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Abstract— We present a systematic treatment of efficient non- II. CONVEX OPTIMIZATION AND GEOMETRIC

linear optimizations of queuing systems. The suite of formula- PROGRAMMING

tions uses the computational tool of convex optimization, with

fast polynomial time algorithms to obtain the global optimum  Convex optimization refers to minimizing a convex objective

for these nonlinear problems under various constraints. We first 1o subject to upper bound inequalities on convex con-
show convexity structures of several queuing systems, including . . . . .
some surprising transition patterns, followed by formulating and straint functions. The objective function can be generalized to
showing numerical examples of several convex performance op- be vector-valued, where the minimization is with respect to a
timizations for both single queues and queuing networks. Block- convex cone. These convex multiple-objective optimizations

ing probability minimization and service rate allocation through  gre useful for tradeoff analysis, and the notion of optimality
the effective bandwidth approach is also presented. now becomes Pareto optimality [1]

Convex optimization problems can be easy to solve, both in
theory and in practice. Theoretically, showing an optimiza-
tion problem to be a strictly convex problem proves that there
Queuing systems form a fundamental part for different types a unique global optimal solution, and leads to performance
of networks, including computer multiprocessor networks angounds and sensitivity analysis through the dual problem.
communications data networks. Queuing systems are also @factically, when put in the right form, convex optimization
integral part of various network elements, such as the inpghn be globally solved by fast polynomial time algorithms
and output buffers of a packet switch. We often would like tqg]. It also gives a good starting point to develop even simpler
optimize some performance metrics of queuing systems, faeuristics and establishes the optimal benchmark to compare
example, buffer occupancy, overall delay, jittering, workloadpeuristics with.

and probabilities of certain states. In a network of queue§nere is a particular type of convex optimization used in sec-
we may also have multiple conflicting objectives that neegons |1, IV and V called geometric programming [1], [4],

to be optimally balanced. However, optimizing the perforyhich has also been applied to solve other network resource
mance of even simple queues like th&/Al/m/m queue is  g|iocation problems [6]. First, we have

in general a difficult problem because of the nonlinearity Obefinition 1: A monomial is a functionf : R” — R, where

the performance. metrics gs.fun'cno.ns of the arrival and S&he domain contains all real vectors with positive components,
vice rates. Nonlinear optimization in general takes running, 4 o nstants > 0. a. cR:
- b2 N

time that scales exponentially with the problem size.
We show how convexity properties of queuing systems can be o an . 1
used to turn some of these intractable problems into polyno- flw) = cayay® - ap. 1)

mial time solvable ones. By using the tool of convex optimizap afinition 2: A posynomial is a sum of monomial(z) =

I. INTRODUCTION

tion, and in particular, geometric programming, we provide Cpatte 2 Lk
suite of formulations to efficiently optimize the performanc%ekometriC E)rogran?ming is an optimization problem in the
of queuing systems under Quality of Service (QoS) and fa"fbllowing form:

ness constraints, first for single queues in section lll, then for
blocking probability minimization and service rate allocation minimize  fo(z)

through the effective bandwidth approach in section IV, then subjectto f,(z) < 1 2)
for networks of queues in section V, and for optimal feedback ’hz‘(l') — 1’

control in simple queuing networks in section V. The distin- J
guishing characteristics of the formulations in this paper iﬁ/herefo andf;
that they are nonlinear problems that can be solved as eas[il%tric progra
as linear problems by using convex optimization.

are posynomials anfd; are monomials. Geo-
mming in the above form is not a convex op-
timization problem. However, with a change of variables:

This work was supported by the Hertz Foundation Fellowship and the StaH: — log z; and b = log ¢y, It can b_e Shown that the re-
ford Graduate Fellowship. formulated problem is a convex optimization problem [1].



[1l. CONVEX OPTIMIZATIONS OF SINGLE QUEUES B. OptimizingM /M /m/m queues

A. Optimizing for average delay and queue occupancy e now optimize specific queue occupancy probabilities by
first considering anM/ /M /m/m queue. The steady state
We start the suite of convex optimization formulations with a . - ()" &
simple example of minimizing the service load of\&/M/1 probability of statek is given byp;, = POMREIE In many
queue with constraints on average queuing délaytotal de-  applications of queuing systems to network design, we would
lay D, and queue occupandy. like to maximize the probability of a particular desirable state,
Proposition 1: The following nonlinear optimization is a ge- Without making the probabilities of other states too small. For
ometric program, and therefore can be turned into a convéxample, we may want to design a telephone call service cen-
optimization and efficiently solved for its global optimum:  ter so as to maximize the probability that a particular number
of telephone lines (e.g90%) are in use at any given time. We

minimize 4 also want to jointly optimize the fairness paramet€ysthat
subjectto W < Wiuaa, boundsp;.
D<D Proposition 2: The following nonlinear optimization of
— maxs p g p
< ) (3) M /M /m/m queues is a geometric program:
Q — Q'HLGJ?’ q g p g
)\ Z Aminy L
1< fimaz maximize py
subjectto p; > C;, Vj,
where the optimization variables are the arrival ratnd the Cj > Cjmin, Y9, (5)
service rateu. The constant parameters are the performance A > )\W.;“
upper bounddV,,az» Dinae @and Qpqz, and practical con- 1< fomas

straints on the maximum service raig,,, of the queue that o .

cannot be exceeded, and the minimum incoming traffic ratéhere the optimization variables axe. andC;, and the con-
Amin that must be supported. The objective is to minimiz&t@nt parameters arg,i,, ima. and the fairness constraints
the service load. We can also show that even a joint opt{<jmin;J = 1,2, -, m.

mization over bott{\, 1) and(Wyaz, Dimazs @maz) iS Stilla  This geometric programming formulation can be extended to
geometric program. maximize the probability for the state with the lowest prob-

The above formulation can be extended to a Markovian quegbility to enforce maxmin fairness. Similar formulations can
ing system with N queues sharing a pool of service rate?e done for paralleM /M /m/m queues and a genetdl /G
bounded by,,... (for example, connected to a common outdueue.
going link). The arrival rate to be supported for each indi-
vidual queuei is bounded by); ,.... There are delay and C. Optimizi
vman . timizin M /1 queues
queue occupancy boundlgi,’maafr Di,maa: and Qi,’maa; for P gM/ / a i
each queue. The objective now becomes minimizing aWWe now turntal/ /M /1 queues, where the convexity property

weighted sum of the service loads for all the queues: is, surprisingly, more complicated than that of queues with fi-
Corollary 1: The following nonlinear optimization is a geo- Nite buffer size. We first prove the convexity properties of
metric program: the relevant quantities and then show the appropriate nonlin-

ear optimization formulations. Fdv//M /1 queues, the state
probabilityp,, can be viewed as a function of either the traffic
loadp = % or of A and .

The state probability;, is always a concave function of

7

subjectto W; < W, mas,

minimize 37 | a; 4

D; <D, : . . " :

Q% 2 Q‘%mfm (4) However, there is an interesting transition from convexity to

NSV concavity as load increases fpg, k > 2, derived from the
(e 7,MIn

5 N second derivative test of convexity and shown in the following
i=1 i = Hmaz Lemma 1:The state probability,, & > 2 is a convex func-
where the optimization variables are the arrival ratesnd tion of loadp if and only if (k — 1) — (k + 1)p > 0.

the service rates;. Therefore, there is a transition from convexity to concavity
A simple numerical example foV = 2 with weights across the states in ascending order as load increases;from
a; = l,as = 2 is summarized as follows. If we set to 1. Inorder forp, to be convex irp for all k greater than or
the delay and queue occupancy constraint®Qas... = equalto a criticako, the traffic loado must be smaller than a
4,Q2maz = 5 Wimar = 2.5, Wamar = 3,Dimar = Clitical po(ko). Numerically evaluating the above condition,

2, Dy max = 2, and service and arrival rate constraints age obtain the convexity transition curve shown in Figure 1,
Al,mi; = 0.5, A2 min = 0.8, ttmaz = 3, gEOMeELric program- where the critical loag, can be read for any givel.

ming gives the optimizersu; = 1.328, u5 = 1.672,\; =  We now turn to the more useful design problem where we can
0.828, A5 = 1.172 and the optimized objective value4st57.  vary the arrival rate and service rate independently, instead of



Sincepp = 1 — 3.7 ' p;, this heuristics essentially min-
imizes the blocking probability. It is also known that due to
the superadditive effect of buffer size pp, allocating a fixed
buffer space among several queues to minimize the overall
blocking probability is also a convex optimization.

An alternative way to characterize buffer overflow is through
the large deviation approach, where the blocking probability is
guaranteed statistically: for a connecti&nwith a prescribed

‘ service rateR in the queue, we would like to ensure that the

’ probability of overflow (receiving more thaR bps from X)

Fig. 1. Threshold loads for transition pf. (p) from convexity to concavity OVer & time scale aofis exponentially small:

foraM/M/1 queue.
t
Prob {Z X(i) > R} < exp(—sR) )
just their ratiop. Unlike M /M /m/m queues where geomet- =

ric programming can be used for optimizing oveandy, the  wheres > 0 is the undersubscription factor. Smalleim-
state probabilitieg,, of anA//M /1 queues are not in general plies more aggressive statistical multiplexing of multiple con-
convex functions of\ andy. There is a similar, though more nections to one queue. This numbieiis called the effective
complicated, pattern of this transition whep is viewed as  pandwidth EB ofX (as first proposed in [5], used in many
a function of two variables\ and xi. Interestingly enough, papers since, and nicely reviewed in [7]).

]Eh:ls transition pattern still only depends pnas shown in the Using the Chernoff bound, the effective bandwidth is given by
ollowing

Lemma 2: The functionpy, k£ > 2, is convex in\ andy if and
only if (k2 +k)— (k?+k)p+(k* —k)p? — (k> +k+2)p® > 0.
This lemma leads to the following

Proposition 3: The following nonlinear optimization of
M /M1 queues is a convex optimization problem:

EB(X) = %logE [exp(sX)], 8)

and in practice, the expectation is replaced by empirical data
collected over a time period a@fthat is much larger than the
time scale factot:

minimize pg

: . 1 t
subjectto p; < Cy, j >k, EB(X) = —log [ = ) exp(sX(i))
1% < Hmaxs (6) st t i=
A Z Amin,
p < po(k) where X (z) is the number of bits produced by connecti&n

during theith time slot.
We want to either minimize the assigned service rat¢EpB
é%ubject to constraints that lower bound the traffic intensity
X (7) to be supported (i.e., exponentially small probability of
overflow or blocking), or maximize the traffic intensity sub-
ject to constraints upper bounding the service rate that can be
IV. OPTIMIZATIONS WITH BUFFER OVERFLOW assigned taX. Both problems are geometric programs, and
CONSTRAINTS THROUGH EFFECTIVE BANDWIDTH we focus on the first formulation for the rest of this section
_(since it is also connected with information theoretic channel
'%apacity [3]), where we put various constraints (indexed by
and induced by the stochasticity of other connections sharing
the queue buffer) on the minimal level of traffic intensity to be

where0 < pg(k) < 1 solves the equatio(k2 + k) — (k* +

k)p + (k* — k)p* — (k* + k + 2)p® = 0. The optimiza-
tion variables are\ and 1, and the constant parameters ar
Cj; Aminv HUmaz andk.

One approach to study the buffer overflow probability
through the blocking probability of ai/ /M /1/ B queue with
a fixed buffer of sizeB:

(2B L supported by EBX).
pB = é‘ /\B'l T Proposition 4: The following problem of constrained buffer
2izol m ) allocation through the effective bandwidth approach is a geo-

L . . N metric program:
Therefore, minimizingpg 1S equwalent to maximizing a

posynomial ofA and g, which is in turn equivalent to max- minimize EB(X)

imizing a convex function. Therefore, it is not a convex opti- subjectto 3, P X (i) > Xminj, Vi 9
mization problem. One possible heuristics is to use geomet- 7

ric programming to maximize the probability of some statevhere the optimization variables afé(:), and the constant
k,k < B, subject to lower bounds an for all otherj < B.  parameters ar€;; and X, ;.



An illustrative numerical example is summarized as followsProposition 5: The nonlinear problem of maximizing the
With s = 0.5,¢ = 5ms, we impose a set of 10 different con-probability of state(ny, = nj,---,nxg = nj}) with
straints to specify the type of an arrival curve a queue shou@:é\’:1 n, = N, subject to fairness constraints on other states,
be able to support without blocking. The geometric progranis a geometric program:

ming solution returns the minimized effective bandwidth as

EB*(X) = 1.7627Mbps, and the envelope of supportable ar- maximize p(ny =n}, -, nxg =nl)

rival curves is shown in Figure 2. Connections with arrival  subjectto p(nq,---,nk) > Fairness constants
curves below this envelope will not cause buffer overflow or i < i mazs (10)
queue blocking with a probabilistic guarantee as in (7). Wi > i mins

K
Zkzl Mk < [total
where there is a constraint of the first type for each steady

state probabilityp(ny,---,nk). The optimization variables
s are uy, and the constant parameters @,in, i mae and
E 2 Htotal -

The above convex optimization problem can be viewed as a
problem of resource (i.e., service capagiy) allocation in a

4 ] closed queuing network. The goal is to maximize the proba-
bility that the system is in a particular state subject to fairness
] constraints on other states and the limited system resource.

‘ ‘ ‘ ‘ ‘ ‘ ‘ At first glance, it may seem that the above formulations can
R S be readily extended to an open queuing network. How-
ever, because of a more complicated convexity structure of
an open network (in particular, the steady state probability

V. CONVEX OPTIMIZATIONS OF QUEUING NETWORKs ~ P(1,72," -+, n) iSneither concave nor convexgn), a sim-

ilar formulation can be intractable for a general open network

In some queuing problems, a fixed number of customers gg queues. For a simple example, consider an open queu-
tasks circulate indefinitely in a closed network of queues. F@hg network with two interconnectedi/ /M /1 queues, each
example, some computer system models assume that at gy an exponential service raje, and an external arrival
given time a fixed number of programs occupy the resourCgaten, . k = 1,2. After being served by queue a customer
Such problems can be modelled by a closed queuing netwatkooses to go to the other queue with probabilityor leave

consisting of X' nodes, where each nodeconsists ofm;  the queuing system with probability— pj. It can be shown
identical exponential servers, each with average service rakatp(n,, n,) is neither concave nor convex.

ii- There are always exactliy customers in the system.
Once served at node a customer goes to nogewith prob-
ability px;. Then for each nodg, the average arrival rate to
the node\y, is given by, = Zlepijj.

The steady state probability that there ang customers in
nodek, fork =1,2,---, K, is given by [8] (a closed network
Jackson'’s theorem):

Number of bits allowed in ez

Fig. 2. The envelope of arrival curves supportable by EB) = 1.7627.

V1. CONVEX OPTIMIZATIONS OF FEEDBACK CONTROL
IN QUEUING NETWORKS

In this section, we extend the convex optimization formula-
tions to a particular type of queuing networks with feedback.
Although the formulations are no longer in the special form
of geometric program, we can still turn them into a general

o (2™ convex optimization problem.
1 /Tk) As a first example, consider a simple network of queues
p{niy,ng,---,Ng) = 3 . . p ! p q

( ) G(K) k[[l Bk (1) shown in Figure 3.

where Incoming — -
Packets
kAT = m!mpE " g > my -~
and the normalization constafi{ K) is given by Fig. 3. A network of queues with feedback.
A\ The incoming traffic to the overall system is i.i.d.~
GK) = N (#T) Poissond). With probability p;, an incoming packet leaves
(K) = Z H By (ng) the system after the feedforward queue 1, which has an ex-

s k=l ponential service time,, and with probabilityps = 1 — py,

where the summation is taken over all state vectorthe packet is feed back through queue 2, which has an expo-
(n1,ng, -, ng) satisfyingz,lle ni = N. We have nential service timegiz. This queuing model can be used for



a variety of svstems where we would like to process as mansolution for a fixedn. Note that only points to the right of the
y ot sy P %/areto optimality curve are achievable.

packets through the feedback loop as allowed under a dela
constraint on the total time spent in the system. For example,
in some optical packet switch architectures, the problem of
wavelength contention can be solved by cycling packets not
switched in a time slot through the buffer again. Clearly, there
is a tradeoff between maximizing the feedback queue traffic
load p, (or equivalently, minimizing the service Io%gi) and
minimizing the total timél" spent in the system. We have
Proposition 6: The nonlinear optimization problem of mini-
mizing both7 and - by varyingp., subject to the following
constraints:p; < 1,p2 < 1l,and0 < py, < 1 is a convex
multi-objective optimization problem, where all the Pareto

optimal solutions can be found through a scalarization tech- B T
nigue as follows.

The problem of minimizing a weighted sumiifand%, sub-
ject to stability constraints for each individual queue, is a conWith two parallel feedback queues, maximizing a weighted

Pareto optimal tradeoff curve
03 T T T

o1

Fig. 5. Pareto optimality tradeoff curve asvaries.

vex optimization problem in variable: sum of feedback queue loads subject to upper bounds on the
feedforward queue load is a convex optimization, so is mini-
minimize T + ai mizing the ratio of the feedforward load and the sum of feed-
subjectto p; < 1, back loads. However, due to more involved convexity struc-
p2 <1, (11)  tures of the queuing system, extending the above analysis to a
p2 <1, general case with feedback queues is not straightforward,
p2 >0
Therefore, the nonlinear problem of finding the best feedback VII. CONCLUSIONS

parametep; andp; = 1 — p; to minimize the total system Based on various results on convexity properties of queuing

time and maximize the feedback queue raffic load under Indléystems and computationally efficient algorithms for convex

vidual queue st§b|l|ty constraints can be efficiently solved foroptimization, we present a suite of formulations to optimize
the globally optimal solution.

weighting factora. = 0.5 for A = 5, u; = 8 andus = 8. As
shown in Figure 4, the convex optimization algorithm finds
the global optimum value for the objective function3a833
through the optimal feedback probability = 0.2755.

carried out globally in polynomial time for network queuing
systems under QoS and fairness constraints.
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