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The study of queueing theory requires
some background in probabillity theory
and in mathematical simulation.
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Some situations in which queueing is important

Supermarket.

How long do customers have to wait at the checkoWtkat happens with
the waiting time during peak-hours? Are there emhotlgeckouts?

Post office

In a post office there are counters specializezlgn stamps, packages,
nancial transactions,

Are there enough counters? Separate queues ooomaan queue in front
of counters with the same specialization?

Data communication

In computer communication networks standard packagted cells are
transmitted over links from one switch to the néxteach switch incoming
cells can be buered when the incoming demand exckedisik capacity.
Once the buffer is full incoming cells will be I0&that is the cell delay at
the switches? What is the fraction of cells thdt e lost? What

IS a good size of the buffer?



Utilization X Waiting Time

Queueing is a common phenomenon in our daily lives. It is
Impossible to avoid queueing as long as the number of people
arrived is greater than the capacity of the service facility.

A long waiting time may result dissatisfaction among customers.
However, if one tries to reduce the waiting time, he has to
Increase the investment. There is a trade off. How to balance
efficiency and cost? At this time, Queueing Theory is introduced
to solve the problems.

Queueing Theory is important when we study scheduling and
network performance.



Queuing psychology: Can waiting in line be fun

Invironment - Occupied time feels shorter than unoccupied time

Expectation - Uncertain waits are longer than known, finite waits
Unexplained waits are longer than explained waits

Fair Play - Unfair waits are longer than equitable waits




Historie

, a engineer who worked for the
Copenhagen Telephone Exchange, published the first paper on
gueueing theory in 19009.

iIntroduced an A/B/C gueueing notation in
— 1953 Kendall notation
— 19609 Little’s formula
— 1986 15t No - The Journal of Queueing Systems
— 1995 1st international symposium THO



Investigation Methods - Simulation

Advantages

— Simulation allows great flexibility in modeling complex
systems, so simulation models can be highly vali

— Easy to compare alternatives
— Control experimental conditions

Disadvantages

— Stochastic simulations produce only estimates — with
noise

— Simulations usually produce large volumes of output —
need to summarizé, statistically analyze appropriately

Estimation of quantities:

Expected value - Mean,
Probability - rel.frequency



Example - Traffic system

@ [ntersection Signal Control Optimization

® Dynamic signal control for congested traffic

Dependance of delay and traffic
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Fundamentals of probabillity

The set of all possible outcomes of random experiment - sample space
Event — subset of the sample space

Impossible event — empty set
All sample points — certain event

N

P(A) = lI\Iim
Property of probability

0<P(A)<1

P(ALIB) = P(A) + P(B) - P(An B)
P(X) =1-P(A)

AOB P(A)<P(B)



Independent Events

Two events are said to be independent if the result of the second event
Is not affected by the result of the first event

Example

P(An B) =P(A).P(B)

A coin Is tossed and a single 8-sided die is rolled.
Find the probability of landing on the head side of
the coin and rolling a 3 on the die.

P(head) =

P(3) =

D= M=

P(head and 3) = P(head) - P(3)
1T .1
2 6
1
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Random variable

Discrete (can be realized with finite or countable set)
Continuous (can be realized with any of a range of values ILIR)
— Cumulative distribution function

F(X) =P(X <X

- Probability density function

X b

F(x)= f(u)du F(b)-F(a)= f(u)du



Mean, Variance, Standart Deviation

Expected value _ _
— Discrete E[X] = | XP(X =X)

E[X] = ) X [If ( X) dx

—00

— Continuous
Properties:

E[c.X] = c.E[X]
E[X+Y] = E[X] + E[Y]
E[X.Y] = E[X] . E[Y] for independent X, Y

Variance
— Discrete V[X] = | (Xi - H X] )2 H X =Xx)

— Continuous . 2
V[X]= (x-E(X)) CF(Xdx

—00



Probability Distributions

Discrete —if variable can take on finite ( countable) number of
values

— Binomial
— Poisson

Continuous — if variable can take on any value in interval
— Uniform

— Normal 2
— Exponential
— Erlang wl




Binomi al Distribution

probability of observing x successes in N trials, with the probability of success
on a single trial denoted by p. The binomial distribution assumes that p is fixed

for all trials. n . ,
p=P(X=i)=  p'@-p)" E[X]=ntp
! V[X] =np(L-p)

P iklad: Test consists of 10 questions, you can choose from 5 answers.

1. Probability, that all answers are wrong

1 10
P(X=0)= -z 0l

2. Probability, that all answers are right

10

P(X =0)= 0,000000

3. At least 7 correct answers

ol

P(X27)=P(X=7)+P(X=8+P(X=9+P(X=10 0,00086

4. Expected value of No of correct marked answers

E(x)=10%=2



Uniform distribution

f(X)=—=: asx<b = .
b-a
a+b (a+b)°

E[X] = ; =

[X] > VI X] 5

P iklad: Subway go regularly every 5 minut. We come accidentally.
1. Probability, That we will wait at the most 1 minute

f(x):%; 0<x<5

1 1
P(x<1)= Lt S =
2. Expected waiting time 02 0

¥ »om



Exponential distribution il

f(x)=Ae™; 0<x F(x)=1-e™* o
1 [T

Lo iz ih

E[ X] - j’ \/[ ><] - A_lz “:h . - l-.' = 3

Example:
1.  Period between two cars (out of town)Has exponential distribution A. The mean

number of cars per hour:

E[T] = %

2. Trouble free time for new car ~ exp(1/10) [time unit - year].
a) 5 year without any fault. :

P(X25)=1-F(5=1- 1e® =e?= 0,60
b) Expected value for period without defect.

E[T] = oil =10 (let)




Poisson distribution of disrete random variable

probability of a number of events occurring in a fixed period of time
if these events occur with a known average rate and independently
of the time since the last event.

(At)"
P(N(t):k):Te‘M E[X]=A[
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Erlang distribution X~ Erlang(A,K)

~ _AX(/lx)k_l_ k. _k
f(x) =Ae " % 0<x E[X]—;, V[X]—?

Sum ofk independent exponential random variakle-exp(\)
X ~ Erlang(A,K)

Normal distribution X ~ N(y,d)

1 (X—,u)

20°
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Introduction to Simulation and Modeling of
Queueing Systems
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THE NATURE OF SIMULATION

System: A collection of entities (people, parts, messages,
machines, servers, ...) that act and interact together toward
some end (Schmidt and Taylor, 1970)

To study system, often make assumptions/approximations
both logical and mathematical, about how it works

These assumptions form a model of the system

If model structure is simple enough, could use mathematical
methods to get exact information on questions of interest —
analytical solution

input output




Systems

Types of systems
— Discrete
« State variables change instantaneously at separated points in
time
 Bank model: State changes occur only when a customer
arrives or departs
— Continuous
« State variables change continuously as a function of time

» Airplane flight: State variables like position, velocity change
continuously

Many systems are partly discrete, partly continuous



ADVANTAGES OF SIMULATION

Most complex systems reguire complex models
Uncommon situation
Easy to campare alternatives

Expenditures

—Build it and see if it works out?
—Simulate current, expanded operations — could also investigate many
other issues along the way, quickly and cheaply

Simulation provide better comprehension of inner
process



Drawback of Simulation

— Models of large systems are usually very complex

» But now have better modeling software ... more general,
flexible, but still (relatively) easy to use

— Stochastic simulations produce only estimates — with noise

« Simulations usually produce large volumes of output — need to
summarize, statistically analyze

— Impression that simulationis  “just programming

* In appropriate level of detail - tradeoff between model accuracy
and computational efficiency

» |Inadequate design and analysis of simulation experiments —
simulation need careful design and analysis of simulation
models — simulation methodology

1



Application areas

— Designing and operating transportation
systems such as airports, freeways, ports, and
subways

— Evaluating designs for service organizations
such as call centers, fast-food restaurants,
hospitals, and post offices

— Analyzing financial or economic systems

___._I;__-.I_I.ﬂ L] |
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Monte Carlo Simulation <NumbeNrofn>
[

No time element (usually)

Wide variety of mathematical problems | _ i £(x) Ng =0, So=
Example: Evaluate a “difficult” integral . v
_ Letx~U(a, b), and lety ~ U(a, b); { i—1 N )
— Algorithm: Generate x ~ U(a, b), lety ~ U(a, b); repeat; :
integral will be estimate on a relative frequency.
i Q Q =(a,b) x(0,d)
areaof :S, =db-al
f(x) b
| = f(x)=
y a (X) =S
a X Db

X ... random point fromQ XOB = f(X)>y

Geometric probabilityP X OB ¥ %

Lo N =5 = S O
Probability is estimate on frequen&/ X B = )N—B

Q



0.5069337796517863
-1.1990260943909907
0.26505726444267585
-1.854711766852047

-1.4050150896076032 R an d O M Val'l ab I e Y=rand(n)

-0.17275028150144303
-0.3817032401725773

-0.435136937091886G4
0.5542356519201573
0.3889663414546052
2.859126301717398
0.9727562577423773
0.5598916815276701
0.3824270089637446
-0.0790755285917316 €20 100,004 gawssian distriouted random values calcutnted via G5L mr1 8637
0.5357541687700696
-0.044478309193382
1.7795888259824646
-1.4581832070349238
0.1229437953995138
0.657723445793143
-1.5941767391224993
-1.2708787314281354
-0.523818333110461
-0.369170711693157(
-1.356503000912718
0.2815349150485302
1.348719082678584
-0.1059896138235984
0.1083384768812282
-1.3677192275044773
-0.051733234063638056
-1.0245136587486698
-0.4719250601619712
2.5932463936402032
-0.5468976666902965

Vni dimtr|betion af 100,000 pseude-mndom mimbss

]
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Random number generator

1. Uniform distribution < a ,b >

A A

1

a b a b

v

Suppose, we have random number from unimormly Oisted X uniform(O,]}
variable

Y uniform(a,b)

Y, =a+(b-a)X




Universal method for random number
transformation

Values of Distribution function X;=F(Y;) have a uniform distribution

X; uniform(0,1)

F(y) 4
F(yl):}I ..........................................
Y. > P(Y, <Y,)=F(Y,)
a b Y P(Y|<F_l Xo)):XO
Y wform{a.b) P(F(Y) <X,)=X,
X:F(y):g_a P(X; < X,)=X,
—a F(XO) = Xo

Y =X (b-a)+a



2. Exponential distribution

f(y)=Ae" x=1-¢"
F(y)=1-e e =1-x
-Ay=In(1-x)
In(1- X
==

function y=randexp(n,b)
%random variable~exp(b)
for 1=1:n

X(I)=rand;
y(1)=-log(1-x(1))/b;

End

>> delay=randexp(200,2);
>> hist(delay,30)




3. Erlang distribution

A k yk—l

sou et k nezavislych ndhodnych veh s
exponencialnim rozdenim

function y=erlang(n,b,k)
%vector(n,1) of random
%variable ~ erlang(b,k)
for i1=1:n
y()=0
for =1k
X(j)=randexp(1,b);
y()=y()+x();
end
end

>> hist(delay,50)

>> delay=erlang(5000,2,3);

Il
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4. Normal normalni rozd leni

2

1 _(y=#)
f(y)= (& 207
(y) gy
X=randn(n)

X N(01) Y N(uo?)

Y=pu+oX

>> delay=norm_ab(1000,4,2);
>> hist(delay,30)

function y=norm_ab(n,s)
%vector(n,1) of normal
%variable ~ N(a,b)
x=randn(n,1);

y=X*s+n

70

BO

a0t

30+

e




4. Raylleigh distribution

(y-a)°

F(y)=1-e ©
2(y-a) _(y-a)’ Y, =a+cy-InX

C2

F(t) =

>> delay=norm(1000,1,4);
>> hist(delay,30)

function y=randreyll(n,a,c) |
%vector(n,l) of Reyll's
%variable ~ R(a,c)
x=rand(n,1);
y=c*sqrt(-log(x))+a;




Time-Advance Mechanisms

Simulation clock: Variable that keeps the current value of
(simulated) time in the model

Two approaches for time advance

— Next-event time advance —

Event: Instantaneous occurrence that may change the state of the
system

— Fixed-increment time advance
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Matlab - Simulink

1:30 »

Triggered Signal
From Workspace

Double-click on the switches
while the demo is running
to trigger the 'push’ and 'pop’
inputs of the queue.

In
Push Queue

Pop

Out

Empty
Full

Num

Cueue

1] Empty
| 0] Full
0| Number
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