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Abstract— We present a systematic treatment of efficient non-
linear optimizations of queuing systems. The suite of formula-
tions uses the computational tool of convex optimization, with
fast polynomial time algorithms to obtain the global optimum
for these nonlinear problems under various constraints. We first
show convexity structures of several queuing systems, including
some surprising transition patterns, followed by formulating and
showing numerical examples of several convex performance op-
timizations for both single queues and queuing networks. Block-
ing probability minimization and service rate allocation through
the effective bandwidth approach is also presented.

I. I NTRODUCTION

Queuing systems form a fundamental part for different types
of networks, including computer multiprocessor networks and
communications data networks. Queuing systems are also an
integral part of various network elements, such as the input
and output buffers of a packet switch. We often would like to
optimize some performance metrics of queuing systems, for
example, buffer occupancy, overall delay, jittering, workload,
and probabilities of certain states. In a network of queues,
we may also have multiple conflicting objectives that need
to be optimally balanced. However, optimizing the perfor-
mance of even simple queues like theM/M/m/m queue is
in general a difficult problem because of the nonlinearity of
the performance metrics as functions of the arrival and ser-
vice rates. Nonlinear optimization in general takes running
time that scales exponentially with the problem size.
We show how convexity properties of queuing systems can be
used to turn some of these intractable problems into polyno-
mial time solvable ones. By using the tool of convex optimiza-
tion, and in particular, geometric programming, we provide a
suite of formulations to efficiently optimize the performance
of queuing systems under Quality of Service (QoS) and fair-
ness constraints, first for single queues in section III, then for
blocking probability minimization and service rate allocation
through the effective bandwidth approach in section IV, then
for networks of queues in section V, and for optimal feedback
control in simple queuing networks in section V. The distin-
guishing characteristics of the formulations in this paper is
that they are nonlinear problems that can be solved as easily
as linear problems by using convex optimization.
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II. CONVEX OPTIMIZATION AND GEOMETRIC

PROGRAMMING

Convex optimization refers to minimizing a convex objective
function subject to upper bound inequalities on convex con-
straint functions. The objective function can be generalized to
be vector-valued, where the minimization is with respect to a
convex cone. These convex multiple-objective optimizations
are useful for tradeoff analysis, and the notion of optimality
now becomes Pareto optimality [1].
Convex optimization problems can be easy to solve, both in
theory and in practice. Theoretically, showing an optimiza-
tion problem to be a strictly convex problem proves that there
is a unique global optimal solution, and leads to performance
bounds and sensitivity analysis through the dual problem.
Practically, when put in the right form, convex optimization
can be globally solved by fast polynomial time algorithms
[9]. It also gives a good starting point to develop even simpler
heuristics and establishes the optimal benchmark to compare
heuristics with.
There is a particular type of convex optimization used in sec-
tions III, IV and V called geometric programming [1], [4],
which has also been applied to solve other network resource
allocation problems [6]. First, we have
Definition 1: A monomial is a functionf : Rn → R, where
the domain contains all real vectors with positive components,
and constantsc ≥ 0, ai ∈ R:

f(x) = cxa1
1 xa2

2 · · ·xan
n . (1)

Definition 2: A posynomial is a sum of monomialsf(x) =∑
k ckxa1k

1 xa2k
2 · · ·xank

n .
Geometric programming is an optimization problem in the
following form:

minimize f0(x)
subject to fi(x) ≤ 1,

hj(x) = 1
(2)

wheref0 andfi are posynomials andhj are monomials. Geo-
metric programming in the above form is not a convex op-
timization problem. However, with a change of variables:
yi = log xi andbik = log cik, it can be shown that the re-
formulated problem is a convex optimization problem [1].



III. C ONVEX OPTIMIZATIONS OF SINGLE QUEUES

A. Optimizing for average delay and queue occupancy

We start the suite of convex optimization formulations with a
simple example of minimizing the service load of aM/M/1
queue with constraints on average queuing delayW , total de-
lay D, and queue occupancyQ:
Proposition 1: The following nonlinear optimization is a ge-
ometric program, and therefore can be turned into a convex
optimization and efficiently solved for its global optimum:

minimize µ
λ

subject to W ≤ Wmax,
D ≤ Dmax,
Q ≤ Qmax,
λ ≥ λmin,
µ ≤ µmax

(3)

where the optimization variables are the arrival rateλ and the
service rateµ. The constant parameters are the performance
upper boundsWmax, Dmax and Qmax, and practical con-
straints on the maximum service rateµmax of the queue that
cannot be exceeded, and the minimum incoming traffic rate
λmin that must be supported. The objective is to minimize
the service load. We can also show that even a joint opti-
mization over both(λ, µ) and(Wmax, Dmax, Qmax) is still a
geometric program.
The above formulation can be extended to a Markovian queu-
ing system withN queues sharing a pool of service rate
bounded byµmax (for example, connected to a common out-
going link). The arrival rate to be supported for each indi-
vidual queuei is bounded byλi,min. There are delay and
queue occupancy boundsWi,max, Di,max and Qi,max for
each queuei. The objective now becomes minimizing a
weighted sum of the service loads for all the queues:
Corollary 1: The following nonlinear optimization is a geo-
metric program:

minimize
∑N

i=1 αi
µi

λi

subject to Wi ≤ Wi,max,
Di ≤ Di,max,
Qi ≤ Qi,max,
λi ≥ λi,min,∑N

i=1 µi ≤ µmax

(4)

where the optimization variables are the arrival ratesλi and
the service ratesµi.
A simple numerical example forN = 2 with weights
α1 = 1, α2 = 2 is summarized as follows. If we set
the delay and queue occupancy constraints asQ1,max =
4, Q2,max = 5, W1,max = 2.5,W2,max = 3, D1,max =
2, D2,max = 2, and service and arrival rate constraints as
λ1,min = 0.5, λ2,min = 0.8, µmax = 3, geometric program-
ming gives the optimizers:µ∗1 = 1.328, µ∗2 = 1.672, λ∗1 =
0.828, λ∗2 = 1.172 and the optimized objective value is4.457.

B. OptimizingM/M/m/m queues

We now optimize specific queue occupancy probabilities by
first considering anM/M/m/m queue. The steady state

probability of statek is given bypk =
( λ

µ )k 1
k!∑m

i=0
( λ

µ )i 1
i!

. In many

applications of queuing systems to network design, we would
like to maximize the probability of a particular desirable state,
without making the probabilities of other states too small. For
example, we may want to design a telephone call service cen-
ter so as to maximize the probability that a particular number
of telephone lines (e.g.,90%) are in use at any given time. We
also want to jointly optimize the fairness parametersCj that
boundspj .
Proposition 2: The following nonlinear optimization of
M/M/m/m queues is a geometric program:

maximize pk

subject to pj ≥ Cj , ∀j,
Cj ≥ Cj,min, ∀j,
λ ≥ λmin,
µ ≤ µmax

(5)

where the optimization variables areλ, µ andCj , and the con-
stant parameters areλmin, µmax and the fairness constraints
Cj,min, j = 1, 2, · · · ,m.
This geometric programming formulation can be extended to
maximize the probability for the state with the lowest prob-
ability to enforce maxmin fairness. Similar formulations can
be done for parallelM/M/m/m queues and a generalM/G
queue.

C. OptimizingM/M/1 queues

We now turn toM/M/1 queues, where the convexity property
is, surprisingly, more complicated than that of queues with fi-
nite buffer size. We first prove the convexity properties of
the relevant quantities and then show the appropriate nonlin-
ear optimization formulations. ForM/M/1 queues, the state
probabilitypk can be viewed as a function of either the traffic
loadρ = λ

µ or of λ andµ.
The state probabilityp1 is always a concave function ofρ.
However, there is an interesting transition from convexity to
concavity as load increases forpk, k ≥ 2, derived from the
second derivative test of convexity and shown in the following
Lemma 1:The state probabilitypk, k ≥ 2 is a convex func-
tion of loadρ if and only if (k − 1)− (k + 1)ρ ≥ 0.
Therefore, there is a transition from convexity to concavity
across the states in ascending order as load increases from1

3
to 1. In order forpk to be convex inρ for all k greater than or
equal to a criticalk0, the traffic loadρ must be smaller than a
critical ρ0(k0). Numerically evaluating the above condition,
we obtain the convexity transition curve shown in Figure 1,
where the critical loadρ0 can be read for any givenk0.
We now turn to the more useful design problem where we can
vary the arrival rate and service rate independently, instead of
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Fig. 1. Threshold loads for transition ofpk(ρ) from convexity to concavity
for aM/M/1 queue.

just their ratioρ. Unlike M/M/m/m queues where geomet-
ric programming can be used for optimizing overλ andµ, the
state probabilitiespk of anM/M/1 queues are not in general
convex functions ofλ andµ. There is a similar, though more
complicated, pattern of this transition whenpk is viewed as
a function of two variablesλ and µ. Interestingly enough,
this transition pattern still only depends onρ, as shown in the
following
Lemma 2:The functionpk, k ≥ 2, is convex inλ andµ if and
only if (k2+k)−(k2+k)ρ+(k2−k)ρ2−(k2+k+2)ρ3 ≥ 0.
This lemma leads to the following
Proposition 3: The following nonlinear optimization of
M/M/1 queues is a convex optimization problem:

minimize pk

subject to pj ≤ Cj , j > k,
µ ≤ µmax,
λ ≥ λmin,
ρ < ρ0(k)

(6)

where0 ≤ ρ0(k) < 1 solves the equation(k2 + k) − (k2 +
k)ρ + (k2 − k)ρ2 − (k2 + k + 2)ρ3 = 0. The optimiza-
tion variables areλ andµ, and the constant parameters are
Cj , λmin, µmax andk.

IV. OPTIMIZATIONS WITH BUFFEROVERFLOW

CONSTRAINTSTHROUGH EFFECTIVE BANDWIDTH

One approach to study the buffer overflow probability is
through the blocking probability of anM/M/1/B queue with
a fixed buffer of sizeB:

pB =
(λ

µ )B 1
B!∑B

i=0(
λ
µ )i 1

i!

.

Therefore, minimizingpB is equivalent to maximizing a
posynomial ofλ andµ, which is in turn equivalent to max-
imizing a convex function. Therefore, it is not a convex opti-
mization problem. One possible heuristics is to use geomet-
ric programming to maximize the probability of some state
k, k < B, subject to lower bounds onpj for all otherj < B.

SincepB = 1 − ∑B−1
i=0 pi, this heuristics essentially min-

imizes the blocking probability. It is also known that due to
the superadditive effect of buffer size onpB , allocating a fixed
buffer space among several queues to minimize the overall
blocking probability is also a convex optimization.
An alternative way to characterize buffer overflow is through
the large deviation approach, where the blocking probability is
guaranteed statistically: for a connectionX with a prescribed
service rateR in the queue, we would like to ensure that the
probability of overflow (receiving more thanR bps fromX)
over a time scale oft is exponentially small:

Prob

{
t∑

i=1

X(i) ≥ R

}
≤ exp(−sR) (7)

wheres ≥ 0 is the undersubscription factor. Smallers im-
plies more aggressive statistical multiplexing of multiple con-
nections to one queue. This numberR is called the effective
bandwidth EB ofX (as first proposed in [5], used in many
papers since, and nicely reviewed in [7]).
Using the Chernoff bound, the effective bandwidth is given by

EB(X) =
1
st

log E [exp(sX)] , (8)

and in practice, the expectation is replaced by empirical data
collected over a time period of̃t that is much larger than the
time scale factort:

EB(X) =
1
st

log


 t

t̃

t̃
t∑

i=1

exp(sX(i))




whereX(i) is the number of bits produced by connectionX
during theith time slot.
We want to either minimize the assigned service rate EB(X)
subject to constraints that lower bound the traffic intensity
X(i) to be supported (i.e., exponentially small probability of
overflow or blocking), or maximize the traffic intensity sub-
ject to constraints upper bounding the service rate that can be
assigned toX. Both problems are geometric programs, and
we focus on the first formulation for the rest of this section
(since it is also connected with information theoretic channel
capacity [3]), where we put various constraints (indexed byj
and induced by the stochasticity of other connections sharing
the queue buffer) on the minimal level of traffic intensity to be
supported by EB(X).
Proposition 4: The following problem of constrained buffer
allocation through the effective bandwidth approach is a geo-
metric program:

minimize EB(X)
subject to

∑
i PijX(i) ≥ Xmin,j , ∀j (9)

where the optimization variables areX(i), and the constant
parameters arePij andXmin,j .



An illustrative numerical example is summarized as follows.
With s = 0.5, t = 5ms, we impose a set of 10 different con-
straints to specify the type of an arrival curve a queue should
be able to support without blocking. The geometric program-
ming solution returns the minimized effective bandwidth as
EB∗(X) = 1.7627Mbps, and the envelope of supportable ar-
rival curves is shown in Figure 2. Connections with arrival
curves below this envelope will not cause buffer overflow or
queue blocking with a probabilistic guarantee as in (7).
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Fig. 2. The envelope of arrival curves supportable by EB∗(X) = 1.7627.

V. CONVEX OPTIMIZATIONS OF QUEUING NETWORKS

In some queuing problems, a fixed number of customers or
tasks circulate indefinitely in a closed network of queues. For
example, some computer system models assume that at any
given time a fixed number of programs occupy the resource.
Such problems can be modelled by a closed queuing network
consisting ofK nodes, where each nodek consists ofmk

identical exponential servers, each with average service rate
µk. There are always exactlyN customers in the system.
Once served at nodek, a customer goes to nodej with prob-
ability pkj . Then for each nodek, the average arrival rate to
the node,λk, is given byλk =

∑K
j=1 pkjλj .

The steady state probability that there arenk customers in
nodek, for k = 1, 2, · · · ,K, is given by [8] (a closed network
Jackson’s theorem):

p(n1, n2, · · · , nK) =
1

G(K)

K∏

k=1

(
λk

µk

)nk

βk(nk)
,

where

βk(nk) =
{

nk! nk ≤ mk

mk!mnk−mk

k nk > mk

and the normalization constantG(K) is given by

G(K) =
∑

s

N∏

k=1

(
λk

µk

)nk

βk(nk)

where the summation is taken over all state vectors
(n1, n2, · · · , nK) satisfying

∑N
k=1 nk = N . We have

Proposition 5: The nonlinear problem of maximizing the
probability of state(n1 = n∗1, · · · , nK = n∗K) with∑N

k=1 nk = N , subject to fairness constraints on other states,
is a geometric program:

maximize p(n1 = n∗1, · · · , nK = n∗K)
subject to p(n1, · · · , nK) ≥ Fairness constants,

µi ≤ µi,max,
µi ≥ µi,min,∑K

k=1 mkµk ≤ µtotal

(10)

where there is a constraint of the first type for each steady
state probabilityp(n1, · · · , nK). The optimization variables
areµk, and the constant parameters areµi,min, µi,max and
µtotal.
The above convex optimization problem can be viewed as a
problem of resource (i.e., service capacityµk) allocation in a
closed queuing network. The goal is to maximize the proba-
bility that the system is in a particular state subject to fairness
constraints on other states and the limited system resource.
At first glance, it may seem that the above formulations can
be readily extended to an open queuing network. How-
ever, because of a more complicated convexity structure of
an open network (in particular, the steady state probability
p(n1, n2, · · · , nK) is neither concave nor convex inρk), a sim-
ilar formulation can be intractable for a general open network
of queues. For a simple example, consider an open queu-
ing network with two interconnectedM/M/1 queues, each
with an exponential service rateµk and an external arrival
rateαk, k = 1, 2. After being served by queuek, a customer
chooses to go to the other queue with probabilitypk or leave
the queuing system with probability1 − pk. It can be shown
thatp(n1, n2) is neither concave nor convex.

VI. CONVEX OPTIMIZATIONS OF FEEDBACK CONTROL

IN QUEUING NETWORKS

In this section, we extend the convex optimization formula-
tions to a particular type of queuing networks with feedback.
Although the formulations are no longer in the special form
of geometric program, we can still turn them into a general
convex optimization problem.
As a first example, consider a simple network of queues
shown in Figure 3.

Queue 1

Queue 2

Incoming
Packets

Fig. 3. A network of queues with feedback.

The incoming traffic to the overall system is i.i.d.∼
Poisson(λ). With probabilityp1, an incoming packet leaves
the system after the feedforward queue 1, which has an ex-
ponential service timeµ1, and with probabilityp2 = 1 − p1,
the packet is feed back through queue 2, which has an expo-
nential service timeµ2. This queuing model can be used for



a variety of systems where we would like to process as many
packets through the feedback loop as allowed under a delay
constraint on the total time spent in the system. For example,
in some optical packet switch architectures, the problem of
wavelength contention can be solved by cycling packets not
switched in a time slot through the buffer again. Clearly, there
is a tradeoff between maximizing the feedback queue traffic
loadρ2 (or equivalently, minimizing the service load1ρ2

) and
minimizing the total timeT spent in the system. We have
Proposition 6: The nonlinear optimization problem of mini-
mizing bothT and 1

ρ2
by varyingp2, subject to the following

constraints:ρ1 < 1, ρ2 < 1, and0 ≤ p2 ≤ 1 is a convex
multi-objective optimization problem, where all the Pareto
optimal solutions can be found through a scalarization tech-
nique as follows.
The problem of minimizing a weighted sum ofT and 1

ρ2
, sub-

ject to stability constraints for each individual queue, is a con-
vex optimization problem in variablep2:

minimize T + α 1
ρ2

subject to ρ1 < 1,
ρ2 < 1,
p2 ≤ 1,
p2 ≥ 0

(11)

Therefore, the nonlinear problem of finding the best feedback
parameterp∗2 andp∗1 = 1 − p∗2 to minimize the total system
time and maximize the feedback queue traffic load under indi-
vidual queue stability constraints can be efficiently solved for
the globally optimal solution.
We summarize a numerical example for the case of one feed-
back queue. Starting with the scalarized version, we first fix a
weighting factorα = 0.5 for λ = 5, µ1 = 8 andµ2 = 8. As
shown in Figure 4, the convex optimization algorithm finds
the global optimum value for the objective function as3.933
through the optimal feedback probabilityp∗2 = 0.2755.
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overp2 for a fixedα.

Now we solve the multi-objective problem as in Proposition 6
through scalarization of this convex Pareto optimization. Due
to the convexity structure, by varyingα we can obtain the en-
tire tradeoff curve shown in Figure 5, where each point on the
curve corresponds to the result of a convex scalar optimization

solution for a fixedα. Note that only points to the right of the
Pareto optimality curve are achievable.
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Fig. 5. Pareto optimality tradeoff curve asα varies.

With two parallel feedback queues, maximizing a weighted
sum of feedback queue loads subject to upper bounds on the
feedforward queue load is a convex optimization, so is mini-
mizing the ratio of the feedforward load and the sum of feed-
back loads. However, due to more involved convexity struc-
tures of the queuing system, extending the above analysis to a
general case withn feedback queues is not straightforward,

VII. C ONCLUSIONS

Based on various results on convexity properties of queuing
systems and computationally efficient algorithms for convex
optimization, we present a suite of formulations to optimize
the performance of single queues, networks of queues, and
large deviation theoretic bounds on blocking probability min-
imization. These nonlinear performance optimizations can be
carried out globally in polynomial time for network queuing
systems under QoS and fairness constraints.
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