

The equation πQ = 0 in Result 1.5 can be rewritten as

∑

j∈I

π(j) qji = 0
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for all i ∈ I, or equivalently, cf. (28),





∑

j 6=i

qij



 π(i) =
∑

j 6=i

π(j) qji. (30)

Like in the case of a birth and death process, equation (30) says that, at equilibrium,

the probability flow out of a state = the probability flow into that state.

Equations (30) are called the balance equations.

Many examples of continuous-time Markov chains will be discussed in the forthcoming lec-

tures.

1.3 Birth and Death Process

A birth and death process (X(t), t ≥ 0) is a continuous-time discrete-space (with state-space

IN) Markov process such that

(a) P (X(t+ h) = n+ 1 |X(t) = n) = λnh+ o(h) for n ≥ 0

(b) P (X(t+ h) = n− 1 |X(t) = n) = µnh+ o(h) for n ≥ 1

(c) P (X(t+ h) = n |X(t) = n) = 1− (λn + µn)h+ o(h), for n ≥ 0.

The r.v. X(t) may be interpreted as the size of the population at time t. In that case, λn ≥ 0

gives the birth-rate when the size of the population is n and µn ≥ 0 gives the death-rate

when the size of the population is n with n ≥ 1. We assume that µ0 = 0.

What are Pn(t) = P (X(t) = n) for n ∈ IN, t ≥ 0?

We have:

Pn(t+ h) =
∞
∑

k=0

P (X(t+ h) = n |X(t) = k)P (X(t) = k) (Bayes’ formula)

= (λn−1h+ o(h))Pn−1(t) + (1− (λn + µn)h+ o(h))Pn(t)

+(µn+1h+ o(h))Pn+1(t) + o(h) (31)
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where by convention λ−1 = 0.

Similarly to the proof of Result C.1 we get from (31) the ordinary differential equation

dPn(t)

dt
= λn−1Pn−1(t)− (λn + µn)Pn(t) + µn+1Pn+1(t) (32)

for n ∈ IN.

It is a difficult task to solve this differential equation unless we have some conditions on the

parameters λn and µn

An interesting question is the following: what happens when t→∞? In other words, we are

now interested in the equilibrium behavior, if it exists. Any “reasonable” system is expected

to reach “equilibrium”. When the system is in equilibrium (we also say in steady-state or

stationary) then its state does not depend on t.

Assume that limt→∞ Pn(t) = pn exists for each n ∈ IN. Letting t→∞ in (32) gives for each

n ∈ IN
0 = λn−1 pn−1 − (λn + µn) pn + µn+1 pn+1

or, equivalently,

Result 1.6 (Balance equations of a birth and death process)

λ0 p0 = µ1 p1 (33)

(λn + µn) pn = λn−1 pn−1 + µn+1 pn+1 n = 1, 2, . . . . (34)

2

Equations (33)-(34) are called the equilibrium equations or the balance equations of a birth

and death process. They have a natural and useful interpretation.

They say that, at equilibrium,

the probability flow out of a state = the probability flow in that state.

This key observation will allow us in most cases to generate the (correct!) equilibrium

equations of a system without going through the burden of writing down equations like

equation (31).

¿From Result 1.6 we have:
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Result 1.7 Assume that the series

C := 1 +
λ0

µ1

+
λ0λ1

µ1µ2

+ · · ·+ λ0λ1 · · ·λn−1

µ1µ2 · · ·µn

+ · · · (35)

converges (i.e., C <∞). Then, for each n = 1, 2 . . .,

pn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn

p0 (36)

where p0 = 1/C.

2

This result is obtained by direct substitution of (36) into (33)-(34). The computation of p0

relies on the fact that
∑∞

n=0 pn = 1.

The condition (35) is called the stability condition of a birth and death process.

2 Queueing Theory

Queues are common in computer systems. Thus, there are queues of inquiries waiting to be

processed by an interactive computer system, queue of data base requests, queues of I/O

requests, etc.

Typically a queue (or queueing system) has one service facility, although there may be more

than one server in the service facility, and a waiting room (or buffer) of finite or infinite

capacity.

Customers from a population or source enter a queueing system to receive some service. Here

the word customer is used in its generic sense, and thus maybe a packet in a communication

network, a job or a program in a computer system, a request or an inquiry in a database

system, etc.

Upon arrival a customer joins the waiting room if all servers in the service center are busy.

When a customer has been served, he leaves the queueing system.

A special notation, called Kendall’s notation, is used to describe a queueing system. The

notation has the form

A/B/c/K
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where

• A describes the interarrival time distribution

• B the service time distribution

• c the number of servers

• K the size of the system capacity (including the servers).

The symbols traditionally used for A and B are

• M for exponential distribution (M stands for Markov)

• D for deterministic distribution

• G (or GI) for general distribution.

When the system capacity is infinite (K =∞) one simply uses the symbol A/B/c.

For instance, M/M/1, M/M/c, M/G/1 and G/M/1 are very common queueing systems.

2.1 The M/M/1 Queue

In this queueing system the customers arrive according to a Poisson process with rate λ.

The time it takes to serve every customer is an exponential r.v. with parameter µ. We say

that the customers have exponential service times. The service times are supposed to be

mutually independent and further independent of the interarrival times.

When a customer enters an empty system his service starts at once; if the system is nonempty

the incoming customer joins the queue. When a service completion occurs, a customer from

the queue (we do not need to specify which one for the time being), if any, enters the service

facility at once to get served.

Let X(t) be the number of customers in the system at time t.

Result 2.1 The process (X(t), t ≥ 0) is a birth and death process with birth rate λi = λ for

all i ≥ 0 and with death rate µi = µ for all i ≥ 1.

2
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Proof. Because of the exponential distribution of the interarrival times and of the service

times, it should be clear that (X(t), t ≥ 0) is a Markov process. On the other hand, since

the probability of having two events (departures, arrivals) in the interval of time (t, t+ h) is

o(h) we have

P (X(t+ h) = i+ 1 |X(t) = i) = λh+ o(h) ∀i ≥ 0

P (X(t+ h) = i− 1 |X(t) = i) = µh+ o(h) ∀i ≥ 1

P (X(t+ h) = i |X(t) = i) = 1− (λ+ µ)h+ o(h) ∀i ≥ 1

P (X(t+ h) = i |X(t) = i) = 1− λh+ o(h) for i = 0

P (X(t+ h) = j |X(t) = i) = o(h) for |j − i| ≥ 2. (37)

This shows that (X(t), t ≥ 0) is a birth and death process.

Let π(i), i ≥ 0, be the d.f. of the number of customers in the system in steady-state.

The balance equations for this birth and death process read

λπ(0) = µπ(1)

(λ+ µ)π(i) = λπ(i− 1) + µπ(i+ 1) ∀i ≥ 1.

Define 3

ρ =
λ

µ
. (38)

The quantity ρ is referred to as the traffic intensity since it gives the mean quantity of work

brought to the system per unit of time.

A direct application of Result 1.7 yields:

Result 2.2 (Stationary queue-length d.f. of an M/M/1 queue) If ρ < 1 then

π(i) = (1− ρ) ρi (39)

for all i ≥ 0.

2

Therefore, the stability condition ρ < 1 simply says that the system is stable if the work that

is brought to the system per unit of time is strictly smaller than the processing rate (which

is 1 here since there is only one server).

3From now on ρ will always be defined as λ/µ unless otherwise mentioned.
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Result 2.2 therefore says that the d.f. of the queue-length in steady-state is a geometric

distribution.

¿From (39) we can compute (in particular) the mean number of customers E[X] (still in

steady-state). We find

E[X] =
ρ

1− ρ
. (40)

Observe that E[X] → ∞ when ρ → 1, so that, in pratice if the system is not stable, then

the queue will explode. It is also worth observing that the queue will empty infinitely many

times when the system is stable since π(0) = 1− ρ > 0.

We may also be interested in the probability that the queue exceeds, say, K customers, in

steady-state. From (39) we have

P (X ≥ K) = ρK . (41)

What is the throughput T of an M/M/1 in equilibrium? The answer should be T = λ. Let

us check this guess.

We have
T = (1− π(0))µ.

Since π(0) = 1− ρ from (39) we see that T = λ by definition of ρ.

2.2 The M/M/1/K Queue

In practice, queues are always finite. In that case, a new customer is lost when he finds the

system full (e.g., telephone calls).

TheM/M/1/K may accomodate at most K customers, including the customer in the service

facility, if any. Let λ and µ be the rate of the Poisson process for the arrivals and the

parameter of the exponential distribution for the service times, respectively.

Let π(i), i = 0, 1, . . . , K, be the d.f. of the queue-length in steady-state. The balance

equations for this birth and death process read

λπ(0) = µπ(1)

(λ+ µ)π(i) = λπ(i− 1) + µπ(i+ 1) for i = 1, 2 . . . , K − 1

λπ(K − 1) = µπ(K).
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Result 2.3 (Stationary queue-length d.f. in an M/M/1/K queue) If ρ 6= 1 then

π(i) =
(1− ρ) ρi

1− ρK+1
(42)

for i = 0, 1, . . . , K, and π(i) = 0 for i > K.

If ρ = 1 then

π(i) = 1/(K + 1) (43)

for i = 0, 1, . . . , K, and π(i) = 0 for i > K.

2

Here again the proof of Result 2.3 relies on the fact that (X(t), t ≥ 0), where X(t) is the

number of customers in the system at time t, can be modeled as a birth and death process

with birth rates λi = λ for i = 0, 1, . . . , K − 1 and λi = 0 for i ≥ K.

In particular, the probability that an incoming customer is rejected is π(K).

2.3 The M/M/c Queue

There are c ≥ 1 servers and the waiting room has infinite capacity. If more than one server

is available when a new customer arrives (which necessarily implies that the waiting room is

empty) then the incoming customer may enter any of the free servers.

Let λ and µ be the rate of the Poisson process for the arrivals and the parameter of the

exponential distribution for the service times, respectively.

Here again the process (X(t), t ≥ 0) of the number of customers in the system can be

modeled as a birth and death process. The birth rate is λi = λ when i ≥ 0. The death rate

is given by

µi = iµ for i = 1, 2, . . . , c− 1

= cµ for i ≥ c

which can be also written as µi = µ min(i, c) for all i ≥ 1.

Using these values of λi and µi in Result 1.7 yields
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Result 2.4 (Stationary queue-length d.f. in an M/M/c queue) If ρ < c then

π(i) =



























π(0)
ρi

i!
if i = 0, 1, . . . , c

π(0)
ρi cc−i

c!
if i ≥ c

(44)

where

π(0) =

[

c−1
∑

i=0

ρi

i!
+
(

ρc

c!

)

(

1

1− ρ/c

)]−1

. (45)

2

The probability that an arriving customer is forced to join the queue is given by

P (queueing) =
∞
∑

i=c

π(i)

=
∞
∑

i=c

π(0)
ρi cc−i

c!
.

Thus,

P (queueing) =

(

ρc

c!

)

(

1

1− ρ/c

)

c−1
∑

i=0

ρi

i!
+
(

ρc

c!

)

(

1

1− ρ/c

) . (46)

This probability is of wide use in telephony and gives the probability that no trunk (i.e.,

server) is available for an arriving call (i.e., customer) in a system of c trunks. It is referred

to as Erlang’s C formula.

2.4 The M/M/c/c Queue

Here we have a situation when there are c ≥ 1 available servers but no waiting room. This is a

pure loss queueing system. Each newly arriving customer is given its private server; however,

if a customer arrives when all the servers are occupied, that customer is lost. Parameters λ

and µ are defined as in the previous sections.

The number of busy servers can be modeled as a birth and death process with birth rate

λi =











λ if i = 0, 1, . . . , c− 1

0 if i ≥ c
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and death rate µi = iµ for i = 1, 2, . . . , c.

We are interested in determining the limiting d.f. π(i) (i = 0, 1, . . . , c) of the number of busy
servers.

Result 2.5 (Stationary server occupation in a M/M/c/c queue)

π(i) = π(0)
ρi

i!
(47)

for i = 0, 1, . . . , c, π(i) = 0 for i > c, where

π(0) =

[

c
∑

i=0

ρi

i!

]−1

. (48)

2

This system is also of great interest in telephony. In particular, π(c) gives the probability

that all trunks (i.e., servers) are busy, and it is given by

π(c) =
ρi/i!

∑c
j=0 ρ

j/j!
. (49)

This is the celebrated Erlang’s loss formula (derived by A. K. Erlang in 1917).

Remarkably enough Result 2.5 is valid for any service time distribution and not only for

exponential service times! Such a property is called an insensitivity property.

Later on, we will see an extremely useful extension of this model to (in particular) several

classes of customers, that has nice applications in the modeling and performance evaluation

of multimedia networks.

2.5 The Repairman Model

It is one of the most useful models. There are K machines and a single repairman. Each

machine breaks down after a time that is exponentially distributed with parameter α. In

other words, α is the rate at which a machine breaks.

When a breadown occurs, a request is sent to the repairman for fixing it. Requests are

buffered. It takes an exponentially distributed amount of time with parameter µ for the

repairman to repair a machine. In other words, µ is the repair rate.
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We assume that “lifetimes” and repair times are all mutually independent.

What is the probability π(i) that i machines are up (i.e., working properly)? What is the

overall failure rate?

Let X(t) be the number of machines up at time t. It is easily seen that (X(t), t ≥ 0) is a

birth and death process with birth and death rates given by λn = µ for n = 0, 1, . . . , K − 1,

λn = 0 for n ≥ K and µn = nα for n = 1, 2, . . . , K, respectively.

We notice that (X(t), t ≥ 0) has the same behavior as the queue-length process of an

M/M/K/K queue!

Hence, by (47) and (48) we find that

π(i) =
(µ/α)i/i!

C(K,µ/α)

for i = 0, 1, . . . , K, where

C(K, a) :=
K
∑

i=0

ai

i!
. (50)

The overall failure rate λb is given by

λb =
K
∑

i=1

(α i)π(i)

= α

∑K
i=1 i (µ/α)

i/i!

C(K,µ/α)

= µ

∑K−1
i=0 (µ/α)i/i!

C(K,µ/α)

= µ
C(K − 1, µ/α)

C(K,µ/α)
.

Observe that π(0) = 1/C(K,µ/α). Hence, the mean number nr of machines repaired by

unit of time is

nr = µ (1− π(K))

= µ

(

1− (µ/α)K/K!

C(K,µ/α)

)

.

= µ

(

C(K,µ/α)− (µ/α)K/K!

C(K,µ/α)

)
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= µ
C(K − 1, µ/α)

C(K,µ/α)
.

2.6 Little’s formula

So far we have only obtained results for the buffer occupation namely, the limiting distribu-

tion of the queue-length, the mean number of customers, etc. These performance measures

are of particular interest for a system’s manager. What we would like to do now is to ad-

dress performance issues from a user’s perspective, such as, for instance, response times and

waiting times.

For this, we need to introduce the most used formula in performance evaluation.

Result 2.6 (Little’s formula) Let λ > 0 be the arrival rate of customers to a queueing

system in steady-state. Let N be the mean number of customers in the system and let T

be the mean sojourn time of a customer (i.e., the sum of its waiting time and of its service

time).

Then,

N = λT . (51)

2

This formula is of great interest since very often one knows N and λ. It states that the

average number of customers in a queueing system in steady-state is equal to the arrival

rate of customers to that system, times the average time spent in that system. This result

does not make any specific assumption regarding the arrival distribution or the service time

distribution; nor does it depend upon the number of servers in the system or upon the

particular queueing discipline within the system.

This result has an intuitive explanation: N/T is the departure rate, which has to be equal

to the input rate λ since the system is in steady-state.

Example 2.1 Consider an M/M/1 queue with arrival rate λ and service rate µ. Let T (resp.

W ) be the mean customer sojourn time, also referred to as the mean customer response time

(resp. waiting time).

If ρ := λ/µ < 1 (i.e., if the queue is stable) then we know that the mean number of customers

N is given by N = ρ/(1− ρ) (see 40).
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Therefore, by Little’s formula,

T =
ρ

λ (1− ρ)
=

1

µ (1− ρ)
(52)

W = T − 1

µ
=

ρ

µ (1− ρ)
. (53)

Observe that both T →∞ and W →∞ when ρ→ 1.

♥

We now give a proof of Little’s formula in the case where the system empties infinitely often.

Starting from an empty system, let C > 0 be a time when the system is empty (we assume

that the system is not always empty in (0, C)). Let k(C) be the number of customers that

have been served in (0, C). In the following we set k = k(C) for ease of notation. Let ai be

the arrival time of the i-th customer, and let di be the departure time of the i-th customer,

i = 1, 2, . . . , k.

These dates form an increasing sequence of times (tn)
2k
n=1 such that

a1 = t1 < t2 < · · · < t2k−1 < t2k = dk.

The mean sojourn time T of a customer in (0, C) is by definition

T =
1

k

k
∑

i=1

(di − ai)

since di − ai is the time spent in the system by the i-th customer.

Let us now compute N , the mean number of customers in the system in (0, C). Denote by

N(t) the number of customers at time t. Then,

N =
1

C

∫ C

0
N(t) dt

=
1

C

2k−1
∑

i=1

N(t+i ) (ti+1 − ti)

where N(t+) is the number of customers in the system just after time t.

It is not difficult to see (make a picture) that

k
∑

i=1

(di − ai) =
2k−1
∑

i=1

N(t+i ) (ti+1 − ti).
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Hence,

N =
k

C
T .

The proof is concluded as follows: since the system empties infinitely often we can choose C

large enough so that k/C is equal to the arrival rate λ. Hence, T = λN .

2.7 Comparing different multiprocessor systems

While designing a multiprocessor system we may wish to compare different systems.

The first system is an M/M/2 queue with arrival rate 2λ and service rate µ.

The second system is an M/M/1 queue with arrival rate 2λ and service rate 2µ.

Note that the comparison is fair since in both systems the traffic intensity denoted by ν is

given by ν = λ/µ.

What system yields the smallest expected customer response time?

Let T 1 and T 2 be the expected customer response time in systems 1 and 2, respectively.

Computation of T 1:

Denote N1 by the mean number of customers in the system. ¿From (44) and (45) we get

that

π(i) = 2π(0) νi ∀i ≥ 1,

if ν < 1, from which we deduce that

π(0) =
1− ν

1 + ν
.

Thus, for ν < 1,

N1 =
∞
∑

i=1

i π(i)

= 2
(

1− ν

1 + ν

) ∞
∑

i=1

i νi

=
2ν

(1− ν) (1 + ν)
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by using the well-known identity
∑∞

i=1 i z
i−1 = 1/(1− z)2 for all 0 ≤ z < 1.

¿From Little’s formula we deduce that

T 1 =
ν

λ (1− ν) (1 + ν)

under the stability condition ν < 1.

Computation of T 2:

For the M/M/1 queue with arrival rate 2λ and service rate 2µ we have already seen in

Example 2.1 (take ρ = ν) that

T 2 =
ν

2λ (1− ν)

under the stability condition ν < 1.

It is easily seen that T2 < T1 when ν < 1.

2.8 The M/G/1 Queue

This is a queue where the arrivals are Poisson, with rate λ > 0, and where the service times

of the customers are independent with the same, arbitrary , c.d.f. G(x). More precisely, if

σi and σj are the service times of two customers, say customers i and j, i 6= j, respectively,

then

(1) σi and σj are independent r.v.’s

(2) G(x) = P (σi ≤ x) = P (σj ≤ x) for all x ≥ 0.

Let 1/µ be the mean service time, namely, 1/µ = E[σi]. The service times are further

assumed to be independent of the arrival process.

As usual we will set ρ = λ/µ. We will also assume that customers are served according to

the service discipline First-In-First-Out (FIFO).

For this queueing system, the process (N(t), t ≥ 0), where N(t) is the number of customers

in the queue at time t, is not a Markov process. This is because the probabilistic future of

N(t) for t > s cannot be determined if one only knows N(s), except if N(s) = 0 (consider

for instance the case when the service times are all equal to the same constant).
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2.8.1 Mean Queue-Length and Mean Response Time

Define Wn to be the waiting time in queue of the n-th customer under the FIFO service

discipline. Let

• W be the mean waiting time

• X(t) be the number of customers in the waiting room at time t,

• R(t) be the residual service time of the customer in the server at time t, if any

• tn denote the arrival time of the n-th customer for all n ≥ 1

• σn the service time of customer n. Note that E[σn] = 1/µ.

We will assume by convention that X(ti) is the number of customers in the waiting room

just before the arrival of the i-th customer. We have

E[Wi] = E[R(ti)] + E





i−1
∑

j=i−X(ti)

σj





= E[R(ti)] +
∞
∑

k=0

i−1
∑

j=i−k

E[σj |X(ti) = k]P (X(ti) = k)

= E[R(ti)] +
1

µ
E[X(ti)]. (54)

To derive (54) we have used the fact that σj is independent ofX(ti) for j = i−X(ti), . . . , i−1,

which implies that E[σj |X(ti) = k] = 1/µ. Indeed, X(ti) only depends on the service times

σj for j = 1, . . . , i−X(ti)− 1 and not on σj for j ≥ i−X(ti) since the service discipline is

FIFO.

Letting now i→∞ in (54) yields

W = R +
X

µ
(55)

with

• R := limi→∞ E[R(ti)] is the mean service time at arrival epochs in steady-state, and

• X := limi→∞ E[X(ti)] is the mean number of customers in the waiting room at arrival

epochs in steady-state.
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Because the arrival process is a Poisson process (PASTA property: Poisson Arrivals See

Times Averages), we have that

R = lim
t→∞

1

t

∫ t

0
R(s) ds (56)

X = lim
t→∞

1

t

∫ t

0
X(s) ds. (57)

We shall not proved these results.4

In words, (56) says that the mean residual service times at arrival epochs and at arbitrary

epochs are the same. Similarly, (57) expresses the fact that the mean number of customers

at arrival epochs and at arbitrary epochs are the same.

Example 2.2 If the arrivals are not Poisson then formulae (56) and (57) are in general not

true. Here is an example where (56) is not true: assume that the nth customer arrives at

time tn = n seconds (s) for all n ≥ 1 and that it requires 0.999s of service (i.e., σn = 0.999s).

If the system is empty at time 0, then clearly R(tn) = 0 for all n ≥ 1 since an incoming

customer will always find the system empty, and therefore the left-hand side of (56) is zero;

however, since the server is always working in (n, n+ 0.999) for all n ≥ 1 it should be clear

that the right-hand side of (56) is (0.999)2/2. ♥

Applying Little’s formula to the waiting room yields

X = λW

so that, cf. (55),

W (1− ρ) = R. (58)

¿From now on we will assume that ρ < 1. Hence, cf. (58),

W =
R

1− ρ
. (59)

The condition ρ < 1 is the stability condition of the M/G/1 queue. This condition is again

very natural. We will compute R under the assumption that the queue empties infinitely

often (it can be shown that this occurs with probability 1 if ρ < 1). Let C be a time when

the queue is empty and define Y (C) to be the number of customers served in (0, C).

4The proof is not technically difficult but beyond the scope of this course; I can give you references if you

are interested in.
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We have (hint: display the curve t→ R(t)):

R = lim
C→∞

1

C

Y (C)
∑

n=1

σ2
i

2

= lim
C→∞

(

Y (C)

C

)

lim
C→∞





1

Y (C)

Y (C)
∑

n=1

σ2
i

2





= λ
E[σ2]

2

where E[σ2] is the second-order moment of the service times (i.e., E[σ2] = E[σ2
i ] for all

i ≥ 1).

Hence, for ρ < 1,

W =
λE[σ2]

2 (1− ρ)
. (60)

This formula is the Pollaczek-Khinchin (abbreviated as P-K) formula for the mean waiting

in an M/G/1 queue.

Thus, the mean system response time T is given by

T =
1

µ
+

λE[σ2]

2 (1− ρ)
(61)

and, by Little’s formula, the mean number of customers E[N ] in the entire system (waiting

room + server) is given by

N = ρ+
λ2 E[σ2]

2 (1− ρ)
. (62)

Consider the particular case when P (σi ≤ x) = 1− exp(−µx) for x ≥ 0, that is, the M/M/1

queue. Since E[σ2] = 2/µ2, we see from (60) that

W =
λ

µ2 (1− ρ)
=

ρ

µ (1− ρ)

which agrees with (53).

It should be emphazised that W , T and N now depend upon the first two moments (1/µ

and E[σ2]) of the service time d.f. (and of course upon the arrival rate). This is in constrast

with the M/M/1 queue where these quantities only depend upon the mean of the service

time (and upon the arrival rate).
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2.8.2 Mean Queue-Length at Departure Epochs

Let Qn be the number of customers in the system just after the n-th departure. Let Vn+1 be

the number of customers that have arrived during the service time of the (n+1)-st customer,

that is, during σn+1. Then, for all n ≥ 1,

Qn+1 =











Qn − 1 + Vn+1 if Qn ≥ 1

Vn+1 if Qn = 0.
(63)

It is convenient to introduce the function ∆k such that ∆k = 1 if k ≥ 1 and ∆0 = 0. We

may now write (63) as

Qn+1 = Qn −∆Qn
+ Vn+1 ∀n ≥ 0. (64)

As usual, we will be concerned with Q = limn→∞ Qn. We assume that the j-th moment of

Q exists for j = 1, 2. Our objective is to compute E[Q].

Taking the expectation in both sides of (64) yields

E[Qn+1] = E[Qn]− E [∆Qn
] + E[Vn+1] ∀n ≥ 0. (65)

Let us compute E[Vn+1].

We have

E[Vn+1] =
∫ ∞

0
E[Vn+1 |σn+1 = y] dG(y)

=
∫ ∞

0
E[no. of points in (0, y) of a Poisson process with rate λ] dG(y)

=
∫ ∞

0
λy dG(y) = ρ (66)

which does not depend on n.

Letting n go to infinity in (65) gives

E[Q] = E[Q]− E [∆Q] + ρ.

which implies that

E [∆Q] = ρ. (67)

We have not yet computed what we are looking for, namely, E[Q].

Squaring both sides of (64) and then taking the expectation gives

E[Q2
n+1] = E[Q2

n]+E[(∆Qn
)2]+E[V 2

n+1]−2E[Qn ∆Qn
]+2E[Qn Vn+1]−2E[∆Qn

Vn+1]. (68)
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¿From our definition of ∆k we observe that (∆Qn
)2 = ∆Qn

and also that Qn∆Qn
= Qn.

Therefore,

E[(∆Qn
)2] = E[∆Qn

] (69)

and
E[Qn ∆Qn

] = E[Qn]. (70)

We also observe that Vn+1, the number of arrival during the service of the (n+1)-st customer

is independent of Qn from the memoryless property of a Poisson process and from the

independence assumptions.

Hence, for all n ≥ 1,

E[Qn Vn+1] = E[Qn]E[Vn+1] = ρE[Qn] (71)

E[∆Qn
Vn+1] = E[∆Qn

]E[Vn+1] = ρE[∆Qn
] (72)

by using (66).

Combining now (68)-(72) yields

E[Q2
n+1] = E[Q2

n] + E[∆Qn
] + E[V 2

n+1]− 2(1− ρ)E[Qn]− 2 ρE[∆Qn
] (73)

Letting n go to infinity in (73) and using (67) yields, for ρ < 1,

E[Q] = ρ+
limn→∞ E[V 2

n+1]− ρ

2 (1− ρ)
. (74)

It remains to compute limn→∞ E[V 2
n+1].

We have:

E[V 2
n+1] =

∫ ∞

0
E[V 2

n+1 |σn+1 = y] dG(y). (75)

Let us compute E[V 2
n+1 |σn+1 = y]. We have

E[V 2
n+1 |σn+1 = y] = E[(no. points in (0, y) of a Poisson process with rate λ)2]

= e−λy
∑

k≥1

k2 (λy)
k

k!

= e−λy
∑

k≥1

k
(λy)k

(k − 1)!
= e−λy

∑

k≥1

(k − 1 + 1)
(λy)k

(k − 1)!

= e−λy





∑

k≥2

(λy)k

(k − 2)!
+
∑

k≥1

(λy)k

(k − 1)!





= e−λy
(

(λy)2 eλy + λy eλy
)

= (λy)2 + λy.
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Therefore, cf. (75),

E[V 2
n+1] = λ2

∫ ∞

0
y2 dG(y) + λ

∫ ∞

0
y dG(y).

= λ2 E[σ2] + ρ. (76)

Finally, combining (74) and (76) gives

E[Q] = ρ+
λ2 E[σ2]

2 (1− ρ)
(77)

which is the same as formula (62)! In other words, the mean number of customers at any

time in an M/G/1 queue is equal to the mean number of customers at departure instants.

The stochastic process (Qn, n ≥ 1) defined by (63) is a Markov chain. This therefore suggests

that there must exist another way of computing E[Q].

3 Priority Queues

In many applications it is desirable to give certain classes of customers preferential treatment;

the queue is ordered and the higher priority customers are served first. In the following, we

focus only on priority queues with a single server. In the following, we will only focus on

priority queueing systems with a single server.

In a priority queueing system customers are divided intoK ≥ 2 classes numbered 1, 2, . . . , K.

The lower the priority, the higher the class number. In other words, priority i customers are

given preference over priority j customers if i < j. We assume that the customers within a

given priority class are served in FIFO order, although this assumption need not be made

in many cases (e.g., when we study queue-length processes).

There are two basic classes of priority policies: the preemptive-resume policies, and the

non-preemptive priority policies. Under a preemptive-resume policy service is interrupted

whenever an arriving customer has higher priority than the customer in service; the newly

arrived customer begins service at once. The customer C whose service was interrupted

(preempted) returns to the head of its priority class, say class j. When there are no longer

customers in priority classes 1, 2, . . . , j − 1, customer C returns to the server and resumes

service at the point of interruption.

There are other variations, including preemptive-repeat in which a preempted customer must

restart service from the beginning.
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3.1 Non-Preemptive Priority

We consider a non-preemptive priority M/G/1 queue: customers of priority class k, k =

1, 2, . . . , K, arrive at the system according to a Poisson process with rate λk and have in-

dependent service times with common d.f. Gk(x), mean 1/µk, and second moment σ2
k. We

assume that the service times and the arrival times are independent i.i.d. sequences.

Let ρk := λk/µk be the traffic intensity with respect to class k, k = 1, 2, . . . , K. Our objective

is to compute the expected values of the sojourn time of class k customers, the waiting time

of class k customers, and the number of customers of class k in the system. Let

• Wk be the time spent waiting (not in service) by a customer of class k

• Xk be the number of customers of class k waiting in queue

• R be the residual service time of the customer in the server.

As before, an overline denotes expectation.

Clearly,

T k = W k +
1

µk

(78)

for k = 1, 2, . . . , K, so we need only compute W k. By the same argument used to compute

the mean waiting time in an M/G/1 queue with one class of customers (see (59)) we have

for the highest priority customers

W 1 =
R

1− ρ1

(79)

provided that ρ1 < 1. [Hint: write W 1 = R+ (1/µ1)E[X1] and substitute X1 = λ1 W 1 from

Little’s formula, from which (79) follows).

Deferring the calculation of R for the moment, let us now turn to the second highest priority.

Note that W 2 is the sum of four terms: the mean residual service time,R, the expected time

X1 (respectively, X2) to serve all customers of class 1 (respectfully, class 2) in the system

when a class 2 customer arrives, and the expectation of the time Z1 to serve all customers

of class 1 that will arrive during the total waiting time of a class 2 customer. Thus,

W 2 = R +
1

µ1

X1 +
1

µ2

X2 +
1

µ1

Z1 (80)
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By Little’s formula

X1 = λ1 W 1

X2 = λ2 W 2.

Denote by W2 be the time spent in queue by a customer of class 2. We have

E[Z1] =
∫ ∞

0
E[Z1 |W2 = x]P (W2 ∈ dx)

=
∫ ∞

0
λ1 xP (W2 ∈ dx)

= λ1 W 2

where (81) follows from the assumption that the arrival process of class 1 customers is Poisson

with rate λ1 (see Appendix, Result C.2).

Hence,

W 2 =
R + ρ1 W 1

1− ρ1 − ρ2

provided that ρ1 + ρ2 < 1.

Using the value of W 1 obtained in (79) gives

W 2 =
R

(1− ρ1) (1− ρ1 − ρ2)
(81)

provided that ρ1 + ρ2 < 1.

By repeating the same argument, it is easily seen that

W k =
R

(

1−∑k−1
j=1 ρj

) (

1−∑k
j=1 ρj

) (82)

provided that
∑k

j=1 ρj < 1.

Hence, it is seen that the condition ρ :=
∑K

j=1 ρj < 1 is the stability condition of this model.

¿From now on we assume that ρ < 1.

Let us now compute R, the expected residual service time. This computation is similar to

the computation of the mean residual service time in a standard M/G/1 queue (see Section

2.8.1).
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We will compute R under the assumption that the queue empties infinitely often (it can be

shown that this occurs with probability 1 if ρ < 1). Let C be a time when the queue is

empty and define Yk(C) to be the number of customers of class k served in (0, C).

Denote by σk,n the service time of the n-th customer of class k.

We have (hint: display the curve t→ R(t)):

R = lim
C→∞

1

C





Y1(C)
∑

n=1

σ2
1,n

2
+ · · ·+

YK(C)
∑

n=1

σ2
K,n

2





= lim
C→∞





Y1(C)

C
× 1

Y1(C)

Y1(C)
∑

n=1

σ2
1,n

2
+ · · ·+ YK(C)

C
× 1

YK(C)

YK(C)
∑

n=1

σ2
K,n

2





=
K
∑

j=1



 lim
C→∞

(

Yj(C)

C

)

lim
C→∞





1

Yj(C)

Yj(C)
∑

n=1

σ2
j,n

2









=
K
∑

j=1

(

lim
C→∞

(

Yj(C)

C

)

lim
m→∞

(

1

m

m
∑

n=1

σ2
j,n

2

))

(83)

=
K
∑

j=1

λj

σ2
j

2
. (84)

where (83) follows from the fact that Y (C)→∞ when C →∞.

Finally, cf. (82), (84),

W k =

∑K
j=1 λj σ

2
j

2
(

1−∑k−1
j=1 ρj

) (

1−∑k
j=1 ρj

) (85)

for all k = 1, 2, . . . , K, and

T k =
1

µk

+

∑K
j=1 λj σ

2
j

2
(

1−∑k−1
j=1 ρj

) (

1−∑k
j=1 ρj

) . (86)

Applying again Little’s formula to (86) gives

Nk = ρk +
λk

∑K
j=1 λj σ

2
j

2
(

1−∑k−1
j=1 ρj

) (

1−∑k
j=1 ρj

) (87)

for all k = 1, 2, . . . , K.
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3.2 Preemptive-Resume Priority

We consider the same model as in the previous section but we now assume that the policy

is preemptive-resume. We keep the same notation and we assume that ρ < 1.

Our objective is to compute T k and Nk.

Let us first consider T 1. Actually, there is nothing to compute since T 1 is simply the sojourn

time in an ordinary M/G/1 queue from the very definition of a preemptive-resume priority

policy, that is,

T 1 =
1

µ1

+
λ1 σ1

2

2 (1− ρ1)
. (88)

The sojourn of a customer a class k, k ≥ 2, is the sum of three terms:

T k = T k,1 + T k,2 + T k,3

where

(1) T k,1 is the customer’s average service time, namely, T k,1 = 1/µk

(2) T k,2 is the average time required, upon arrival of a class k customer, to service customers

of class 1 to k already in the system

(3) T k,3 is the average sojourn time of customers of class 1 to k − 1 who arrive while the

customer of class k is in the system.

Computation of T k,2:

When a customer of class k arrives his waiting time before entering the server for the first

time is the same as his waiting time in an ordinary M/G/1 queue (without priority) where

customers of class k + 1, . . . , K are neglected (i.e., λi = 0 for i = k + 1, . . . , K). The reason

is that the sum of remaining service times of all customers in the system is independent of

the service discipline of the system. This is true for any system where the server is always

busy when the system is nonempty.

Hence,

T k,2 = Rk +
k
∑

i=1

X i

µi

where Rk is the residual service time, and X i is the mean number of customers of class i in

the waiting room.
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By Little’s formula, X i = λi T k,2 for i = 1, 2, . . . , k.

Also, by the same argument as the one used to derive (84), we get that

Rk =
k
∑

i=1

λi
σ2
i

2
.

This finally yields the equation

T k,2 =
k
∑

i=1

λi
σ2
i

2
+

k
∑

i=1

ρi T
2

k

and

T k,2 =

∑k
i=1 λi

σ2
i

2
1−∑k

i=1 ρi
.

Computation of T k,3:

By Little’s formula, the average number of class i customers, i = 1, 2, . . . , k − 1, who arrive

during the sojourn time of a class k customer is λi T k.

Therefore,

T k,3 =
k−1
∑

i=1

ρi T k.

Finally,

T k =
1

1−∑k−1
i=1 ρi





1

µk

+

∑k
i=1 λi σ

2
i

2
(

1−∑k
i=1 ρi

)



 (89)

and, by Little’s formula,

Nk =
1

1−∑k−1
i=1 ρi



ρk +
λk

∑k
i=1 λi σ

2
i

2
(

1−∑k
i=1 ρi

)



 . (90)

4 Single-Class Queueing Networks

So far, the queueing systems we studied were only single resource systems: that is, there

was one service facility, possibly with multiple servers. Actual computer systems and com-

munication networks are multiple resource systems . Thus, we may have online terminals or
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workstations, communication lines, etc., as well as the computer itself. The computer, even

the simplest personal computer, has multiple resources, too, including main memory, virtual

memory, coprocessors, I/O devices, etc. There may be a queue associated with each of these

resources. Thus, a computer system or a communication network is a network of queues.

A queueing network is open if customers enter from outside the network, circulate among the

service centers (or queues or nodes) for service, and depart from the network. A queueing

network is closed if a fixed number of customers circulate indefinitely among the queues. A

queueing network is mixed if some customers enter from outside the network and eventually

leave, and if some customers always remain in the network.

4.1 Networks of Markovian Queues: Open Jackson Network

Consider an open network consisting of K M/M/1 queues. Jobs arrive from outside the

system joining queue i according to a Poisson process with rate λ0
i . After service at queue i,

which is exponentially distributed with parameter µi, the job either leaves the system with

probability pi0, or goes to queue j, with probability pij. Clearly,
∑K

j=0 pij = 1, since each

job must go somewhere.

As usual, the arrival times and the service times are assumed to be mutually independant

r.v.’s.

Let Qi(t) be the number of customers in queue (or node) i at time t and define

Q(t) = (Q1(t), . . . , QK(t)) ∀t ≥ 0.

As usual we will be interested in the computation of

π(n) = lim
t→∞

P (Q(t) = n)

with n := (n1, . . . , nK) ∈ INK .

Because of the Poisson and exponential assumptions the continuous-time, discrete-space

stochastic process (Q(t), t ≥ 0) is seen to be a continuous-time Markov chain on the state-

space I = INK .

The balance equations for this C-M.C. are (cf. 30)

π(n)

(

K
∑

i=1

λ0
i +

K
∑

i=1

1(ni > 0)µi

)

=
K
∑

i=1

1(ni > 0)λ0
i π(n− ei)
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+
K
∑

i=1

pi0 µi π(n+ ei)

+
K
∑

i=1

K
∑

j=1

1(nj > 0)pijµi π(n+ ei − ej) (91)

where 1(k > 0) = 1 if k > 0 and 0 otherwise, and where ei is the vector with all components

zero, except the i-th one which is one.

Result 4.1 (Open Jackson network) If λi < µi for all i = 1, 2, . . . , K, then

π(n) =
K
∏

i=1

(

1− λi

µi

)(

λi

µi

)ni

∀n = (n1, . . . , nK) ∈ INK , (92)

where (λ1, λ2 . . . , λK) is the unique nonnegative solution of the system of linear equations

λi = λ0
i +

K
∑

j=1

pji λj i = 1, 2, . . . , K. (93)

2

Let us comment this fundamental result of queueing network theory obtained by J. R.

Jackson in 1957.

Equations (93) are referred to as the traffic equations. Let us show that λi is the total arrival

rate at node i when the system is in steady-state.

To do so, let us first determine the total throughput of a node. The total throughput of

node i consists of the customers who arrive from outside the network with rate λ0
i , plus all

the customers who are transferred to node i after completing service at node j for all nodes

in the network. If λi is the total throughput of node i, then the rate at which customers

arrive at node i from node j is pjiλj. Hence, the throughput of node i, λi must satisfy (93).

Since, in steady-state, the throughput of every node is equal to the arrival rate at this node,

we see that λi is also the total arrival rate in node i.

Hence, the conditions λi < µi for i = 1, 2, . . . , K, are the stability conditions of an open

Jackson network.

Let us now discuss the form of the limiting distribution (92). We see that (92) is actually a

product of terms, where the i-th term (1− ρi) ρ
ni

i , with ρi := λi/µi, is actually the limiting

d.f. of the number of customers in an isolated M/M/1 queue with arrival rate λi and service

rate µi. This property is usually referred to as the product-form property.
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Therefore, the network state probability (i.e., π(n)) is the product of the state probabilities

of the individual queues.

It is important to note that the steady-state probabilities behave as if the total arrival process

at every node (usually referred to as the flow) were Poisson (with rate λi for node i), but

the flows are not Poisson in general !! The flows are Poisson if and only if pi,i+1 = 1 for

i = 1, 2, . . . , K, and pK0 = 1, that is, for a network of queues in series.

Proof of Result 4.1: Since the network is open we know that there exists i0 such that

pi00 > 0 since otherwise customers would stay forever in the network. This ensures that the

matrix I−P is invertible, with P = [pij]1≤i,j≤K , from which we may deduce that the balance

equations (91) have a unique nonnegative solution (λ1, . . . , λK) (this proof is omitted).

On the other hand, because every node may receive and serve infinitely many customers,

and because of the markovian assumptions it is seen that the C-M.C. (Q(t), t ≥ 0) is

irreducible (hint: one must show that the probability of going from state (n1, . . . , nK) to

state (m1, . . . ,mK) in exactly t units of time is strictly positive for all t > 0, ni ≥ 0, mi ≥ 0,

i = 1, 2, . . . , K. Let s < t. Since the probability of having 0 external arrival in [0, s) is

stricltly positive we see that the probability that the system is empty at time s is also

strictly positive. On the other hand, starting from an empty system, it should be clear that

we can reach any state in exactly t− s units of time).

Hence, Result 1.5 applies to the irreducible C.-M.C. (Q(t), t ≥ 0). Thus, it suffices to check

that (92) satisfies the balance equations together with the condition
∑

n∈INK π(n) = 1.

Observe from (92) that the latter condition is trivially satisfied. It is not difficult to check

by direct substitution that (92) indeed satisfies the balance equations (30). This concludes

the proof.

This result actually extends to the case when the network consists of K M/M/c queues.

Assume that node i is an M/M/ci queue. The following result holds:

Result 4.2 (Open Jackson network of M/M/c queues) Define µi(r) = µi min(r, ci)

for r ≥ 0, i = 1, 2, . . . , K and let ρi = λi/µi for i = 1, 2, . . . , K.

If λi < ci µi for all i = 1, 2, . . . , K, then

π(n) =
K
∏

i=1

Ci

(

λni

i
∏ni

r=1 µi(r)

)

∀n = (n1, . . . , nK) ∈ INK , (94)

where (λ1, λ2 . . . , λK) is the unique nonnegative solution of the system of linear equations
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(93), and where Ci is given by

Ci =

[

ci−1
∑

r=0

ρri
r!

+

(

ρci

i

ci!

)(

1

1− ρi/ci

)]−1

. (95)

2

Example 4.1 Consider a switching facility that transmits messages to a required destina-

tion. A NACK (Negative ACKnowledgment) is sent by the destination when a packet has

not been properly transmitted. If so, the packet in error is retransmitted as soon as the

NACK is received.

We assume that the time to send a message and the time to receive a NACK are both

exponentially distributed with parameter µ. We also assume that packets arrive at the

switch according to a Poisson process with rate λ0. Let p, 0 < p ≤ 1, be the probability that

a message is received correctly.

Thus, we can model this switching facility as a Jackson network with one node, where c1 = 1

(one server), p10 = p and p11 = 1− p. By Jackson’s theorem we have that, π(n), the number

of packets in the service facility in steady-state, is given by

π(n) =

(

1− λ

µ

)(

λ

µ

)n

n ≥ 0,

provided that λ < µ, where λ is the solution of the traffic equation

λ = λ0 + (1− p)λ.

Therefore, λ = λ0/p, and

π(n) =

(

1− λ0

pµ

)(

λ0

pµ

)n

n ≥ 0,

provided that λ0 < pµ.

The mean number of packets (denoted as X) in the switching facility is then given by (see

(40))

X =
λ0

pµ− λ0

and by, Little’s formula, the mean response time (denoted as T ) is

T =
1

pµ− λ0
.
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♥

Example 4.2 We consider the model in Example 4.1 but we now assume that the switching

facility is composed ofK nodes in series, each modeled asM/M/1 queue with common service

rate µ. In other words, we now have a Jackson network with K M/M/1 queues where λ0
i = 0

for i = 2, 3, . . . , K (no external arrivals at nodes 2, . . . , K), µi = µ for i = 1, 2, . . . , K,

pii+1 = 1 for i = 1, 2, . . . , K − 1, pK,0 = p and pK,1 = 1− p.

For this model, the traffic equations read

λi = λi−1

for i = 2, 3, . . . , K, and

λ1 = λ0 + (1− p)λK .

It is easy to see that the solution to this system of equations is

λi =
λ0

p
∀i = 1, 2, . . . , K.

Hence, by Jackson’s theorem, the j.d.f. π(n) of the number of packets in the system is given

by

π(n) =

(

pµ− λ0

pµ

)K (

λ0

pµ

)n1+···+nK

∀n = (n1, n2, . . . , nK) ∈ INK

provided that λ0 < pµ. In particular, the probability qij(r, s) of having r packets in node i

and s packets in node j > i is given by

qij(r, s) =
∑

nl≥0, l 6∈{i,j}

π(n1, . . . , ni−1, r, ni+1, . . . , nj−1, s, nj+1, . . . , nK)

=

(

pµ− λ0

pµ

)2 (
λ0

pµ

)r+s

.

Let us now determine for this model the expected sojourn time of a packet. Since queue i

has the same characteristics as an M/M/1 queue with arrival rate λ0/p and mean service

time 1/µ, the mean number of packets (denoted as Xi) is given by

Xi =
λ0

pµ− λ0

for every i = 1, 2, . . . , K. Therefore, the total expected number of packets in the network is

K
∑

i=1

E[Xi] =
K λ0

pµ− λ0
.
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Hence, by Little’s formula, the expected sojourn time is given by

T =
1

λ0

K
∑

i=1

E[Xi] =
K

pµ− λ0
.

♥

Example 4.3 (The open central server network) Consider a computer system with one

CPU and several I/O devices. A job enters the system from the outside and then waits un-

til its execution begins. During its execution by the CPU, I/O requests may be needed.

When an I/O request has been fulfilled the job then returns to the CPU for additional

treatment. If the latter is available then the service begins at once; otherwise the job must

wait. Eventually, the job is completed (no more I/O requests are requested) and it leaves

the system.

We are going to model this system as an open Jackson network with 3 nodes: one node

(node 1) for the CPU and two nodes (nodes 2 and 3) for the I/O devices. In other words,

we assume that K = 3, λ0
i = 0 for i = 2, 3 (jobs cannot access the I/O devices directly from

the outside) and p21 = p31 = 1, p10 > 0.

For this system the traffic equations are:

λ1 = λ0
1 + λ2 + λ3

λ2 = λ1 p12

λ3 = λ1 p13.

The solution of the traffic equations is λ1 = λ0
1/p10, λi = λ0

1 p1i/p10 for i = 2, 3. Thus,

π(n) =

(

1− λ0
1

µ1 p10

)(

λ0
1

µ1 p10

)n1 3
∏

i=2

(

1− λ0
1 p1i

µi p10

)(

λ0
1 p1i

µi p10

)ni

∀n = (n1, n2, n3) ∈ IN3

and

T =
1

µ1 p10 − λ0
1

+
3
∑

i=2

p1i

µi p10 − λ0
1 p1i

.

♥
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4.2 Networks of Markovian Queues: Closed Jackson Networks

We now discuss closed markovian queueing networks. In such networks the number of

customers in the network is always constant: no customer may enter from the outside and

no customer may leave the network. More precisely, a closed Jackson is an open Jackson

network where λ0
i = 0 for i = 1, 2, . . . , K. However, because the number of customers is

constant in a closed Jackson network– and assumed equal to N – a particular treatment is

needed. Indeed, letting λ0
i = 0 for i = 1, 2, . . . , K in Result 4.1 does not yield the correct

result (see 4.3 below).

Without loss of generality we shall assume that each node in the network is visited infinitely

often by the customers (simply remove the nodes that are only visited a finite number of

times).

For this model, the balance equations are

π(n)
K
∑

i=1

1(ni > 0)µi =
K
∑

i=1

K
∑

j=1

1(ni ≤ N − 1, nj > 0)pijµi π(n+ ei − ej) (96)

for all n = (n1, . . . , nK) ∈ {0, 1, . . . , N}K such that
∑K

i=1 ni = N .

Result 4.3 (Closed Jackson network) Let (λ1, . . . , λK) be any non-zero solution of the

equations

λi =
K
∑

j=1

pji λj i = 1, 2, . . . , K. (97)

Then,

π(n) =
1

G(N,K)

K
∏

i=1

(

λi

µi

)ni

(98)

for all n = (n1, . . . , nK) ∈ S(N,K), with

S(N,K) :=

{

n = (n1, . . . , nK) ∈ {0, 1, . . . , N}K such that
K
∑

i=1

ni = N

}

where

G(N,K) :=
∑

n∈S(N,K)

K
∏

i=1

(

λi

µi

)ni

. (99)

2
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The constant G(N,K) is called the normalization constant . It has been named like this

since it ensures that
∑

n∈S(N,K)

π(n) = 1.

Unlike the corresponding result for the open Jackson result, (98) shows that the number

of customers in two different nodes in steady-state are not independent r.v.’s. This follows

from the fact that the right-hand side of (98) does not write as a product of terms of the

form f1(n1)× · · · × fK(nK).

This result is obvious: assume that there are ni customers in node i. Then, the number of

customers in node j is necessarily less than or equal to M − ni. Thus, the r.v.’s Xi and Xj

representing the number of customers in nodes i and j, respectively, cannot be independent

(take K = 2; then P (Xj = M) = 0 if Xi = 1 whereas P (Xj = M) = 1 if Xi = 0).

Nevertheless, and with a sligh abuse of notation, (98) is usually referred to as a product-form

theorem for closed Jackson networks.

Proof of Result 4.3: Check that (98) satisfies (96) and apply Result 1.5.

Like for open Jackson networks, Result 4.3 extends to closed Jackson network of M/M/c

queues (we keep the notation introduced earlier) We have:

Result 4.4 (Closed Jackson network of M/M/c queues) Let (λ1, . . . , λK) be any non-

zero solution to the traffic equations (97). Then,

π(n) =
1

G(N,K)

K
∏

i=1

(

λni

i
∏ni

r=1 µi(r)

)

(100)

for all n = (n1, . . . , nK) ∈ S(N,K), where

G(N,K) :=
∑

n∈S(N,K)

K
∏

i=1

(

λni

i
∏ni

r=1 µi(r)

)

. (101)

2

The computation of the normalizing constant G(N,K) seems to be an easy task: it suffices

to add a bunch of terms and to do a couple of multiplications. Yes? Well...

Assume that K = 5 (five nodes) and N = 10 (10 customers). Then, the set S(5, 10) already

contains 1001 elements. If If K = 10 (ten queues) and N = 35 customers, then S(10, 35)
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contains 52,451,256 terms!! In addition, each term requires the computation of ten constants

so that the total number of multiplications is over half a billion! (A communication network

may have several hundredths of nodes...) More generally, it is not difficult to see that S(N,K)

has
(

N+K−1
N

)

elements.

Therefore, a brute force approach (direct summation) may be both very expensive and

numerically unstable.

There exist stable and efficient algorithms to compute G(N,K). The first algorithm was ob-

tained by J. Buzen in 1973 and almost every year one (or sometimes several) new algorithms

appear! (for, however, more general “product-form”queueing networks to be described later

on in this course).

4.2.1 The Convolution Algorithm

In this section we present the so-called convolution algorithm for the computation ofG(N,K).

It is due to J. Buzen.

By definition

G(n,m) =
∑

n∈S(n,m)

m
∏

i=1

(

λi

µi

)ni

=
n
∑

k=0

∑

n∈S(n,m)
nm=k

m
∏

i=1

(

λi

µi

)ni

=
n
∑

k=0

(

λm

µm

)k
∑

n∈S(n−k,m−1)

m−1
∏

i=1

(

λi

µi

)ni

=
n
∑

k=0

(

λm

µm

)k

G(n− k,m− 1). (102)

¿From the definition of G(n,m) the initial conditions for the algorithm are

G(n, 1) =

(

λ1

µ1

)n

for n = 0, 1, . . . , N

G(0,m) = 1 for m = 1, 2, . . . , K.

This convolution-like expression accounts for the name “convolution algorithm”.

A similar algorithm exists for a closed Jackson network with M/M/c queues.
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4.2.2 Performance Measures from Normalization Constants

Performance evaluation can be expressed as functions of the equilibrium state probabilities.

Unfortunately, this approach can lead to the same problems of excessive and inaccurate

computations that were encountered in the calculation of the normalization constant. For-

tunately, a number of important performance measures can be computed as functions of the

various normalization constants which are a product of the convolution algorithm. In this

section, it will be shown how this can be done.

Marginal Distribution of Queue-Length

Denote by Xi the number of customers in node i in steady-state. Define πi(k) = P (Xi = k)

be the steady-state p.f. of Xi.

We have

πi(k) =
∑

n∈S(N,K), ni=k

π(n).

To arrive at the marginal distribution πi it will be easier to first calculate

P (Xi ≥ k) =
∑

n∈S(N,K)
ni≥k

π(n)

=
∑

n∈S(N,K)
ni≥k

1

G(N,K)

K
∏

j=1

(

λj

µj

)nj

.

=

(

λi

µi

)k
1

G(N,K)

∑

n∈S(N−k,K)

K
∏

j=1

(

λj

µj

)nj

=

(

λi

µi

)k
G(N − k,K)

G(N,K)
. (103)

Now the key to calculating the marginal distribution is to recognize that

P (Xi = k) = P (Xi ≥ k)− P (Xi ≥ k + 1)

so that

πi(k) =

(

λi

µi

)k
1

G(N,K)

[

G(N − k,K)−
(

λi

µi

)

G(N − k − 1, K)

]

. (104)

Expected Queue-Length

Perhaps the most useful statistic that can be derived from the marginal queue-length distri-

bution is its mean. Recall the well-known formula for the mean of a r.v. X with values in
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IN:

E[X] =
∑

k≥1

P (X ≥ k).

Therefore, cf. (103),

E[Xi] =
N
∑

k=1

(

λi

µi

)k
G(N − k,K)

G(N,K)
. (105)

Utilization

The utilization of node i — denoted as Ui — is defined to be the probability that node i is

non-empty in steady-state, namely, Ui = 1− πi(0).

¿From (104), we have that

Ui =

(

λi

µi

)

G(N − 1, K)

G(N,K)
. (106)

Throughput

The throughput Ti of node i is defined as

Ti =
N
∑

k=1

πi(k)µi

or, equivalently, Ti = µi (1− πi(0)) = µi Ui.

Therefore, cf. (106),

Ti = λi
G(N − 1, K)

G(N,K)
. (107)

4.3 The Central Server Model

This is one a very useful model. There is one CPU (node M+1), K I/O devices (nodes

M+2,. . . ,M+K+1), and M terminals (nodes 1,2,. . . ,K) that send jobs to the CPU.

When a user (i.e., terminal) has sent a job to the CPU he waits the end of the execution of

his job before sending a new job. (we could also consider the case when a user is working

on several jobs at a time). Hence, there are exactly K jobs in the network. This is a closed

network.

For the time being, we are going to study a variant of this system. The central server system

will be studied later on in this course.
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We assume that

piM+1 = 1 for i = M + 2, . . . ,M +K + 1

piM+1 = 1 for i = 1, 2, . . . ,M

pM+1i > 0 for i = 1, 2, . . . ,M +K + 1

pij = 0 otherwise . (108)

Note here that several jobs may be waiting at a terminal.

Let µi be the service rate at node i for i = 1, 2, . . . ,M +K+1. For i = 1, 2, . . . ,M , 1/µi can

be thought of as the mean thinking time of the user before sending a new job to the CPU.

For this model, the traffic equations are:

λi =











λM+1 pM+1i for i 6= M + 1

∑M+K+1
j=1 λj pjM+1 for i = M + 1

Setting (for instance) λM+1 = 1 yields λi = pM+1i for all i = 1, 2, . . . ,M +K +1, i 6= M +1.

The mean performance measures E[Xi], Ui and Ti for i = 1, 2, . . . ,M +K + 1, then follow

from the previous section.

5 Multiclass Queueing Networks

We are now going to consider more general queueing networks that still enjoy the product-

form property.

5.1 Multiclass Open/Closed/Mixed Jackson Queueing Networks

The class of systems under consideration contains an arbitrary but finite number of nodes

K. There is an arbitrary but finite number R of different classes of customers. Customers

travel through the network and change class according to transition probabilities. Thus a

customer of class r who completes service at node i will next require service at node j in

class s with a certain probability denoted pi,r;j,s.

We shall say that the pairs (i, r) and (j, s) belong to the same subchain if the same customer

can visit node i in class r and node j in class s. Let m be the number of subchains, and let

E1, . . . , Em be the sets of states in each of these subchains.
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Let nir be the number of customers of class r at node i. A closed system is characterized by

∑

(i,r)∈Ej

nir = constant

for all j = 1, 2, . . . ,m. In other words, if the system is closed, then there is a constant

number of customer circulating in all the subchains.

In an open system, customers may arrive to the network from the outside according to

independent Poisson process. Let λ0
ir be the external arrival rate of customers of class r at

node i. In an open network a customer of class r who completes service at node i may leave

the system. This occurs with the probability pi,r;0, so that
∑

j,s pi,r;j,s + pi,r;0 = 1.

A subchain is said to be open if it contains at least one pair (i, r) such that λ0
ir > 0; otherwise

the subchain is closed. A network that contains at least one open subchain and one closed

subchain is called a mixed network.

At node i, i = 1, 2, . . . , K, the service times are still assumed to be independent exponential

r.v.’s, all with the same parameter µi, for all i = 1, 2, . . . , K. We shall further assume that

the service discipline at each node is FIFO (more general nodes will be considered later on).

Define Q(t) = (Q1(t), . . . , QK(t)) with Qi(t) = (Qi1(t), . . . , QiR(t)), where Qir(t) denotes the

number of customers of class r in node i at time t.

The process (Q(t), t ≥ 0) is not a continuous-time Markov chain because the class of a

customer leaving a node is not known.

Define Xi(t) = (Ii1(t), . . . , IiQi(t)(t)), where Iij(t) ∈ {1, 2, . . . , R} is the class of the customer

in position j in node i at time t. Then, the process ((X1(t), . . . , XK(t)), t ≥ 0) is a C.-M.C.

We can write the balance equations (or, equivalently, the infinitesimal generator) correspond-

ing to this C.-M.C. (this is tedious but not difficult) and obtain a product-form solution. By

aggregating states we may obtain from this result the limiting j.d.f. of (Q1(t), . . . , QK(t)),

denoted as usual by π(·).

The result is the following:

Result 5.1 (Multiclass Open/Closed/Mixed Jackson Network) For k ∈ {1, . . . ,m}
such that Ek is an open subchain, let (λir)(i,r)∈Ek

be the unique strictly positive solution of

the traffic equations

λir = λ0
ir +

∑

(j,s)∈Ek

λjs pj,s;i,r ∀(i, r) ∈ Ek.
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For every k in {1, 2, . . . ,m} such that Ek is a closed subchain, let (λir)(i,r)∈Ek
be any non-zero

solution of the equations

λir =
∑

(j,s)∈Ek

λjs pj,s;i,r ∀(i, r) ∈ Ek.

If
∑

{r : (i,r) belongs to an open subchain} λir < µi for all i = 1, 2, . . . , K (stability condition5),

then

π(n) =
1

G

K
∏

i=1

[

ni!
R
∏

r=1

1

nir!

(

λir

µi

)nir
]

(109)

for all n = (n1, . . . , nK) in the state-space, where ni = (ni1, . . . , niR) ∈ INR and ni =
∑R

r=1 nir. Here, G is a normalizing constant.

2

Let us illustrate this result through a simple example.

Example 5.1 There are two nodes (node 1 and node 2) and two classes of customers (class

1 and class 2). There are no external arrivals at node 2. External customers enter node 1 in

class 1 with the rate λ. Upon service completion at node 1 a customer of class 1 is routed

to node 2 with the probability 1. Upon service completion at node 2 a customer of class 1

leaves the system with probability 1.

There are always exactly K customers of class 2 in the system. Upon service completion at

node 1 (resp. node 2) of customer of class 2 is routed back to node 2 (resp. node 1) in class

2 with the probability 1.

Let µi be the service rate at node i = 1, 2.

The state-space S for this system is

S =
{

(n11, n12, n21, n22) ∈ IN4 : n11 ≥ 0, n21 ≥ 0, n12 + n22 = K
}

.

There are two subchains, E1 and E2, one open (say E1) and one closed. Clearly, E1 =

{(1, 1), (2, 1)} and E2 = {(1, 2), (2, 2)}.

We find: λ11 = λ21 = λ and λ12 = λ22. Take λ12 = λ22 = 1, for instance.

5Observe that this condition is automatically satisfied for node i if this node is only visited by customers

belonging to closed subchains.
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The product-form result is:

π(n) =
1

G

(

n1

n11

)(

n2

n22

) (

λ

µ1

)n11
(

λ

µ2

)n21
(

1

µ1

)n12
(

1

µ2

)n22

with n ∈ S, provided that λ < µi for i = 1, 2, i.e., λ < min(µ1, µ2) (stability condition).

Let us compute the normalizing constant G. By definition,

G =
∑

n11≥0,n21≥0
n12+n22=K

(

λ

µ1

)n11
(

λ

µ2

)n21
(

1

µ1

)n12
(

1

µ2

)n22

=





∑

n11≥0

(

λ

µ1

)n11









∑

n21≥0

(

λ

µ2

)n21





∑

n12+n22=K

(

1

µ1

)n12
(

1

µ2

)n22

=

(

2
∏

i=1

µi

µi − λ

)(

1

µ1

)K K
∑

i=0

(

µ1

µ2

)i

.

Thus,

G =
K + 1

µK

(

µ

µ− λ

)2

if µ1 = µ2 := µ, and

G =

(

2
∏

i=1

µi

µi − λ

)(

1

µ1

)K
1− (µ1/µ2)

K+1

1− (µ1/µ2)

if µ1 6= µ2.

If K = 0, then G =
∏2

i=1 (µi/(µi− λ)) as expected (open Jackson network with two M/M/1

nodes in series).

The product-form result in Result 5.1 can be dramatically extended. We now give two simple

extensions.

The first, not really surprising extension owing to what we have seen before, is the extension

of the product-form result to multiclass open/closed/mixed Jackson networks with M/M/c

queues. Let ci ≥ 1 be the number of servers at node i, and define αi(j) = min(ci, j) for all

i = 1, 2, . . . , K. Hence, µi αi(j) is the service rate in node i when there are j customers6.

6Actually, (110) and (111) hold for any mapping αi : IN→ [0,∞) such that αi(0) = 0.
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Then, the product-form result (109) becomes (the stability condition is unchanged except

that µi must be replaced by µici):

π(n) =
1

G

K
∏

i=1









ni
∏

j=1

1

αi(j)



ni!

(

R
∏

r=1

1

nir!

(

λir

µi

)nir
)



 . (110)

The second extension is maybe more interesting. We may allow for state depending external

arrival rates. Let us first introduce some notation: when the network is in state n let M(n)

be the total number of customers in the network, that is, M(n) =
∑K

i=1 ni.

We shall assume that the external arrival rate of customers of class r at node i maybe a

function of the total number of customers in the network. More precisely, we shall assume

that the external arrival rate of customers of class r at node i when the system is in state n

is of the form λ0
irγ(M(n)), where γ is an arbitrary function from IN into [0,∞).

We have the following result:

The product-form property is preserved in a multiclass open/closed/mixed Jackson network

with M/M/c nodes and state-dependent external arrivals as defined above, and is given by

π(n) =
d(n)

G

K
∏

i=1









ni
∏

j=1

1

αi(j)



ni!

(

R
∏

r=1

1

nir!

(

λir

µi

)nir
)



 . (111)

for all n in the state-space, where

d(n) =
M(n)−1
∏

j=0

γ(j),

where d(n) = 1 if the network is closed.

This extension is particularly appealing in the context of communication networks since it

may be used to model flow control mechanisms, namely, mechanisms that prevent congestion

by denying access of packets to the network when it is too loaded.

This result may be further extended to the case when the external arrival rate of customers

of class r at node i depends on the current total number of customers in the subchain that

contains (i, r).

So far, only networks composed of M/M/c queues have been considered. Such nodes have

obvious limitations in terms of the systems they can model:
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• the service times must be exponential;

• the service times must all have the same d.f., namely, there are all exponential with

the same parameter;

• the service discipline must be First-Come-First-Served (FCFS).

We now introduce three new types of nodes that will preserve the product-form result:

Processor Sharing (PS), Last-Come-First-Served (LCFS) and the Infinite Servers (IS) nodes.

5.2 The Multiclass PS Queue

There are R classes of customers. Customers of class r enter the network according to

a Poisson process with rate λr and require an exponential amount of service time with

parameter µr. The K Poisson processes and service time processes are all assumed to be

mutually independent processes.

There is a single server equipped with an infinite buffer. At any time. the server delivers

service to customer of class r at a rate of µr nr/|n| when there are n1 customers of class 1,

. . ., nR customers of class R in the system, for r = 1, 2, . . . , R, with |n| := ∑R
r=1 nr for all

n = (n1, . . . , nR) ∈ INR.

Define π(n) := limt→∞ P (X1(t) = n1, . . . , XR(t) = nR) to be the j.d.f. of the number

customers of class 1, . . . , R in the system in steady-state, where Xr(t) is the number of

customers of class r in the system at time t.

Define ρr := λr/µr for r = 1, 2, . . . , R.

We have the following result:

Result 5.2 (Queue-length j.d.f. in a multiclass PS queue) If
∑R

r=1 ρr < 1 (stability

condition) then

π(n) =
|n|!
G

R
∏

r=1

ρnr
r

nr!
(112)

for all n = (n1, . . . , nR) ∈ INR, where

G =
∑

n∈INR

|n|!
R
∏

r=1

ρnr
r

nr!
(113)
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Proof. Since the arrival processes are Poisson and the service times are exponential it is seen

that ((X1(t), . . . , XR(t)), t ≥ 0) is an irreducible C.-M.C. with state-space INR. Therefore,

it suffices to check that (112) satisfies the balance equations.

The balance equations are:

π(n)
R
∑

r=1

(

µr
nr

|n| + λr

)

=
R
∑

r=1

π(n− er)λr 1(nr > 0) +
R
∑

r=1

π(n+ er)µr
nr + 1

|n+ er|
(114)

for all n ∈ INR.

Introducing (112) (after substituting n for n+ er) in the second term in the right-hand side

of (114) yields

R
∑

r=1

π(n+ er)µr
nr + 1

|n+ er|
=

1

G

R
∑

r=1

|n+ er|!




R
∏

s=1,s6=r

ρns
s

ns!





ρnr+1
r

(nr + 1)!
µr

nr + 1

|n+ er|

= π(n)
R
∑

r=1

|n+ er|!
|n|!

λr

nr + 1

nr + 1

|n+ er|

= π(n)
R
∑

r=1

λr. (115)

Similarly, we get that the first term in the right-hand side of (114) satisfies

R
∑

r=1

π(n− er)λr 1(nr > 0) = π(n)
R
∑

r=1

µr
nr

|n|! . (116)

Adding now the terms in the right-hand sides of (115) and (116) gives us the left-hand side

of (114), which concludes the proof.

The remarkable result about the PS queue is the following: the j.d.f. π(n) of the number

of customers of class 1, 2, . . . , R is given by (112) for any service time distribution of the

customers of class 1, 2, . . . , R ! In other words, (112) is insensitive to the service time

distributions. The proof is omitted.

In particular, if the service time of customers of class r is constant and equals to Sr for

r = 1, 2, . . . , R, then

π(n) =
|n|!
G

R
∏

r=1

(λr Sr)
nr

nr!
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for all n ∈ INR, provided that λr < 1/Sr for r = 1, 2, . . . , R.

5.3 The Multiclass LCFS Queue

There are R classes of customers. Customers of class r enter the network according to

a Poisson process with rate λr and require an exponential amount of service time with

parameter µr. The K Poisson processes and service time processes are all assumed to be

mutually independent processes.

There is a single server equipped with an infinite buffer. The service discipline is LCFS.

Define π(n) := limt→∞ P (X1(t) = n1, . . . , XR(t) = nR) to be the j.d.f. of the number

customers of class 1, . . . , R in the system in steady-state, where Xr(t) is the number of

customers of class r in the system at time t.

The following result holds:

Result 5.3 (Queue-length j.d.f. in a multiclass LCFS queue) If
∑R

r=1 ρr < 1 (sta-

bility condition) then

π(n) =
|n|!
G

R
∏

r=1

ρnr
r

nr!
(117)

for all n = (n1, . . . , nR) ∈ INR, where

G =
∑

n∈INR

|n|!
R
∏

r=1

ρnr
r

nr!
(118)

2

Observe that the j.d.f. π(n) is the same as in the PS queue!

Proof. Here, ((X1(t), . . . , XR(t)), t ≥ 0) is not a C.-M.C. (can you see why?). A C.-M.C.

for this queue is given ((I1(t), . . . , IN(t)), t ≥ 0) where Ij(t) ∈ {1, 2, . . . , R} is the class of the
customer in the j-th position in the waiting room at time t and N(t) is the total number of

customers in the queue at time t.

The balance equations for this C.-M.C. are:

π′(r1, . . . , rn−1, rn)

(

µrn
+

R
∑

r=1

λr

)

= λrn
π′(r1, . . . , rn−1) +

R
∑

r=1

π′(r1, . . . , rn, r)µr (119)
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for all (r1, . . . , rn−1, rn) ∈ {1, 2, . . . , R}n, n = 1, 2, . . ., and

π′(0)
R
∑

r=1

λr =
R
∑

r=1

π′(r)µr (120)

where π′(0) is the probability that the system is empty.

It is straightforward to check that

π′(r1, . . . , rn) =
1

G

n
∏

i=1

ρri
for n = 1, 2, . . . (121)

π′(0) =
1

G

satisfies the balance equations, where G is the normalizing constant.

Recall that |n| = ∑n
i=1 ni for all n = (n1, . . . , nR). For every fixed vector n = (n1, . . . , nR) ∈

INR, let S(n1, . . . , nR) denote the set of all vectors in {1, 2, . . . , R}|n| that have exactly n1

components equal to 1, n2 components equal to 2, . . ., and nR components equal to R.

Clearly, we have

π(n) =
∑

(i1,...,i|n|)∈S(n1,...,nR)

π′(i1, . . . , i|n|) (122)

for all n ∈ INR, n 6= 0, and π(0, . . . , 0) = π′(0) = 1/G. ¿From (121) and (122) we readily get

(117).

Again, we have the remarkable result that the product-form result (117) for the LCFS queue

is insensitive to the service time distribution. The proof omitted.

5.4 The Multiclass IS Server Queue

There is an infinite number of servers so that a new customer enters directly a server. This

queue is used to model delay phenomena in communication networks, for instance.

We keep the notation introduced in the previous sections. In particular, π(n) is the j.d.f.

that the number of customers of class 1, . . . , R in steady-state (or, equivalently, the number

of busy servers) is n1, . . . , nR.

We have the following result:
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Result 5.4 (Queue-length j.d.f. in a multiclass IS queue) For all n ∈ INR,

π(n) =
1

G

R
∏

r=1

ρnr
r

nr!
(123)

where

G =
∑

n∈INR

R
∏

r=1

ρnr
r

nr!
(124)

2

Observe that π(n) is not equal to the corresponding quantity for PS (resp. LCFS) queues.

Proof. The process ((X1(t), . . . , XR(t)) t ≥ 0) is a C.-M.C. The balance equations are:

π(n)
R
∑

r=1

(λr + µr nr) =
K
∑

r=1

π(n− er)λr +
K
∑

r=1

π(n+ er)µr (nr + 1) (125)

for all n = (n1, . . . , nR) ∈ INR.

It is easily checked that (123) satisfies the balance equations (125), which completes the

proof.

Note that (123) holds for any values of the parameters (ρr)r, or, equivalently, that an IS

queue is always stable.

Again the product-form result (123) is insensitive to the service time distributions (proof

omitted).

5.5 BCMP etworks

We now come to one of the main results of queueing network theory. Because of this re-

sult modeling and performance evaluation became popular in the late seventies and many

queueing softwares based on the BCMP theorem became available at this time 7 (QNAP2

(INRIA-BULL), PAW (AT&T), PANACEA (IBM), etc.). Since then, queueing softwares

have been continuously improved in the sense that they contain more and more analytical

(e.g., larger class of product-form queueing models) and simulation tools (e.g., animated,

7This list is not at all exhaustive!

61



monitored, and controlled simulations), and are more user-friendly (e.g., graphical inter-

faces). Most queueing softwares are essentially simulation oriented (PAW, for instance); a

few are hybrid (QNAP, PANACEA), meaning that they can handle both analytical models

— queueing networks for which the “solution” is known explicitely, like open product-form

queueing networks, or can be obtained through numerical procedures, like closed product-

form queueing networks and closed markovian queueing networks — and simulation models.

Simulation is more time and memory consuming but this is sometimes the only way to get

(reasonably) accurate results. However, for large (several hundreds of nodes or more) non-

product queueing networks both analytical and simulation models are not feasible in general,

and one must then resort to approximation techniques. Approximation and simulation tech-

niques will be discussed later on in this course.

We now state the so-called BCMP Theorem. It was obtained by F. Baskett, K. M. Chandy,

R. R. Muntz and F. G. Palacios and their paper was published in 1975 (“Open, Closed, and

Mixed Networks of Queues with Different Classes of Customers”, Journal of the Association

for the Computing Machinery , Vol. 22. No. 2, April 1975, pp. 248-260). This paper reads

well and contain several simple examples that illustrate the main result.

A few words about the terminology.

We say that a node is of type FCFS (resp. PS, LCFS, IS) if it is a FCFS M/M/c queue

(resp. PS, LCFS, IS queue, as defined above).

If node i is of type FCFS (we shall write i ∈ {FCFS}) then ρir := λir/µi for r = 1, 2, . . . , R.

As usual, µi is the parameter of the exponential service times in node i.

If node i is of type PS, LCFS, or IS (we shall write i ∈ {PS,LCFS, IS}) then ρir := λir/µir

for r = 1, 2, . . . , R. Here, 1/µir is the mean service time for customers of type r in node i.

For nodes of type PS, LCFS, or IS the service time distribution is arbitrary.

Recall that λir is the solution to the traffic equations in Result 5.1. More precisely, if (i, r)

belongs to an open chain then λir is a solution to the first set of traffic equations in Result

5.1; otherwise, it is a solution to the second set of traffic equations.

Also recall the definition of αi(j) for i ∈ {FCFS} as well as the definition of γ(j).

We have the following result:

Result 5.5 (BCMP Theorem) For a BCMP network with K nodes and R classes of

customers, which is open, closed or mixed in which each node is of type FCFS, PS, LCFS,
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or IS, the equilibrium state probabilities are given by

π(n) =
d(n)

G

K
∏

i=1

fi(ni) (126)

Formula (126) holds for any state n = (n1, . . . , nK) in the state-space S (that depends on the
network under consideration) with ni = (ni1, . . . , niR), where nir is the number of customers

of class r in node i. Moreover (with |ni| =
∑R

r=1 nir for i = 1, 2, . . . , K),

• if node i is of type FCFS, then

fi(ni) = |ni|!
|ni|
∏

j=1

1

αi(j)

R
∏

r=1

ρnir

ir

nir!
; (127)

• if node i is of type PS or LCFS, then

fi(ni) = |ni|!
R
∏

r=1

ρnir

ir

nir!
; (128)

• if node i is of type IS, then

fi(ni) =
R
∏

r=1

ρnir

ir

nir!
. (129)

In (126), G < ∞ is the normalizing constant chosen such that
∑

n∈S π(n) = 1, d(n) =
∏M(n)−1

j=0 γ(j) if the arrivals in the system depend on the total number of customers M(n) =
∑K

i=1 |ni| when the system is in state n, and d(n) = 1 if the network is closed.

2

It is worth observing that the convergence of the series
∑

n∈S π(n) imposes conditions on the

parameters of the model, referred to as stability conditions .

The proof of Result 5.5 consists in writing down the balance equations for an appropriate C.-

M.C. (can you see which one?), guessing a product-form solution, checking that this solution

satisfies the balance equations, and finally aggregating the states in this solution (has done

in Section 5.3) to derive (126).

Observe that (126) is a product-form result: node i behaves as if it was an isolated FCFS

(resp. PS, LCFS, IS) node with input rates (λir)
R
r=1 if i ∈ {FCFS} (resp. i ∈ {PS},

i ∈ {LCFS}, i ∈ {IS}).
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Further generalizations of this result are possible: state-dependent routing probabilities,

arrivals that depend on the number of customers in the subchain they belong to, more

detailed state-space that gives the class of the customer in any position in any queue, etc.

The last two extensions can be found in the BCMP paper whose reference has been given

earlier.

Obtaining this result was not a trivial task; the consolation is that it is easy to use (which,

overall, is still better than the contrary!). Indeed, the only thing that has to be done is to solve

the traffic equations to determine the arrival rates (λir)i,r, and to compute the normalizing

constant G. For the latter computation, an extended convolution algorithm exists as well as

many others. When you use a (hybrid) queueing software, these calculations are of course

performed by the software. What you only need to do is to enter the topology of the network,

that is, K the number of nodes and their type, R the number of classes, [pi,r;j,s] the matrix

of routing probabilities, and to enter the values of the external arrival and service rates,

namely, (λ0
ir γ(j), j = 0, 1, 2 . . .)i,r the external arrival rates, (µiαi(j), j = 0, 1, 2, . . .)i the

service rates for nodes of type FCFS, and (µir)i,r the service rates of customers of class

r = 1, 2, . . . , R visiting nodes of type {PS,LCFS, IS}.

A further simplification in the BCMP theorem is possible if the network is open and if the

arrivals do not depend upon the state of the system.

IntroduceRi = {class r customers that may require service at node i}. Define ρi =
∑

r∈Ri
ρir

(ρir has been defined earlier in this section). Let πi(n) be the probability that node i contains

n customers.

We have the following result:

Result 5.6 (Isolated node) For all n ≥ 0,

πi(n) = (1− ρi) ρ
n
i

if i ∈ {FCFS, PS, LCFS}, and

πi(n) = e−ρi
ρni
n!

if i ∈ {IS}.

2
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6 Case Studies

In this section we shall examine two systems and determine their performance measures by

building simple models. The first study will require the application of Jackson’s result. The

second one will require the application of the BCMP Theorem.

6.1 Message-Switching Network

We consider a M -channel, N -node message-switching communication network. The M com-

munication channels are supposed to be noiseless, perfectly reliable, and to have a capacity

denoted by Ci bits per second for channel i. The N nodes refer to the message-switching

centers which are also considered to be perfectly reliable, and in which all of the message-

switching functions take place, including such things as message reassembly, routing, buffer-

ing, acknowledging, and so on.

We will assume that the nodal processing time at each node is constant and equal to K. In

addition, there are of course the channel queueing delays and the transmission delays.

We will assume that the (external) traffic entering the network forms a Poisson process with

rate γjk (messages per second) for those messages originating at node j and destined for

node k. Let

γ =
N
∑

j=1

N
∑

k=1

γjk

be the total external traffic rate.

All messages are assumed to have lengths that are drawn independently from an exponential

distribution with mean 1/µ (bits). In order to accomodate these messages, we assume that

all nodes in the network have unlimited storage capacity.

We will further assume for the sake of simplicity that there exists a unique path through the

network for a given origin-destination pair (this assumption is not essential).

In high-speed networks spanning large geographical areas it may be important to include

the propagation time Pi which is the time required for a single bit to travel along channel i,

i = 1, 2, . . . ,M . If the channel has a length of li km then Pi = li/v where v is the speed of

light. Thus, if a message has a length b bits then the time it occupies channel i will be

Pi +
b

Ci

sec. (130)
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Note that the randomness in the service time comes not from the server (the channel) but

from the customer (the message) in that the message length is a random variable b̃.

At first glance, the network we have defined so far is similar to an open Jackson queueing

network. However, this is not true since in the present network the service times at different

nodes may not be independent unlike in a Jackson network. This follows from the fact that

the service time of a message is directly related to its length (see (130)) and from the fact

that a message will in general visit several nodes along its route in the network. Except

for this difficulty, one could apply Jackson’s result to this network immediately. We will

continue this discussion later on.

Since each channel in the network is considered to be a separate server, we adopt the notation

λi as the average number of messages per second which travel over channel i. As with the

external traffic we define the total traffic rate within the network by

λ =
M
∑

i=1

λi. (131)

The message delay is the total time that a message spends in the network. Of most interest

is the average message delay T and we take this as our basic measure performance.

We shall say that a message is of type (j, k) if the origin of the message is node j and its

destination is node k.

Define the quantity

Zjk = E [message delay for a message of type (j, k)] .

It should be clear that

T =
N
∑

j=1

N
∑

k=1

γjk
γ

Zjk (132)

since the fraction γjk/γ of the total traffic will suffer the delay Zjk on the average. Note that

(132) represents a decomposition of the network on the basis of origin-destination pairs.

Our goal is to solve for T . Let us denote by ajk the path taken by messages that originate

at node j and that are destined for node k. We say that the channel i (of capacity Ci) is

contained in ajk if messages of class (j, k) traverse channel i; in such case we use the notation

Ci ∈ ajk.

It is clear therefore that the average rate of message flow λi on channel i must be equal to
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the sum of the average message flows of all paths that traverse this channel, that is,

λi =
∑

{(j,k) :Ci∈ajk}

γjk. (133)

Moreover, we recognize that Zjk is merely the sum of the average delays encountered by a

message in using the various channels along the path ajk. Therefore,

Zjk =
∑

{i :Ci∈ajk}

Ti (134)

where Ti is expected time spent waiting for and using channel i.

¿From (132) and (134) we have

T =
N
∑

j=1

N
∑

k=1

γjk
γ

∑

{i :Ci∈ajk}

Ti.

We now exchange the order of summations and observe that the condition on i becomes the

corresponding condition on the pair (j, k) as it is usual when interchanging summations; this

yields

T =
M
∑

i=1

Ti

γ

∑

{(j,k) :Ci∈ajk}

γjk.

Using (133) we finally have

T =
M
∑

i=1

λi

γ
Ti. (135)

We have now decomposed the average message delay into its single-channel components,

namely the delay Ti.

We are now left with computing Ti. L. Kleinrock discussed the problem of modeling this

network as a Jackson network despite the fact that the (exponential) service times at different

nodes are not independent. Through numerous simulation results he got to the conclusion

that if messages entering a given channel depart on several channels or if messages leaving the

node on a given channel had entered from distinct channels, then the following assumption

is reasonable:

Independence Assumption: each time a message is received at a node within the network,

a new length, b, is chosen independently with the density function µ exp(−µx) for x ≥ 0.

¿From now on we shall assume that this assumption holds. Assume first that Pi = 0

(no propagation delay) and K = 0 (no nodal processing time). Under this independence
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assumption between the service times at different nodes, we know from the Jackson result

that channel i is now representable as an M/M/1 queue with arrival rate λi and service rate

µCi.

If the stability condition λi < µCi for i = 1, 2, . . . ,M holds, then the solution for Ti is given

by

Ti =
1

µCi − λi

∀i = 1, 2, . . . ,M.

If Pi 6= 0 and K > 0 then

Ti =
1

µCi − λi

+ Pi +K

and so, from (135) we obtain

T =
M
∑

i=1

λi

γ

(

1

µCi − λi

+ Pi +K

)

. (136)

We now want to solve the following optimization problem called the

Capacity Assignment Problem:

Given: Flows {λi}Mi=1 and network topology
Minimize: T
With respect to: {Ci}Mi=1

Under the constraint: D =
∑M

i=1 Ci.

To solve this problem we will use the Lagrange multipliers. Let us recall what Lagrange

multipliers are.

Let f(x1, . . . , xn) be an expression whose extreme values are sought when the variables are

restricted by a certain number of side conditions, say g1(x1, . . . , xn) = 0, . . . , gm(x1, . . . , xn) =

0. We then form the linear combination

h(x1, . . . , xn) = f(x1, . . . , xn) +
m
∑

k=1

βk gk(x1, . . . , xn)

where β1, . . . , βm are m constants, called the Lagrange multipliers. We then differentiate h

with respect to each xi and consider the system of n+m equations:

∂

∂xi

h(x1, . . . , xn) = 0 i = 1, 2, . . . , n

gk(x1, . . . , xn) = 0 k = 1, 2, . . . ,m.
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Lagrange discovered that if the point (x1, . . . , xn) is a solution of the extremum problem

then it will also satisfy this system of n+m equations. In practice, one attemps to solve this

system for the n+m “unknown” x1, . . . , xn, β1, . . . , βm. The points (x1, . . . , xn) so obtained

must then be tested to determine whether they yield a maximum, a minimum, or neither.

We now come back to our optimization problem. We shall assume without loss of generality

that Pi = 0 for i = 1, 2, . . . ,M and K = 0.

Setting ρi = λi/µ we see from (136) that

T =
1

γ

M
∑

i=1

ρi
Ci − ρi

The stability condition now reads ρi < Ci for i = 1, 2, . . . ,M . Observe, in particular, that
∑M

i=1 ρi <
∑M

i=1 Ci = D under the stability condition.

Define

f(C1, . . . , CM) =
1

γ

M
∑

i=1

ρi
Ci − ρi

+ β

(

M
∑

i=1

Ci −D

)

.

According to Lagrange, we must solve the equation ∂f(C1, . . . , Cn)/∂Ci = 0 for every i =

1, 2, . . . , N . We obtain

Ci = ρi +

√

ρi
γβ

i = 1, 2, . . . ,M. (137)

It remains to determine the last unknown β. ¿From the constraint
∑M

i=1 Ci = D we see from

(137) that

1√
γβ

=
D −∑M

i=1 ρi
∑M

i=1

√
ρi

.

Introducing this value of 1/
√
γ β in (137) finally yields

Ci = ρi +

√
ρi

∑M
i=1

√
ρi

(

D −
M
∑

i=1

ρi

)

i = 1, 2, . . . ,M. (138)

We observe that this assignment allocates capacity such that each channel receives at least

ρi (which is the minimum under the stability condition) and then allocates some additional

capacity to each.
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6.2 Buffer Overflow in a Store-and-Forward Network

We consider a communication network with N nodes where packets traverse the network in

a store-and-forward fashion. After a node transmits a packet to another node (nodes are

called IMP’s in the networking terminology, where the acronym IMP stands for Interface

Message Processor), it waits for a positive acknowledgment (ACK) from the receiving node

before relinquishing responsability for the packet (i.e., upon reception of an ACK the copy

of the acknowledged packet that had been created upon arrival of the packet is destroyed).

If a node does not receive an ACK within a given interval of time (timeout), the packet is

retransmitted after a suitable interval of time. Upon receipt of a packet, the receiving node

checks for transmission errors (e.g., parity errors) and determines whether there is enough

room to store the packet. If there is room for the packet and if it is error-free, the receiving

node issues an ACK to the sending node. In this fashion, a packet travels over the links

between the source node and the destination node.

In the absence of congestion control mecanisms it is well-know that the throughput of the

network as function of the offered load has a knee shape: it linearly increases up to a certain

value λ0 of the offered load and then rapidly decreases to 0. We say that the network is

congested when the offered load is larger than λ0. The congestion mode yields high response

times and unstability in the network, and is therefore highly undesirable. The congestion

mode can be avoided by controlling the access to the network.

A commonly used mecanism is a mecanism where at each IMP the number of packets waiting

for an ACK can not exceed a given value; new packets arriving at the node when this value

is reached are rejected (i.e., no ACK is sent).

We shall assume that node i cannot contain more than Ki non-acknowledged packets. Even

if we take Markovian assumptions for the arrival traffic (Poisson assumption) and for the

transmission times (exponential transmission times), this network cannot be modeled as a

product-form queueing network (Jackson network, BCMP network) because of the blocking

phenomena.

We are going to present an approximation method that will enable us to determine the buffer

overflow at each node in the network.

We first model and study a single node in the network, say node i.

Node i is composed of

(1) a central processor denoted as station 0;

(2) Oi output channels denoted as stations 1, 2, . . . , Oi;
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(3) Oi timeout boxes denoted as stations 1′, 2′ . . . , O′i;

(4) Oi ACK boxes denoted as stations 1′′, 2′′ . . . , O′′i .

Upon arrival of a new packet at node i the central processor checks for errors and determines

whether there is room for this packet in the node; depending upon the outcome of these tests

an ACK is sent to the transmitting node or the packet is discarded at once (and no ACK is

sent).

Assume that an ACK is sent. Then, the processor determines the destination of the accepted

packet and places it on the appropriate output channel buffer. Packets are then transmitted

over the appropriate output line. Let {0, 1, 2, . . . , O(i)} denote the set of lines out of node

i, where line 0 represents the exit from the network.

At the receiving node, the process is repeated. The transmission-retransmission process

is modeled by the timeout and the ACK boxes. More precisely, it is assumed that with

probability qij the attempted transmission over output channel j = 1, 2, . . . , Oi fails, either

through blocking or through channel error. We model this event as having the packet enter

the timeout box where it resides for a random interval of time. The probability of successful

transmission over output channel j (i.e., 1 − qij) is modeled as having the packet enter

the ACK box for a random period of time. The time in the output channel represents the

transmission time to the destination node. The residence times in ACK boxes represent such

quantities as propagation and processing times at the receiver.

Let Eij be the probability that a packet sent over the channel (i, j) has one or more bits in

error. Let Bi be the blocking probability at station i. Assuming that nodal blocking and

channel errors are independent events, the steady-state probability 1 − qij of success for a

packet transmitted over channel (i, j) is given by

1− qij = (1− Eij) (1−Bj). (139)

With probability (1− qij)(qij)
n a packet is retransmitted exactly n times over channel (i, j)

before success. Hence, the mean number of transmissions for a packet over channel (i, j) is

1/(1− qij).

Let us prove this result. We have that qij is the probability that a transmission over channel

(i, j) fails. The probability of having n retransmissions is (1− qij) q
n
ij and the mean number

of retransmissions for a packet is

(1− qij)
∑

n≥0

n qnij =
qij

1− qij
.
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(Hint: use the fact that
∑

n≥0 x
n = 1/(1 − x) for |x| < 1 and differentiate this series to get

∑

n≥1 nx
n−1 = 1/(1− x)2.)

Therefore, the mean number of transmissions per packet is 1 + qij/(1− qij) = 1/(1− qij).

Statistical Assumptions:

We assume that the packets arrive at node i according to a Poisson process with rate γi.

With the probability pij, j = 1, 2, . . . , Oi, a packet is destined to output j.

The packets are assumed to have exponential length. Therefore, each output channel is

modeled as a FCFS queue with service rate µij, j = 1, 2, . . . , Oi. The central processor is

also modeled as a FCFS queue with service rate µi. Each timeout box and each ACK box

is modeled as an IS queue. We denote by 1/τij and 1/αij the mean service time in timeout

box and in ACK box j, respectively, for j = 1, 2, . . . , Oi.

Under these assumptions node i is actually an open BCMP network with 3Oi + 1 stations

including Oi + 1 FCFS stations and 2Oi IS stations, and depending arrival rate γi(n) given

by

γi(n) =

{

γi if |n| < Ki

0 otherwise

where n = (n0, n1, . . . , nOi
, n′1, . . . , n

′
Oi
, n′′1, . . . , n

′′
Oi
) with |n| ≤ Ki. Here n0, nj, n

′
j and n′′j

are the number of customers in station 0, j, j ′ and j′′, respectively, in state n.

Let us solve for the traffic equations. Let λi, λij, λ
′
ij and λ′′ij be the arrival rate in station 0,

j, j′ and j′′, respectively, for j = 1, 2, . . . , Oi.

The traffic equations read

λi = γi

λij = λi pij + λ′ij

λ′ij = λij qij

λ′′ij = λij (1− qij)

for j = 1, 2, . . . , Oi.

We find

λij =
γi pi j
1− qij
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λ′ij =
qij

1− qij
γi pij

λ′′ij = γi pij

for j = 1, 2, . . . , Oi.

Let πi(n) be the stationary probability of being in state n ∈ Si where

Si = {(n0, n1, . . . , n0i
, n′1, . . . , n

′
Oi
, n′′1, . . . , n

′′
Oi
) : |n| ≤ Ki}.

Here n0, nj, n
′
j and n′′j are the number of customers in station 0, j, j ′ and j′′, respectively,

for j = 1, 2, . . . , Oi, when node i is in state n.

¿From the BCMP result we have:

πi(n) =
1

Gi

(

γi
µi

)n0 Oi
∏

j=1







(

λij

µij

)nj 1

n′j!

(

λ′ij
τij

)n′
j 1

n′′j!

(

λ′′ij
αij

)n′′
j







(140)

for all n ∈ Si and

πi(n) = 0 for n 6∈ Si,

where Gi is a normalizing constant chosen such that
∑

n∈Si
πn(n) = 1.

Let Bi be the blocking probability in node i, namely,

Bi =
∑

n∈Si,|n|=Ki

πi(n). (141)

Having found the probability of blocking for a node for a given amount of traffic into the node,

we now consider the entire network. To properly interface the single node results, we invoke

the conservation flows principle, namely, the total flow out must equal the total flow in.

Let Λi be the effective arrival rate at node i for i = 1, 2, . . . , N . Under equilibrium conditions,

we must have

Λi = λ0
i +

N
∑

j=1

Λj pji

where λ0
i is the input rate at node i in packets per second of packets coming from outside

the network.

Because of retransmissions, the total arrival rate γi at node i is actually larger than Λi. We

have already seen that the mean number of transmissions for a packet over channel (i, j) is

1/(1− qij).
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Hence, the total arrival rate γi at node i is given by

γi =
λ0
i

1− q0i
+

N
∑

j=1

Λj

1− qji
pji

=





λ0
i

1− E0i

+
N
∑

j=1

Λj

1− Eji

pji





1

1−Bi

(142)

for i = 1, 2, . . . , N .

By pluging the values of γi, i = 1, 2, . . . , N , in (141) we obtain a set of N nonlinear equations

which can be solved for the N blocking probabilities,

Bi = fi(B1, . . . , BN) (143)

for i = 1, 2, . . . , N .

This set of nonlinear equations can be solved by using the Newton-Raphson method. Define

B = (B1, . . . , BN) and f = (f1, . . . , fN).

Starting with an initial value B0 for B, the Newton-Raphson method successively generates

a sequence of vectors B1, B2, . . . , Bk, . . . that converges to a solution of (143).

More precisely,

Bk+1 = Bk − [I −∇f(Bk)]−1 [Bk − f(Bk)]

where I is the N -by-N identity matrix, and where ∇f , the gradient of f with respect to B,

is defined to be the following N -by-N matrix







































∂f1

∂B1

. . .
∂f1

∂BN

∂f2

∂B1

. . .
∂f2

∂BN

...
...

...

∂fN
∂B1

. . .
∂fN
∂BN







































.

For a stopping condition, define the k-th estimation error estimate to be

ηk =
‖f(Bk)−Bk‖
‖f(Bk)‖
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where

‖x‖ =
√

√

√

√

N
∑

i=1

x2
i

for x = (x1, . . . , xN). Bk is accepted as a solution if ηk is smaller than some prespecified

convergence tolerance.

7 Queueing Theory (continued)

7.1 The FCFS GI/GI/1 Queue

A GI/GI/1 queue is a single server queue with arbitrary, but independent, service times and

interarrival times. More precisely, let sn be the service time of the n-th customer, and let τn
be the time between arrivals of customers n and n+ 1.

In a GI/GI/1 queue we assume that:

A1 (sn)n is a sequence of independent random variables with the common cumulative

distribution function (c.d.f.) G(x), namely, P (sn ≤ x) = G(x) for all n ≥ 1, x ≥ 0;

A2 (sn)n is a sequence of independent random variables with the common c.d.f. F (x),

namely, P (τn ≤ x) = F (x) for all n ≥ 1, x ≥ 0;

A3 sn and τm are independent r.v.’s for all m ≥ 1, n ≥ 1.

We shall assume that F (x) and G(x) are both differentiable in [0,∞) (i.e., for every n ≥ 1,

sn and τn each have a density function).

In the following, we shall assume that the service discipline is FCFS. Let λ = 1/E[τn] and

µ = 1/E[sn] be the arrival rate and the service rate, respectively.

Let Wn be the waiting time in queue of the n-th customer.

The following so-called Lindley’s equation holds:

Wn+1 = max(0,Wn + sn − τn) ∀n ≥ 1. (144)

¿From now on, we shall assume without loss of generality that W1 = 0, namely, the first

customer enters an empty system.
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It can be shown that the system is stable, namely, limn→∞ P (Wn ≤ x) = P (W ≤ x) for all

x ≥, where W is an almost surely finite r.v., if

λ < µ (145)

which should not be a surprising result. The proof of (145) is omitted (if λ > µ then the

system is always unstable, that is, the queue is unbounded with probability one).

Let W := limn→∞Wn under the stability condition (145).

Define φ(θ) = E[exp(θ(sn − τn)] the Laplace transform of the r.v. sn − τn. We shall assume

that there exists c > 0 such that φ(c) <∞. In practice, namely for all interesting c.d.f.’s for

the interarrival times and service times, this assumption is always satisfied.

Therefore, since φ(0) = 1 and since

φ′(0) = E[sn − τn] = (λ− µ)/(λµ) < 0

from (145), we know that there exists θ > 0 such that φ(θ) < 1.

Our goal is to show the following result:

Result 7.1 (Exponential bound for the GI/GI/1 queue) Assume that λ < µ. Let

θ > 0 be such that φ(θ) ≤ 1.

Then,

P (Wn ≥ x) ≤ e−θx ∀x > 0, n ≥ 1 (146)

and

P (W ≥ x) ≤ e−θx ∀x > 0. (147)

2

The proof is remarkably simple for such a general queueing system and is due to J. F. C.

Kingman (“Inequalities in the Theory of Queues”, Journal Royal Statistical Society , Series

B, Vol. 32, pp. 102-110, 1970).

Proof of Result 7.1: Let f be a non-increasing function on (0,∞) with 0 ≤ f(x) ≤ 1,

such that, for all x > 0,

∫ x

−∞
f(x− y) dH(y) + 1−H(x) ≤ f(x) (148)

where H(x) is the c.d.f. of the r.v. sn − τn, namely, H(x) = P (sn − τn ≤ x) for all

x ∈ (−∞,∞), and where dH(x) := H ′(x) dx.
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Let us show that
P (Wn ≥ x) ≤ f(x) ∀x > 0, n ≥ 1. (149)

We use an induction argument.

The result is true for n = 1 since W1 = 0. Therefore, P (W1 ≥ x) = 0 ≤ f(x) for all x > 0.

Assume that P (Wm ≥ x) ≤ f(x) for all x > 0, m = 1, 2, . . . , n and let us show that this is

still true for m = n+ 1.

We have, for all x > 0 (cf. (144)),

P (Wn+1 ≥ x) = P (max(0,Wn + sn − τn) ≥ x)

= P (Wn + sn − τn ≥ x)

since for any r.v. X, P (max(0, X) ≥ x) = 1− P (max(0, X) < x) = 1− P (0 < x,X < x) =

1− P (X < x) = P (X ≥ x) for all x > 0.

Thus, for all x > 0,

P (Wn+1 ≥ x) = P (Wn + sn − τn ≥ x)

=
∫ ∞

−∞
P (Wn ≥ x− y | sn − τn = y) dH(y)

=
∫ ∞

−∞
P (Wn ≥ x− y) dH(y) since Wn is independent of sn and τn

=
∫ x

−∞
P (Wn ≥ x− y) dH(y) +

∫ ∞

x
dH(y) since P (Wn ≥ u) = 1 for u ≤ 0

≤
∫ x

−∞
f(x− y) dH(y) + 1−H(x) from the induction hypothesis

≤ f(x)

from (148).

Letting now n→∞ in (149) gives

P (W ≥ x) ≤ f(x) ∀x > 0. (150)

Let us now show that the function f(x) = exp(−θx) satisfies (148) which will conclude the

proof. We have

∫ x

−∞
eθ(y−x) dH(y) + 1−H(x)

= e−θx
∫ ∞

−∞
eθy dH(y)−

∫ ∞

x
eθ(y−x) dH(y) + 1−H(x)
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= e−θx φ(θ)−
∫ ∞

x

(

eθ(y−x) − 1
)

dH(y)

≤ e−θx

since φ(θ) ≤ 1 by assumption and exp(θ(y − x))− 1 ≥ 0 for all y ≥ x.

Remark 7.1 (Independence of Wn and (sn, τn)) In the proof of Result 7.1, we have used

the fact that Wn is independent of the r.v.’s sn and τn. This result comes from the fact

that, for all n ≥ 2, Wn is only a function of s1, . . . , sn−1, τ1, . . . , τn−1. More precisely, it is

straighforward to see from (144) and the initial condition W1 = 0 that

Wn = max



0, max
i=1,2,...,n−1

n−1
∑

j=i

(si − τi)



 ∀n ≥ 2. (151)

Therefore, Wn is independent of sn and τn since sn and τn are independent of (si, τi)
n−1
i=1 from

assumptions A1, A2 and A3.

Remark 7.2 ((Wn)n is a Markov chain) Let us show that (Wn)n is a discrete-time con-

tinuous-time Markov chain. For this, we must check that P (Wn+1 ≤ y |W1 = x1, . . . ,Wn−1 =

xn−1,Wn = x) is only a function of x and y, for all n ≥ 1, x1, . . . , xn−1, x, y in [0,∞).

We have from (144)

P (Wn+1 ≤ y |W1 = x1, . . . ,Wn−1 = xn−1,Wn = x)

= P (max(0, x+ sn − τn) ≤ y |W1 = x1, . . . ,Wn−1 = xn−1,Wn = x)

= P (max(0, x+ sn − τn) ≤ y)

since we have shown in Remark 7.1 that sn and τn are independent of Wj for j = 1, 2, . . . , n.

The best exponential decay in (146) and (147) is the largest θ > 0, denoted as θ∗, such that

φ(θ) ≤ 1. One can show (difficult) that θ∗ is actually the largest exponential decay, which

means there does not exist θ such that φ(θ) > 1 and θ > θ∗.

¿From Result 7.1 we can easily derive an upper bound for E[Wn] and E[W ].

Result 7.2 ((Upper bound for the transient and stationary mean waiting time)

Assume that λ < µ. Then,

E[Wn] ≤
1

θ∗
∀n ≥ 2, (152)
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and

E[W ] ≤ 1

θ∗
. (153)

2

Proof. It is known that E[X] =
∫∞
0 P (X > x) dx for any nonnegative r.v. X. From Result

7.1 and the above identity we readily get (152) and (153).

The bound on the stationary mean waiting time obtained in (153) can be improved using

more sophisticated techniques.

7.2 Application: Effective Bandwidth in Multimedia Networks

In high-speed multimedia networks, admission control plays a major role. Because of the

extreme burstiness of some real-time traffic (e.g. video), accepting a new session in a network

close to congestion may be dramatic. On the other hand, rejecting to many users maybe

very costly. Also, because of the high speeds involved, admission control mecanisms must

be very fast in making the decision to accept/reject a new session.

On the other hand, an interesting feature about real-time traffic applications is that they

are able to tolerate a small fraction of packets missing their deadline (e.g., approx. 1% for

voice). Therefore, bounds on the tail distribution of quantities such as buffer occupancy and

response times can be used by designers to size the network as well as to develop efficient

admission control mecanisms.

Assume that the system may support K different types of sessions (e.g., voice, data, images).

Assume that there are n1 active sessions of type 1, . . ., nK active sessions of class K, upon

arrival of a new session of type i. We would like to answer the following questions: should

we accept or rejet this new session so that

Problem 1:
P (W ≥ b) ≤ q (154)

Problem 2:
E[W ] < α (155)

where α, b > 0 and q ∈ (0, 1) are prespecified numbers. Here, W is the stationary delay (i.e.,

waiting time in queue).
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For each problem, the decision criterion has to be simple enough so that decisions to ad-

mit/reject new sessions can be made very rapidly, and easily implementable.

We will first consider the case when the inputs are independent Poisson processes.

7.2.1 Effective Bandwidth for Poisson Inputs

Consider a M/G/1 queue with N (non-necessarily distinct) classes of customers. Customers

of class k are generated according to a Poisson process with rate λk; let Gk(x) be the c.d.f.

of their service time and let 1/µk be their mean service time. We assume that the arrival

time and service time processes are all mutually independent processes.

We first solve the optimization problem (154).

The form of the criterion (154) strongly suggests the use of Result 7.1. For this, we first

need to place this multiclass M/G/1 queue in the setting of Section 1, and then to compute

φ(θ).

First, let us determine the c.d.f. of the time between two consecutive arrivals. Because the

superposition of N independent Poisson processes with rates λ1, . . . , λN is a Poisson process

with rate

λ :=
N
∑

i=1

λi (156)

we have that P (τn ≤ x) = 1− exp(−λx) for all x ≥ 0.

Let us now focus on the service times. With the probability λk/λ the n-th customer will be

a customer of class k. Let us prove this statement. Let Xk be the time that elapses between

the arrival of the n-th customer and the first arrival of a customer of class k. Since the arrival
process of each class is Poisson, and therefore memoryless, we know that Xk is distributed

according to an exponential r.v. with rate λk, and that X1, . . . , XN are independent r.v.’s.

Therefore,

P ((n+ 1)-st customer is of class k) = P (Xk < min
i6=k

Xi)

=
∫ ∞

0
P (x < min

i6=k
Xi)λk e

−λkx dx

=
∫ ∞

0

∏

i6=k

P (x < Xi)λk e
−λkx dx

= λk

∫ ∞

0

N
∏

i=1

e−λix dx
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= λk

∫ ∞

0
e−λx dx

=
λk

λ
.

Let us now determine the c.d.f. G(x) of the service time of an arbitrary customer. We have

G(x) = P (service time new customer ≤ x)

=
N
∑

k=1

P (service time new customer ≤ x and new customer of type k) (157)

=
N
∑

k=1

P (service time new customer ≤ x | new customer of type k)
λk

λ
(158)

Here, (157) and (158) come from the law of total probability and from Bayes’ formula,

respectively.

Thus,

G(x) =
N
∑

k=1

λk

λ
Gk(x). (159)

In particular, the mean service time 1/µ of this multiclass M/G/1 queue is given by

1

µ
=

∫ ∞

0
x dG(x)

=
N
∑

k=1

λk

λ

∫ ∞

0
x dGk(x)

=
N
∑

k=1

ρk
λ

(160)

with ρk := λk/µk.

In other words, we have “reduced” this multiclass M/G/1 queue to a G/G/1 queue where

F (x) = 1− exp(−λx) and G(x) is given by (159).

The stability condition is λ < µ, that is from (156) and (160),

N
∑

k=1

ρk < 1. (161)

¿From now on we shall assume that (161) holds.
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We are now in position to determine φ(θ). We have

φ(θ) = E[eθ(sn−τn)]

= E[eθsn ]E[e−θτn)] since sn and τn are independent r.v.’s

=

(

λ

λ+ θ

)

E[eθsn ] since P (τn ≤ x) = 1− e−λx.

It remains to evaluate E[eθsn ]. We have from (159)

E[eθsn ] =
∫ ∞

0
eθy dG(y)

=
N
∑

k=1

λk

λ

∫ ∞

0
eθy dGk(y).

Therefore,

φ(θ) =
N
∑

k=1

λk

λ+ θ

∫ ∞

0
eθy dGk(y). (162)

¿From (147) we deduce that P (W ≥ b) ≤ q if φ(−(log q)/b) ≤ 1, that is from (162) if

N
∑

k=1

λk

λ− (log q)/b

∫ ∞

0
e−(log q) y/b dGk(y) ≤ 1. (163)

Let us now get back to the original Problem 1. Let ni, i = 0, 1, . . . , K, be integer

numbers such that
∑K

i=1 ni = N and n0 = 0, and assume that customers with class in

{1 +∑i
j=1 nj, . . . ,

∑i+1
j=1 nj} are all identical (i = 0, 1, . . . , K − 1).

Using (156) it is easily seen that (163) can be rewritten as

K
∑

i=1

ni αi ≤ 1 (164)

with

αi :=
λi b (1− φi(−(log q)/b))

log q
(165)

where φi(θ) :=
∫∞
0 exp(θy) dGi(y).

Thus, a new session, that is a new class of customers, say class i, can be admitted in the

system when there are already n1 active sessions of class 1, . . ., nK active sessions of class
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K, if
K
∑

i=1

ni αi + αi ≤ 1. (166)

This result is called an effective bandwidth-type result since αi may be interpreted as the

effective bandwidth required by a session of type i. So, the decision criterion for admit-

ting/rejecting a new session in Problem 1 consists in adding the effective bandwidth re-

quirements of all the active sessions in the system to the effective bandwidth of the new

session and to accept this new session if and only if the sum does not exceed 1.

Let us now focus on Problem 2. We could follow the same approach and use the bounds

in Result 7.2. We shall instead use the exact formula for E[W ] (see the Polloczek-Khinchin

formula (60)).

We have

E[W ] =
λσ2

2 (1− ρ)

where ρ :=
∑N

k=1 ρk =
∑K

i=1 ni ρi and where σ2 is the second-order moment of the service

time of an arbitrary customer.

Let σ2
i be the second-order moment of customers of class i, for i = 1, 2, . . . , K. Using (159)

we see that

σ2 =
K
∑

i=1

ni λi

λ
σ2
i .

Hence,

E[W ] =

∑K
i=1 ni λi σ

2
i

2
(

1−∑K
i=1 ni ρi

) .

Thus, the condition E[W ] < α in Problem 2 becomes

K
∑

i=1

ni λi σ
2
i < 2α

(

1−
K
∑

i=1

ni ρi

)

.

Rearranging terms, this is equivalent to

K
∑

i=1

ni αi < 1 (167)

where

αi = ρi + λi
σ2
i

2α
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for i = 1, 2, . . . , K.

The analytical expression for the effective bandwidth αi is illuminating. Observe that ρi is

the mean workload brought to the system per unit of time by a customer of type i. Therefore,

the effective bandwidth requirement for session i is seen to be larger than ρi. Let α → ∞.

Then, the constraint E[W ] < α becomes
∑K

i=1 ni ρi < 1, which is nothing but that the

stability condition.

Effective bandwidth-type results have lately been obtained for much more general input

processes than Poisson processes (that do not match well bursty traffic). Nowadays, the

research activity that is going on in this area is important since there are many challenging

open problems left.

8 Simulation

8 In the next section you will find a method – known as the Inversion Transform Method

– for generating any random variable (r.v.) with a given cumulative distribution function

(c.d.f.) from a r.v. uniformly distributed in (0, 1).

8.1 The Inversion Transform Method

Let U be a r.v. uniformly distributed in (0, 1). Recall that

P (U ≤ x) = P (U < x) = x (168)

for all x ∈ (0, 1).

Let X be a r.v. with c.f.d. F (x) = P (X ≤ x). Define

F−1(y) = inf {x : F (x) > y} (169)

for y ∈ (0, 1). Observe that F−1(y) is well-defined in (0, 1).

Let ε > 0. From the definition of F−1(y) we have that

F−1(y) < x+ ε =⇒ F (x+ ε) > y. (170)

8Was taken from Chapter 7 of the book by C. H. Sauer and K. M. Chandy entitled Computer Systems

Performance Modeling , Prentice-Hall, Englewoods-Cliff, 1981.
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Indeed, we have that F (F−1(y)) > y by the very definition of F−1(y). Using now the fact

that F (x) is non-decreasing (since any c.d.f. is nondecreasing) we see that if F −1(y) < x+ ε

then

F (x+ ε) ≥ F
(

F−1(y)
)

> y.

Letting ε→ 0 in (170) and remembering that F (x) is right-continuous, yields

F−1(y) ≤ x =⇒ F (x) ≥ y. (171)

On the other hand, we see from (169) that

F (x) > y =⇒ F−1(y) ≤ x. (172)

We have the following result:

Result 8.1 (Inversion Transform Method) Let U be a uniformly r.v. in (0, 1). Then,

the r.v.

X = F−1(U) (173)

has c.d.f. F (x) for all x.

2

Proof. From (170) and (171) we have that

{U < F (x)} ⊂ {F−1(U) ≤ x} ⊂ {U ≤ F (x)}. (174)

Since P ({U < F (x)}) = P ({U ≤ F (x)}) = F (x) (cf. (168)) we deduce from (174) that

P ({F−1(U) ≤ x) = F (x), which completes the proof (here we use the property that P (A) ≤
P (B) for any events A and B such that A ⊂ B).

♦

8.2 Applications: generating Bernoulli, Discrete, Exponential and
Erlang r.v.’s

We shall only consider non-negative r.v.’s. Therefore, we will always assume that x ≥ 0.

1. (Bernoulli r.v.) Let X be a Bernoulli r.v. with parameter p, namely,

X =

{

0 with probability 1− p
1 with probability p.
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We have for all x

F (x) = P (X ≤ x)

= P (X ≤ x |X = 0)P (X = 0) + P (X ≤ x |X = 1)P (X = 1) by Bayes’ formula

= 1− p+ 1(x ≥ 1) p.

Therefore, F−1(y) = 0 for all 0 ≤ y < 1−p and F−1(y) = 1 for all 1−p ≤ y < 1 (hint: draw

the curve x→ F (x)) which implies from Result 8.1 that

X =

{

0 if 0 < U < 1− p
1 if 1− p ≤ U < 1

(175)

is a r.v. with c.d.f F (x) for all x.

2. (Discrete r.v.) Let X be a discrete r.v. taking values in the set {a1, a2, . . . , an} with

a1 < a2 < · · · < an, and such thatX = ai with the probability pi, i = 1, 2, . . . , n,
∑n

i=1 pi = 1.

Using again Bayes’ formula, it is easily seen that the c.d.f. of X is given by

F (x) =
n
∑

i=1

1(x ≤ ai) pi.

Therefore, by Result 8.1

X =























a1 if 0 < U < p1

a2 if p1 ≤ U < p1 + p2
...
an if p1 + p2 + · · ·+ pn−1 ≤ U < 1

(176)

is a r.v. with c.d.f. F (x) for all x.

3. (Exponential r.v.) Let X be a exponential r.v. with parameter λ, namely, F (x) =

1− exp(−λx) for all x ≥ 0.

Since x→ F (x) is strictly increasing and continuous, in this case F−1(y) is simply the inverse

of F (x). Therefore, it is seen from Result 8.1, that the r.v. X defined by

X =
−1
λ

logU (177)

is a r.v. with c.d.f. F (x) for all x.
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4. (Erlang r.v.) A r.v. X is an Erlang (λ−1, n) r.v. if X = T1 + T2 + . . . + Tn, where

T1, T2, . . . , Tn are n exponential and independent r.v.’s such that P (Ti ≤ x) = 1− exp(−λx)
for i = 1, 2, . . . , n.

Let U1, U2, . . . , Un be n independent r.v.’s, uniformly distributed in (0, 1).

We know from 3. that (−1/λ) logUi is an exponential r.v. with parameter λ. Therefore,

the r.v. X defined by

X =
−1
λ

log(U1 U2 · · ·Un) (178)

is an Erlang (λ−1,n) r.v.

Remark 8.1 (Property of an Erlang (λ−1,n) r.v.) The density function of an Erlang

(λ−1,n) is fX(x) = exp(−λx)λk xk−1/(k − 1)! for x ≥ 0. This can also be used as the

definition of an Erlang (λ−1,n) r.v.

The mean of an Erlang (λ−1,n) r.v. is n/λ. The variance of an Erlang (λ−1,n) r.v. is n/λ2.
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Appendices

A Probability Refresher

A.1 Sample-Space, Events and Probability Measure

A Probability space is a triple (Ω,F , P ) where

• Ω is the set of all outcomes associated with an experiment. Ω will be called the sample
space

• F is a set of subsets of Ω, called events , such that

(i) ∅ ∈ F and Ω ∈ F
(ii) if A ∈ F then the complementary set Ac is in F
(iii) if An ∈ F for n = 1, 2, . . ., then ∪∞n=1 An ∈ F

F is called a σ-algebra.

• P is a probability measure on (Ω,F), that is, P is a mapping from F into [0, 1] such

that

(a) P (∅) = 0 and P (Ω) = 1

(b) P (∪n∈IAn) =
∑

n∈I P (An) for any countable (finite or infinite) family {An, n ∈
I} of mutually exclusive events (i.e., Ai ∩Aj = ∅ for i ∈ I, j ∈ I such that i 6= j).

Axioms (ii) and (iii) imply that ∩n∈IAn ∈ F for any countable (finite or infinite) family

{An, n ∈ I} of events (write ∩n∈IAn as (∪n∈I A
c
n)

c). The latter result implies, in particular,

that B − A ∈ F (since B − A = B ∩ Ac).

Axioms (a) and (b) imply that for any events A and B, P (A) = 1−P (Ac) (write Ω as A∪Ac),

P (A) ≤ P (B) if A ⊂ B (write B as A ∪ (B − A)), P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

(write A ∪B as (A ∩B) ∪ (Ac ∩B) ∪ (A ∩Bc)).
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Example A.1 The experiment consists in rolling a die. Then

Ω = {1, 2, 3, 4, 5, 6}.

A = {1, 3, 5} is the event of rolling an odd number. Instances of σ-algebras on Ω are

F1 = {∅,Ω}, F2 = {∅,Ω, A,Ac}, F3 = {∅,Ω, {1, 2, 3, 5}, {4, 6}}, F4 = P(Ω) (the set of all

subsets of Ω). Is {∅,Ω, {1, 2, 3}, {3, 4, 6}, {5, 6}} a σ-algebra?

F1 and F4 are the smallest and the largest σ-algebras on Ω, respectively.

If the die is not biaised, the probability measure on, say, (Ω,F3), is defined by P (∅) = 0,

P (Ω) = 1, P ({1, 2, 3, 5}) = 4/6 and P ({4, 6}) = 2/6.

♥

Example A.2 The experiment consists in rolling two dice. Then

Ω = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), (2, 2), . . . , (6, 6)}.

A = {(1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)} is the event of rolling a seven.

♥

Example A.3 The experiment consists in tossing a fair coin until a head appears. Then,

Ω = {H,TH, TTH, TTTH, . . .}.

A = {TTH, TTTH} is the event that 3 or 4 tosses are required.

♥

Example A.4 The experiment measures the response time that elapses from the instant

the last character of a request is entered on an inter-active terminal until the last character

of the response from the computer has been received and displayed. We assume that the

response time is at least of 1 second. Then,

Ω = {real t : t ≥ 1}.

A = {10 ≤ t ≤ 20} is the event that the response time is between 10 and 20 seconds.

♥
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A.2 Combinatorial Analysis

A permutation of order k of n elements is an ordered subset of k elements taken from the n

elements.

A combination of order k of n elements is an unordered selection of k elements taken from
the n elements.

Recall that n! = n× (n− 1)× (n− 2)× · · ·× 2× 1 for any nonnegative integer n with 0! = 1

by convention.

Result A.1 The number of permutations of order k of n elements is

A(n, k) =
n!

(n− k)!
= n (n− 1) (n− 2) · · · (n− k + 1).

2

Result A.2 The number of combinations of order k of n elements is

C(n, k) =

(

n

k

)

=
n!

k! (n− k)!
.

2

Example A.5 Suppose that 5 terminals are connected to an on-line computer system via

a single communication channel, so that only one terminal at a time may use the channel to

send a message to the computer. At every instant, there may be 0, 1, 2, 3, 4, or 5 terminals

ready for transmission. One possible sample space is

Ω = {(x1, x2, x3, x4, x5) : each xi is either 0 or 1}.

xi = 1 means that terminal i is ready to transmit a message, xi = 0 that it is not ready. The

number of points in the sample space is 25 since each xi of (x1, x2, x3, x4, x5) can be selected

in two ways.

Assume that there are always 3 terminals in the ready state. Then,

Ω = {(x1, x2, x3, x4, x5) : exactly 3 of the xi’s are 1 and 2 are 0}.

In that case, the number n of points in the sample space is the number of ways that 3 ready

terminals can be chosen from the 5 terminals, which is, from Result A.2,

(

5

3

)

=
5!

3! (5− 3)!
= 10.
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Assume that each terminal is equally likely to be in the ready condition.

If the terminals are polled sequentially (i.e., terminal 1 is polled first, then terminal 2 is

polled, etc.) until a ready terminal is found, the number of polls required can be 1, 2 or 3.

Let A1, A2, and A3 be the events that the required number of polls is 1, 2, 3, respectively.

A1 can only occur if x1 = 1, and the other two 1’s occur in the remaining four positions.

The number n1 of points favorable to A1 is calculated as n1 =
(

4
2

)

= 6 and therefore

P (A1) = n1/n = 6/10.

A2 can only occur if x1 = 0, x2 = 0, and the remaining two 1’s occur in the remaining

three positions. The number n2 of points favorable to A1 is calculated as n2 =
(

3
2

)

= 3 and

therefore P (A1) = 3/10.

Similarly, P (A3) = 1/10.

♥

A.3 Conditional Probability

The probability that the event A occurs given the event B has occurred is denoted by

P (A |B).

Result A.3 (Bayes’ formula)

P (A |B) =
P (A ∩B)

P (B)
.

The conditional probability is not defined if P (B) = 0. It is easily checked that P (· |B) is a

probability measure.

2

Interchanging the role of A and B in the above formula yields

P (B |A) = P (A ∩B)

P (A)
.

provided that P (A) > 0.

Let Ai, i = 1, 2, . . . , n be n events. Assume that the events A1, . . . , An−1 are such that

P (A1 ∩ A2 ∩ · · · ∩ An−1) > 0. Then,
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Result A.4 (Generalized Bayes’ formula)

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)P (A2 |A1) · · · × P (An |A1 ∩ A2 ∩ · · · ∩ An−1).

2

The proof if by induction on n. The result is true for n = 2. Assume that it is true for

n = 2, 3, . . . , k, and let us show that it is still true for n = k + 1.

Define A = A1 ∩ A2 ∩ · · · ∩ Ak. We have

P (A1 ∩ A2 ∩ · · · ∩ Ak+1) = P (A ∩ Ak+1)

= P (A)P (Ak+1 |A)
= P (A1)P (A2 |A1) · · ·P (Ak |A1 ∩ A2 ∩ · · · ∩ Ak−1)

×P (Ak+1 |A)

from the inductive hypothesis, which completes the proof.

Example A.6 A survey of 100 computer installations in a city shows that 75 of them have

at least one brand X computer. If 3 of these installations are chosen at random, what is the

probability that each of them has at least one brand X machine?

Answer: let A1, A2, A3 be the event that the first, second and third selection, respectively,

has a brand X computer.

The required probability is

P (A1 ∩ A2 ∩ A3) = P (A1)P (A2 |A1)P (A3 |A1, A2)

=
75

100
× 74

99
× 73

98

= 0.418.

♥

The following result will be used extensively throughout the course.

Result A.5 (Law of total probability) Let A1, A2, . . . , An be events such that

(a) Ai ∩ Aj = ∅ if i 6= j (mutually exclusive events)
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(b) P (Ai > 0) for i = 1, 2, . . . , n

(c) A1 ∪ A2 ∪ · · · ∪ An = Ω.

Then, for any event A,

P (A) =
n
∑

i=1

P (A |Ai)P (Ai).

2

To prove this result, let Bi = A ∩ Ai for i = 1, 2, . . . , n. Then, Bi ∩ Bj = ∅ for i 6= j (since

Ai ∩ Aj = ∅ for i 6= j) and A = B1 ∪B2 ∪ · · · ∪Bn. Hence,

P (A) = P (B1) + P (B2) + · · ·+ P (Bn)

from axiom (b) of a probability measure. But P (Bi) = P (A ∩ Ai) = P (A |Ai)P (Ai) for

i = 1, 2, . . . , n from Bayes’ formula, and therefore P (A) =
∑n

i=1 P (A |Ai)P (Ai), which

concludes the proof.

Example A.7 Requests to an on-line computer system arrive on 5 communication channels.

The percentage of messages received from lines 1, 2, 3, 4, 5, are 20, 30, 10, 15, and 25,

respectively. The corresponding probabilities that the length of a request will exceed 100

bits are 0.4, 0.6, 0.2, 0.8, and 0.9. What is the probability that a randomly selected request

will be longer than 100 bits?

Answer: let A be the event that the selected message has more than 100 bits, and let Ai be

the event that it was received on line i, i = 1, 2, 3, 4, 5. Then, by the law of total probability,

P (A) =
5
∑

i=1

P (A |Ai)P (Ai)

= 0.2× 0.4 + 0.3× 0.6 + 0.1× 0.2 + 0.15× 0.8 + 0.25× 0.9

= 0.625.

♥

Two events A and B are said to be independent if

P (A ∩B) = P (A)P (B).
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This implies the usual meaning of independence; namely, that neither influences the occur-

rence of the other. Indeed, if A and B are independent, then

P (A |B) =
P (A ∩B)

P (B)
=
P (A)P (B)

P (B)
= P (A)

and

P (B |A) = P (A ∩B)

P (A)
=
P (A)P (B)

P (A)
= P (B).

The concept of independent events should not be confused with the concept of mutually

exclusive events (i.e., A ∩B = ∅). In fact, if A and B are mutually exclusive then

0 = P (∅) = P (A ∩B)

and thus P (A ∩ B) cannot be equal to P (A)P (B) unless at least one of the events has

probability 0. Hence, mutually exclusive events are not independent except in the trivial

case when at least one of them has zero probability.

A.4 Random Variables

In many random experiments we are interested in some number associated with the experi-

ment rather than the actual outcome (i.e., ω ∈ Ω). For instance, in Example A.2 one may

be interested in the sum of the numbers shown on the dice. We are thus interested in a
function that associates a number with an experiment. Such function is called a random

variable (r.v.).

More precisely, a real-valued r.v. X is a mapping from Ω into IR such that

{ω ∈ Ω : X(ω) ≤ x} ∈ F

for all x ∈ IR.

As usual, we let X = x denote the event {ω ∈ Ω : X(ω) = x}, X ≤ x denote the event

{ω ∈ Ω : X(ω) ≤ x}, and y ≤ X ≤ x denote the event {ω ∈ Ω : y ≤ X(ω) ≤ x}.

The requirement that X ≤ x be an event for X to be a r.v. is necessary so that probability

calculations can be made.

For each r.v. X, we define its cumulative distribution function (c.d.f.) F (also called the

probability distribution of X or the law of X) as

F (x) = P (X ≤ x)

96



for each x ∈ IR.

F satisfies the following properties: limx→+∞ F (x) = 1, limx→−∞ F (x) = 0, and F (x) ≤ F (y)

if x ≤ y (i.e., F is nondecreasing).

A r.v. is discrete if it takes only discrete values. The distribution function F of a discrete

r.v. X with values in a countable (finite or infinite) set I (e.g. I = IN) is simply given by

F (x) = P (X = x)

for each x ∈ I. We have
∑

x∈I F (x) = 1.

Example A.8 (The Bernouilli distribution) Let p ∈ (0, 1). A r.v. variable X taking

values in the set I = {0, 1} is said to be a Bernoulli r.v. with parameter p, or to have a

Bernoulli distribution with parameter p if P (X = 1) = p and P (X = 0) = 1− p.

♥

A r.v. is continuous if P (X = x) = 0 for all x. The density function of a continuous r.v. is

a function f such that

(a) f(x) ≥ 0 for all real x

(b) f is integrable and P (a ≤ X ≤ b) =
∫ b
a f(x) dx if a < b

(c)
∫+∞
−∞ f(x) dx = 1

(d) F (x) =
∫ x
−∞ f(t) dt for all real x.

The formula F (x) =
∂f(x)

∂x
that holds at each point x where f is continuous, provides a

mean of computing the density function from the distribution function, and conversely.

Example A.9 (The exponential distribution) Let α > 0. A r.v. X is said to be an

exponential r.v. with parameter α or to have an exponential distribution with parameter α

if

F (x) =











1− exp(−αx) if x > 0

0 if x ≤ 0.
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The density function f is given by

f(x) =











α exp(−αx) if x > 0

0 if x ≤ 0.

Suppose that α = 2 and we wish to calculate the probability that X lies in the interval (1, 2].

We have

P (1 < X ≤ 2) = P (X ≤ 2)− P (X ≤ 1)

= F (2)− F (1)

= (1− exp(−4))− (1− exp(−2))
= 0.117019644.

♥

Example A.10 (The exponential distribution is memoryless) Let us now derive a

key feature of the exponential distribution: the fact that it is memoryless . Let X be an

exponential r.v. with parameter α. We have

P (X > x+ y |X > x) =
P (X > x+ y, X > x)

P (X > x)
from Bayes’ formula

=
P (X > x+ y)

P (X > x)
=
e−α(x+y)

e−αx

= e−αy

= P (X > y)

which does not depend on x!

♥

A.5 Parameters of a Random Variable

Let X be a discrete r.v. taking values in the set I.

The mean or the expectation of X, denoted as E[X], is the number

E[X] =
∑

x∈I

xP (X = x)

provided that
∑

x∈I |x|P (X = x) <∞.
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Example A.11 (Expectation of a Bernoulli r.v.) Let X be a Bernoulli r.v. with pa-

rameter p. Then,

E[X] = 0× P (X = 0) + 1× P (X = 1)

= p.

♥

If X is a continuous r.v. with density function function f , we define the expectation or the

mean of X as the number

E[X] =
∫ +∞

−∞
x f(x) dx

provided that
∫+∞
−∞ |x| f(x) dx <∞.

Example A.12 (Expectation of an exponential r.v.) LetX be an exponential r.v. with

parameter α > 0. Then,

E[X] =
∫ +∞

0
xα exp(−αx) dx

=
1

α
.

by using an integration by parts (use the formula
∫

udv = uv − ∫

vdu with u = x and

dv = α exp(−αx)dx, together with limx→+∞ x exp(−αx) = 0).

♥

Let us give some properties of the expectation operator E[·].

Result A.6 Suppose that X and Y are r.v.’s. such that E[X] and E[Y ] exist, and let c be

a real number. Then, E[c] = c, E[X + Y ] = E[X] + E[Y ], and E[cX] = cE[X].

2

The k-th moment or the moment of order k (k ≥ 1) of a discrete r.v. X taking values in the

set I is given by

E[Xk] =
∑

x∈I

xk P (X = x)

provided that
∑

x∈I |xk|P (X = x) <∞.
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The k-th moment or the moment of order k (k ≥ 1) of a continuous r.v. X is given by

E[Xk] =
∫ +∞

−∞
xk f(x) dx

provided that
∫+∞
−∞ |xk| f(x) dx <∞.

The variance of a discrete or continuous r.v. X is defined to be

var (X) = E (X − E[X])2 = E[X2]− (E[X])2.

Example A.13 (Variance of the exponential distribution) Let X be an exponential

r.v. with parameter α > 0. Then,

var (X) =
∫ +∞

0
x2 α exp(−αx) dx− 1

α2

=
2

α2
− 1

α2
=

1

α2
.

Hence, the variance of an exponential r.v. is the square of its mean.

♥

Example A.14 Consider the situation described in Example A.5 when the terminals are

polled sequentially until one terminal is found ready to transmit. We assume that each

terminal is ready to transmit with the probability p, 0 < p ≤ 1, when it is polled.

Let X be the number of polls required before finding a terminal ready to transmit. Since

P (X = 1) = p, P (X = 2) = (1− p) p, and more generally since P (X = n) = (1− p)n−1 p for

each n, we have

E[X] =
∞
∑

n=1

n (1− p)n−1 p = 1/p.

Observe that E[X] = 1 if p = 1 and E[X]→∞ when p→ 0 which agrees with intuition.

♥

A.6 Jointly Distributed Random Variables

Sometimes it is of interest to investigate two or more r.v.’s. If X and Y are defined on the

same probability space, we define the joint cumulative distribution function (j.c.d.f.) of X

and Y for all real x and y by

F (x, y) = P (X ≤ x, Y ≤ y) = P ((X ≤ x) ∩ (Y ≤ y)).
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Define FX(x) = P (X ≤ x) and FY (y) = P (Y ≤ y) for all real x and y. FX and FY are called

the marginal cumulative distribution functions of X and Y , respectively, corresponding to

the joint distribution function F .

Note that FX(x) = limy→+∞ F (x,∞) and FY (y) = limx→+∞ F (∞, y).

If there exists a nonnegative function f of two variables such that

P (X ≤ x, Y ≤ Y ] =
∫ x

−∞

∫ y

−∞
f(u, v) du dv

then f is called the joint density function of the r.v.’s X and Y .

Suppose that g is a function of two variables and let f be the joint density function of X

and Y . The expectation E[g(X,Y )] is defined as

E[g(X,Y )] =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) f(x, y) dx dy

provided that the integral exists.

Consider now the case when X and Y are discrete r.v.’s taking values in some countable sets

I and J , respectively. Then the joint distribution function of X and Y for all x ∈ I, y ∈ J ,

is given by

F (x, y) = P (X = x, Y = y) = P ((X = x) ∩ (Y = y)).

Define FX(x) = P (X = x) and FY (y) = P (Y = y) for all x ∈ I and y ∈ J to be the marginal

distribution functions of X and Y , respectively, corresponding to the joint distribution func-

tion F .

¿From the law of total probability, we see that FX(x) :=
∑

y∈J F (x, y) = P (X = x) for all

x ∈ I and FY (y) :=
∑

x∈I F (x, y) = P (Y = y) for all y ∈ J .

Suppose that g is a nonnegative function of two variables. The expectation E[g(X,Y )] is

defined as

E[g(X,Y )] =
∑

x∈I, y∈J

g(x, y)P (X = x, Y = y)

provided that the summation exists.

A.7 Independent Random Variables

Two r.v.’s X and Y are said to be independent if

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y)
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for all real x and y if X and Y are continuous r.v.’s, and if

P (X = x, Y = y) = P (X = x)P (Y = y)

for all x ∈ I and y ∈ J if X and Y are discrete and take their values in I and J , respectively.

Result A.7 If X and Y are independent r.v.’s such that E[X] and E[Y ] exist, then

E[X Y ] = E[X]E[Y ].

2

Let us prove this result when X and Y are discrete r.v.’s taking values in the sets I and J ,

respectively. Let g(x, y) = xy in the definition of E[g(X,Y )] given in the previous section.

Then,

E[X Y ] =
∑

x∈I, y∈J

xyP (X = x, Y = y)

=
∑

x∈I, y∈J

xy P (X = x)P (Y = y) since X and Y are independent r.v.’s

=
∑

x∈I

xP (X = x)





∑

y∈I

y P (Y = y)





= E[X]E[Y ].

The proof when X and Y are both continuous r.v.’s is anologous and therefore omitted.

2

A.8 Conditional Expectation

Consider the situation in Example A.5. Let X be the number of polls required to find a

ready terminal and let Y be the number of ready terminals. The mean number of polls given

that Y = 1, 2, 3, 4, 5 is the conditional expectation of X given Y (see the computation in

Example A.15).

Let X and Y be discrete r.v.’s with values in the sets I and J , respectively.

Let PX|Y (x, y) := P (X = x |Y = y) be the conditional probability of the event (X = x)

given the event (Y = y). From Result A.3 we have

PX|Y (x, y) =
P (X = x, Y = y)

P (Y = y)
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for each x ∈ I, y ∈ J , provided that P (Y = y) > 0.

PX|Y (· | y) is called the conditional distribution function of X given Y = y.

The conditional expectation of X given Y = y, denoted by E[X |Y = y], is defined for all

y ∈ J such that P (Y = y) > 0 by

E[X |Y = y] =
∑

x∈I

xPX|Y (x, y)

Example A.15 Consider Example A.5. Let X ∈ {1, 2, 3, 4, 5} be the number of polls

required to find a terminal in the ready state and let Y ∈ {1, 2, 3, 4, 5} be the number of

ready terminals. We want to compute E[X |Y = 3], the mean number of polls required

given that Y = 3.

We have

E[X |Y = 3] = 1× PX|Y (1, 3) + 2× PX|Y (2, 3) + 3× PX|Y (3, 3)

= 1× P (A1) + 2× P (A2) + 3× P (A3)

=
6

10
+ 2× 3

10
+ 3× 1

10
=

15

10
= 1.5 .

The result should not be surprising since each terminal is equally likely to be in the ready

state.

♥

Consider now the case when X and Y are both continuous r.v.’s with density functions fX
and fY , respectively, and with joint density function f . The conditional probability density

function of X given Y = y, denoted as fX|Y (x, y), is defined for all real y such that fY (y) > 0,

by

fX|Y (x, y) =
f(x, y)

fY (y)
.

The conditional expectation of X given Y = y is defined for all real y such that fY (y) > 0,

by

E[X |Y = y] =
∫ +∞

−∞
x fX|Y (x, y) dx.

Below is a very useful result on conditional expectation. This is the version of the law of

total probability for the expectation.
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Result A.8 (Law of conditional expectation) For any r.v.’s X and Y ,

E[X] =
∑

y∈J

E[X |Y = y]P (Y = y)

if X is a discrete r.v., and

E[X] =
∫ ∞

−∞
E[X |Y = y] fY (y) dy

if X is a continuous r.v.

2

We prove the result in the case when X and Y are both discrete r.v.’s. Since E[X |Y = y] =
∑

x∈I xP (X = x |Y = y) we have from the definition of the expectation that

∑

y∈J

E[X |Y = y]P (Y = y) =
∑

y∈J

(

∑

x∈I

xP (X = x |Y = y)

)

P (Y = y)

=
∑

x∈I

x





∑

y∈J

P (X = x |Y = y)P (Y = y)





=
∑

x∈I

xP (X = x) by using the law of total probability

= E[X].

The proof in the case when X and Y are continuous r.v.’s is analogous and is therefore

omitted.

B Stochastic Processes

B.1 Definitions

All r.v.’s considered from now on are assumed to be constructed on a common probability

space (Ω,F , P ).

Notation: We denote by IN the set of all nonnegative integers and by IR the set of all real

numbers.

A collection of r.v.’s X = (X(t), t ∈ T ) is called a stochastic process . In other words, for

each t ∈ T , X(t) is a mapping from Ω into some set E where E = IR or E ⊂ IR (e.g.,
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E = [0,∞), E = IN) with the interpretation that X(t)(ω) (also written X(t, ω)) is the value

of the stochastic process X at time t on the outcome (or path) ω.

The set T is the index set of the stochastic process. If T is countable (e.g., if T = IN or

T = {. . . ,−2,−1, 0, 1, 2 . . .}), then X is called a discrete-time stochastic process; if T is

continuous (e.g., T = IR, T = [0,∞)) then X is called a continuous-time stochastic process.

When T is countable we will usually substitute the notation Xn (or X(n), tn, etc.) for X(t).

The space E is called the state space of the stochastic process X. If the set E is countable

then X is called a discrete-space stochastic process; if the set E is continuous then X is

called a continuous-space stochastic process.

When speaking of “the processX(t)” one should understand the processX. This is a common

abuse of language.

Example B.1 (Discrete-time, discrete-space stochastic process) Xn = number of jobs

processed during the n-th hour of the day in some job shop. The stochastic process (Xn, n =

1, 2, . . . , 24) is a discrete-time, discrete-space stochastic process.

♥

Example B.2 (Discrete-time, continuous-space stochastic process) Xn = response

time of the n-th inquiry to the central processing system of an interactive computer system.

The stochastic process (Xn, n = 1, 2, . . .) is a discrete-time, continuous-space stochastic
process.

♥

Example B.3 (Continuous-time, discrete-space stochastic process) X(t) = number

of messages that have arrived at a given node of a communication network in the time period

(0, t). The stochastic process (X(t), t ≥ 0) is a continuous-time, discrete-space stochastic
process.

♥

Example B.4 (Continuous-time, continuous-space stochastic process) X(t) = wait-

ing time of an inquiry received at time t. The stochastic process (X(t), t ≥ 0) is a continuous-

time, continuous-space stochastic process.
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♥

Introduce the following notation: a function f is o(h) if

lim
h→0

f(h)

h
= 0.

For instance, f(h) = h2 is o(h), f(h) = h is not, f(h) = hr, r > 1, is o(h), f(h) = sin(h) is

not. Any linear combination of o(h) functions is also o(h).

Example B.5 Let X be an exponential r.v. with parameter λ. In other words, P (X ≤
x) = 1− exp(−λx) for x ≥ 0 and P (X ≤ x) = 0 for x < 0. Then, P (X ≤ h) = λh+ o(h).

Similarly, P (X ≤ t + h |X > t) = λh + o(h) since P (X ≤ t + h |X > t) = P (X ≤ h) from

the memoryless property of the exponential distribution.

♥

C Poisson Process

A Poisson process is one of the simplest interesting stochastic processes. It can be defined in

a number of equivalent ways. The following definition seems most appropriate to our needs.

Consider the discrete-time, continuous-space stochastic process (tn, n = 1, 2, . . .) where 0 ≤
t1 < t2 < · · · < tn < tn+1 < · · ·. The r.v. tn records the occurrence time of the n-th event in

some experiment. For instance, tn will be the arrival time of the n-th request to a database.

This stochastic process is a Poisson process with rate λ > 0 if:

(a) Prob (a single event in an interval of duration h) = λh+ o(h)

(b) Prob (more than one event in an interval of duration h) = o(h)

(c) The numbers of events occurring in nonoverlapping intervals of time are independent

of each other.

¿From this definition and the axioms of probability, we see that

(d) Prob (no events occur in an interval of length h) = 1− λh+ o(h).
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With a slight abuse of notation, N(t), the number of events of a Poisson process in an

interval of length t, is sometimes called a Poisson process. Processes like the (continuous-

time, discrete-space) stochastic process (N(t), t ≥ 0) (or simply N(t)) are called counting
processes .

One of the original applications of the Poisson process in communications was to model the

arrivals of calls to a telephone exchange (the work of A. K. Erlang in 1919). The aggregate

use of telephones, at least in a first analysis, can be modeled as a Poisson process.

Here is an important result:

Result C.1 Let Pn(t) be the probability that exactly n events occur in an interval of length

t, namely, Pn(t) = P (N(t) = n). We have, for each n ∈ IN, t ≥ 0,

Pn(t) =
(λt)n

n!
e−λt. (179)

2

We prove this result by using an induction argument. Because the number of events in the

interval [0, a) is independent of the number of events in the interval [a, a+ t], we may simply

consider the interval of time [0, t].

We have

P0(t+ h) = P (no events in [0, t), no events in [t, t+ h])

= P0(t)P0(h) from property (c) of a Poisson process

= P0(t) (1− λh+ o(h)) from property (d) of a Poisson process.

Therefore, for h > 0,

P0(t+ h)− P0(t)

h
= −λP0(t) +

o(h)

h
.

Letting h→ 0 in both sides yields the ordinary differential equation

dP0(t)

dt
= −λP0(t).

The solution is P0(t) = exp(−λt) by noting that the initial condition is P0(0) = 1.

Let n ≥ 1 be an arbitrary integer and assume that (179) is true for the first (n− 1) integers.

We have

Pn(t+ h) =
n
∑

k=0

P (exactly k events in [0, t), exactly n− k events in [t, t+ h]) (180)
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=
n
∑

k=0

Pk(t)Pn−k(h) (181)

= Pn(t)P0(h) + Pn−1(t)P1(h) + o(h) (182)

= Pn(t) (1− λh) + Pn−1(t)λh+ o(h) (183)

where (180) follows from the law of total probability, and where (181)-(183) follow from

properties (a)-(d) of a Poisson process.

Therefore, for h > 0,

Pn(t+ h)− Pn(t)

h
= −λPn(t) + λPn−1(t) + o(h).

Taking the limit h→ 0 yields

dPn(t)

dt
= −λPn(t) + λPn−1(t). (184)

Substituting (179) for Pn−1(t) in (184), and solving the differential equation yields the desired

result (one may also check the result by direct substitution).

Let us now compute the mean number of events of a Poisson process with rate λ in an

interval of length t.

Result C.2 (Mean number of events in an interval of length t) For each t ≥ 0

E[N(t)] = λ t.

2

Result C.2 says, in particular, that the mean number of events per unit of time, or equiva-

lently, the rate at which the events occur, is given by E[N(t)]/t = λ. This is why λ is called

the rate of the Poisson process.

Let us prove Result C.2. We have by using Result C.1

E[N(t)] =
∞
∑

k=0

k Pk(t) =
∞
∑

k=1

k Pk(t)

=

(

∞
∑

k=1

k
(λt)k

k!

)

e−λt

= λt

(

∞
∑

k=1

(λt)k−1

(k − 1)!

)

e−λt

= λt.
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There is actually a strong connection between a Poisson process and the exponential distri-

bution. Why this?

Consider the time τ that elapses between the occurrence of two consecutive events in a

Poisson process.

We have the following remarkable result:

Result C.3 For each x ≥ 0

P (τ ≤ x) = 1− e−λx.

2

The proof is very simple. We have

P (τ > x) = P (no event in an interval of length x)

= e−λx

from Result C.1. Therefore, P (τ ≤ x) = 1− exp(−λx) for x ≥ 0.

So, the interevent distribution of a Poisson process with rate λ is an exponential distribu-

tion with parameter λ. The Poisson process and the exponential distribution often lead

to tractable models and therefore have a special place in queueing theory and performance

evaluation.

We also report the following result:

Result C.4 Let τn be the time between the n-th and the (n+1)-st event of a Poisson process

with rate λ.

The r.v.’s τm and τn are independent for each m, n such that m 6= n.

2

The proof is omitted.

In summary, the sequence (τn, n = 1, 2, . . .) of interevent times of a Poisson process with

rate λ is a sequence of mutually independent r.v.’s, each being exponentially distributed with

parameter λ.
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Result C.5 The superposition of two independent Poisson processes with rates λ1 and λ2

is a Poisson process with rate λ1 + λ2.

2

The proof is omitted.

Example C.1 Consider the failures of a link in a communication network. Failures occur

according to a Poisson process with rate 2.4 per day. We have:

(i) P (time between failures ≤ T days ) = 1− e−2.4T

(ii) P (k failures in T days ) =
(2.4T )k

k!
e−2.4T

(iii) Expected time between two consecutive failures = 10 hours

(iv) P (0 failures in next day) = e−2.4

(v) Suppose 10 hours have elapsed since the last failure. Then,

Expected time to next failure = 10 hours (memoryless property).

♥
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