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Abstract

We describe segmented multiresolution analyses of [0; 1]. Such

multiresolution analyses lead to segmented wavelet bases which are

adapted to discontinuities, cusps, etc., at a given location � 2 [0; 1].

Our approach emphasizes the idea of average-interpolation { synthe-

sizing a smooth function on the line having prescribed boxcar averages.

This particular approach leads to methods with subpixel resolution and

to wavelet transforms with the advantage that, for a signal of length

n, all n pixel-level segmented wavelet transforms can be computed

simultaneously in a total time and space which are both O(n log(n)).

We consider the search for a segmented wavelet basis which, among

all such segmented bases, minimizes the \entropy" of the resulting

coe�cients. Fast access to all segmentations enables fast search for a

best segmentation.

When the \entropy" is Stein's Unbiased Risk Estimate, one obtains

a new method of edge-preserving de-noising. When the \entropy" is

the `2-energy, one obtains a new multi-resolution edge detector, which

works not only for step discontinuities but also for cusp and higher-

order discontinuities, and in a near-optimal fashion in the presence of

noise.

We describe an iterative approach, Segmentation Pursuit, for iden-

tifying edges by the fast segmentation algorithm and removing them

from the data.
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1 Introduction

1.1 Improved De-Noising

Several recent papers (see [25] and references therein) have shown that wavelet
methods can be used to de-noise data of various kinds, obtaining a level of
theoretical performance not approached by pre-existing methods. In general,
these methods have the following character: �rst, one takes the empirical
wavelet transform of the noisy data; next one subjects the coe�cients to

a simple coordinatewise nonlinearity, applying specially-chosen thresholding
to wavelet coe�cients; �nally one inverts the empirical wavelet transform,
obtaining de-noised coe�cients.

While the theoretical bene�ts of this approach are now well-established,
and the actual reconstructions obtained by wavelet de-noising methods have

seemed to us quite good, particularly in comparison with pre-existing meth-

ods, we have received comments from users and others that indicate some
improvement is to be desired. These comments include

1. Gibbs Phenomenon. In the neighborhood of strong jump discontinu-

ities, wavelet shrinkage methods often exhibit alternating overshoot.
Although the phenomenon is much more localized than in the case of

Fourier series, it would be desirable to improve further.

2. Peak Shrinkage. In the analysis of data such as NMR spectra, there is

a tendency of wavelet shrinkage to \pull down" strong peaks, thereby
distorting amplitudes. It would be desirable to reduce this tendency.
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3. Edge Erosion. In the analysis of certain edge data, there is a tendency

of wavelet shrinkage to erode weak edges, reducing the sharpness of

transitions. It would be desirable to reduce or avoid this tendency.

4. Inter-Scale Correlations. The theory underlying the optimality of wavelet

shrinkage techniques shows quite clearly that from a minimax-theoretic

point of view, the wavelet transform plays the role of a de-correlating

transform, mapping the object into a space where the di�erent coor-

dinates (wavelet coe�cients) have no information about each other,

and therefore scalar processing (e.g. coordinatewise thresholding) can-
not essentially be improved upon. On the other hand, in \real world"

objects, containing edges, one can expect to see nonzero wavelet coef-
�cients at the same locations across several scales. Therefore, in real
objects, the information that a certain wavelet coe�cient is large leads
to the presumption that similarly located coe�cients at other scales be
large. One expects that by exploiting such correlations, the accuracy of

reconstruction might be improved over what simple thresholding o�ers.
It would be desirable to develop a method to exploit such inter-level
coe�cient correlations and improve on ordinary wavelet shrinkage.

All of these problems seem to call for improving on wavelet de-noising, in
a second pass, to clean up the \mess" left by the presence of singularites in
1 and 2-dimensional data. For example, if a user complains of Peak Shrink-
age and asks for an improvement, there ought to be a simple, automatic
procedure to correct it.

1.2 Segmented MRA, and Best Segmentation

In this paper, we develop an approach to these problems based on the concept

of segmented multi-resolution analysis for the interval [0; 1], which allows a

kind of wavelet decomposition and reconstruction adapted to the presence of

segmentation. The functions in a segmented MRA need not be continuous

across a certain point � internal to the interval [0; 1]. We develop in section
2 a special MRA, based on a biorthogonal system of wavelets called average-
interpolating wavelets by Donoho (1993b); these derive from smooth wavelets

which are biorthogonal to Haar wavelets, and they lead to fast algorithms

for computing the segmented wavelet transform.
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The idea is that if an object contains a sharp separation between one

\phase" and another, we can develop an MRA adapted to that two-phase

structure, and a corresponding wavelet transform, so as to avoid the presence

of nonzero wavelet coe�cients associated with the inter-phase transition.

Of course, the application of such a segmented MRA depends heavily on

information about the location � of the inter-phase boundary. In empirical

work, this is not generally available a-priori. Hence, in order to exploit

segmented MRA's, we must have some way to infer � from data.

In section 3 we approach this problem from a best-basis point of view;

compare Coifman and Wickerhauser (1992). Section 2 makes available to us
a collection of segmented wavelet expansions

f �
X
j;k

�tj;k 
(t)
j;k;

each expansion determined by a segmentation point t. We seek among all
these representations of f for one with minimal representation cost; we call
the optimizing basis a best basis for f , and label the optimizing segmentation

point �̂ . To measure representation cost we depart slightly from Coifman and
Wickerhauser (1992), who were analyzing noiseless data and selecting best
bases in a di�erent collection of bases; they proposed the use of a ��2 log(�2)
entropy as a measure of the cost of a representation. For measuring the cost
of a representation in the noiseless cases we consider here other entropies,

including �2, j�j, and j�j1=2. In dealing with noisy data, we adapt ideas
of Donoho and Johnstone (1993), and suggest the use of a certain Stein
Unbiased Estimate of Risk as an entropy measure. This measures the quality
of a given segmented-wavelet basis in which to de-noise the data. We test
the functioning of the SURE Best-basis paradigm on some simple examples.

The practicality of any best-basis method depends on the existence of a

fast search algorithm for searching through a collection of bases. In Section

4 we describe a fast algorithm for obtaining the optimizer �̂ when the en-
tropy measure is an additive measure of information. This algorithm searches

through all n pixel-level segmentations and identi�es the optimum one in or-
der n log(n) space and time.

When we infer � from noisy data, we are actually identifying edges. In

fact, using the �2-entropy leads to a new multiresolution edge locator which
adapts to the type of edge (step edge; cusp; etc.); we hope to show elsewhere
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that this has near-optimal properties in locating such types of edges in noise.

Section 5 describes in heuristic terms some properties of this locator.

How can one handle the presence of multiple segmentation points? In

section 6 we propose an iterative method, segmentation pursuit, based on

iteratively identifying the best current segmentation point and \stripping

away" the singularity at the identi�ed position. We illustrate by a computa-

tional example.

This is not a \math paper". There are no theorems here, only compu-

tational experiments, motivated by our work in other \math papers". We

aim here only to develop a collection of fast computational tools which may
be employed as a \vacuum cleaner" to remove structure from residuals in
ordinary de-noising caused by the presence of singularities in the object to
be recovered. The algorithms described here are all available for use in MAT-

LAB and may be obtained by anonymous FTP to playfair.stanford.edu.

1.3 The Challenge of Higher Dimensions

We view these 1-d results as only a modest start on a much more ambitious

program of dealing with segmentation in higher dimensions. Such segmenta-
tions would potentially lead to improvements on wavelet de-noising of image
data. To understand why, note once again that arguments on the optimality
of wavelet de-noising depend heavily on the idea that the wavelet transform
is a de-correlating transform. Yet when the wavelet transform is used in two

dimensions, the presence of edges in \real world" images guarantees long
connected \strings" of nonzero coe�cients at each scale. The nonzero coef-
�cients correspond to wavelets concentrated near dyadic boxes intersecting
the edge curve. In two dimensions, one expects that wavelet de-noising can

be improved on, by exploiting these inter-coe�cient correlations, and that

the e�ect is quantitatively much more important in two dimensions than in
one-dimension.

To understand this point more fully, we exploit a connection between
the de-noising goals of interest to us and certain data compression goals of

interest to others. (For more on the connection between statistical estimation

and data compression see Donoho(1993c)).
Wavelet compression of piecewise smooth objects, f(t), de�ned on an

interval [0; 1] in dimension 1, is very satisfactory. For example, a signal which

is piecewise a polynomial of degree D, with only P pieces, has intrinsically
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(D + 2) � P parameters. If we take N equispaced samples of the signal,

these N numbers may be e�ciently recovered from just these (D + 2) � P

parameters. For comparison, the discrete wavelet transform based on N

equispaced samples, (using wavelets with > D vanishing moments) will have

at most P � log(N) � C nonvanishing coe�cients. Hence, the number of data

which must be stored to recover via the wavelet transform is much less than

N ; in fact it is within a logarithmic factor of the ideal (D + 2) � P .

For dealing with objects f(t) de�ned on a cube [0; 1]d in dimension d > 1,

wavelet compression of piecewise smooth objects is less satisfactory. Suppose

we have an object de�ned by equispaced sampling on a grid, with spacing of
size 1=N on a side. Then Nd samples naively characterize the object. The
wavelet transform of a d-dimensional piecewise smooth object, with smooth
d� 1-dimensional boundaries between pieces, achieves an improvement over

the Nd parameter representation, but only to something like Nd�1 parame-
ters.

The fact that Nd data are typically required to represent an object in
d dimensions is sometimes called the curse of dimensionality. We may say
that the wavelet transform lightens the curse of dimensionality by changing

an exponent d to d � 1. We would like, ideally, to �nd methods to further
reduce the exponent d � 1 by exploiting the \regularity of the singularity."

To make these issues concrete, consider the following two-phase image
model in 2-dimensions:

f(x; y) =

(
s1(x; y) y > h(x)
s0(x; y) y � h(x)

: (1.1)

Here h(x) denotes a horizon, and the si are smooth, for example, polynomi-

als. In principle, such an object might be parametrized by the parameters of
the polynomials s1 and s0, and the parameters of the boundary. In fact, if the

boundary is piecewise smooth, it can itself be parametrized in terms of rela-
tively few parameters. Therefore, instead of representing such an object by

the nominally required N2 numbers, we might instead get good reconstruc-

tions using a constant number of parameters, or else a number of parameters
growing logarithmically with the scale of the �nest resolution.

On the other hand, suppose we use a 2-d wavelet transform to represent

the object, and suppose the number of vanishing moments of the wavelets

under study is greater than the degree of s1 and s0. Then wavelets whose
support is disjoint from the horizon will have zero coe�cients, but every
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wavelet which \feels" the horizon is eligible to be signi�cantly nonzero. There

are order Arclength(h) �2j such coe�cients at resolution level j, and so there

are roughly

Arclength(h) �N
nonzero wavelet coe�cients in the 2-d wavelet transform. While this is better

than N2, it is not nearly as good as the order 1 or order log(N) we might

think appropriate for a \good transform" of \very simple objects".

A very natural goal in this setting is to obtain compression to many fewer

than Arclength(h) �N nonzero coe�cients.
To see how this may be possible, we consider below a speci�c horizon-

adapted wavelet transform. This is a 1.5d wavelet transform, which involves
a segmented wavelet transform on each column of a 2-d array, followed by
a traditional wavelet transform on each row. The segmentation point varies

from column-to-column according to a horizon parameter h = h(x). This
gives us a horizon-adapted wavelet expansion

f �
X
I

�
(h)
I  

(h)
I

Ideally, this achieves the following. If the object is of the horizon form (1.1),
and if the transform is segmented with the correct horizon, there will be
only O(1) nonzero wavelet coe�cients. Moreover, if the horizon itself is very
smooth and simple, we get a representation of the horizon itself with only

Complexity(h;N)

nonzero coe�cients, where Complexity(h;N) should be much smaller than
Arclength � N for simple smooth curves. For example, if the horizon is

Lipschitz, we would expect that something likeN1=3 parameters su�ce. With

more regularity, even fewer parameters should su�ce, and with less regularity,

somewhat more. Hence a horizon-adapted transform can \compress away"
data caused by the horizon.

The ability to \compress away" wavelet coe�cients associated with a

horizon therefore might o�er bene�ts in statistical estimation. Suppose we

observe an N -by-N collection of block averages of an image observed in a
white noise of standard deviation �. It nominally costs �2=N2 in risk to esti-
mate one normalized parameter. Suppose the object has a jump discontinuity
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across a horizon. Under the usual 2-d wavelet transform, the noiseless ob-

ject has roughly Arclength(h) �N � log(N) nonzero wavelet coe�cients of the

noiseless and so there are Arclength(h) �N � log(N) \parameters" which need

to be estimated. Because of this, the best de-noising can do in dimension 2

is a per-pixel mean-squared error going to zero no faster than

�2 log(N)=N:

De-Noising a correctly horizon-adapted wavelet transform of a horizon object

(1.1) involves estimating only order O(1) nonzero parameters. Therefore,

ignoring the cost of estimating the horizon itself, the component of the risk
caused by the horizon drops to

�2O(1)=N2:

Therefore if the horizon can be estimated from data, horizon-adaptive meth-
ods promise a signi�cant reduction in mean-squared errors.

1.4 First Steps

In practice, the author knows at the moment of no elegant method for reach-

ing the full goal of identifying a horizon from data based on clear principles,
a fully 2-dimensional approach, and using fast non-heuristic algorithms.

In Section 7 we cobble together computational tools from the 1-d case,
adapting ideas of segmented transforms and best-basis search to a higher-
dimensional setting. We study the problem of representing an image contain-

ing a sharp horizon. A segmented 1.5-d transform gives us a representation

f �
X
I

�
(h)
I  

(h)
I ;

each such representation dependent on a parameter h = h(x). In general we

should seek among all these representations for one with minimal represen-

tation cost, where cost includes the cost in representing h.
Our simplest cobbling-together ignores the cost of representing h(x) and

attempts to segment each column of a 2-dimensional array as an indepen-

dent 1-dimensional dataset, without using any information about adjacent

columns. Computational experiments show that such an adaptively seg-
mented 1.5-dimensional wavelet transform can work acceptably even in the
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presence of noise. We suspect that an approach exploiting local continuity

of h(x) works better at low signal-to-noise ratio, but are not aware of fast

algorithms for such an approach.

Another way to look at the problem of wavelet de-noising in high dimen-

sions is in terms of error structure. As we show below, ordinary de-noising

of objects containing a horizon leads to errors \original surface" - \recon-

structed surface" which contain considerable structure in the neighborhood

of a horizon. This is due to the \correlation" of wavelet coe�cients induced

by edges. Computational experiments show that segmented de-noising in

the 1.5-dimensional setting can signi�cantly reduce the correlation of errors
caused by edges and so can improve the behavior of wavelet de-noising near
edges and creases.

The challenge of better compression and de-noising in high dimensions

is still largely open. We briey describe, in section 8, what is involved in
implementing a \fully 2-d" re�nement algorithm. Perhaps such discussion
will stimulate further progress.

1.5 Credit where credit is due

The idea to recognize the special role of edges in images for data compres-
sion purposes is not new. It is related to existing edge-coding ideas in image
processing as well to the nonlinear multi-scale edge reconstruction ideas of
Mallat and Zhong (1992) and Mallat and Froment (1992). The idea that

wavelets improve the curse of dimensionality, but only by dropping the expo-
nent from d to d�1 is also related to comments in the article on compression
of operators by Beylkin, Coifman, and Rokhlin (1991).

The idea to use some sort of wavelet transform adapted to the presence

of edges has been mentioned by Prof. Bj�orn Jawerth of the University of

South Carolina at several conference presentations in 1992 and 1993. After
the work reported here was done, the author learned that Deng, Jawerth, Pe-

ters, and Sweldens (1993) have independently and somewhat earlier come up
with fast algorithms for computing all pixel-level segmented 1-d transforms.

Their method is based on \breaking" the dataset into pieces and comput-

ing boundary-adjusted transforms of the left and right pieces, while ours is
based on segmented re�nement schemes. The underlying logic is somewhat
di�erent, while the resulting algorithms are similar.
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2 1-d Segmented Wavelet Transforms

In this section we briey describe a method for constructing 1-d segmented

multi-resolution analyses.

2.1 Re�nement by Average-Interpolation

Suppose we have an array (aj;k)
1
k=�1 which represents averages of a function

f on dyadic intervals Ij;k = [k=2j ; (k + 1)=2j ]. We may synthesize mock-

averages at �ner scales by the following procedure (see Figure 2.1). Let D
be an even integer greater than 0.

[1] At each site k, �nd the polynomial �j;k of degreeD which generates the
same averages in the neighborhood (aj;k0; k

0 = k �D=2; : : : ; k +D=2),
i.e.

Avej;k0�j;k = aj;k0; k0 = k �D=2; : : : ; k +D=2:

As the polynomial has D+1 coe�cients and there are D+1 constraints
to satisfy, the polynomial is uniquely determined.

[2] De�ne the mock-averages at the next �ner scale as averages of that
polynomial. On the left half of the sub-interval we get

aj+1;2k = Avej+1;2k�j;k

on the right half
aj+1;2k+1 = Avej+1;2k+1�j;k:

[3] After having synthesized all the aj+1;k's, set j := j + 1 and goto [1]

This re�nement scheme, which is analogous to the interpolating re�ne-

ment scheme of Deslauriers-Dubuc [13, 26], is discussed at length in Donoho(1993b).
The main point is that it de�nes a sequence of re�nements which in some

sense converge: the function Aj0;D(t) =
P

k aj0;k1[k=2j0 ;(k+1)=2j0](t) converges to

a continuous limitAD(t) on the line, which has the averages aj;k at scale 2
�j .

In fact, the limit has CR regularity, where R = R(D) increases with D.

The above describes average-interpolation on the line. On the interval

[0; 1], we have only averages (aj;k)
2j�1
k=0 . At the heart of the interval, re�nement

can proceed exactly as above: at the edges we rede�ne the set of neighboring
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intervals in step [1] to refer only to the D + 1 nearest intervals �tting inside

the interval [0; 1].

Return again to the case of functions on the line.

2.2 Average-Interpolating Multi-Resolutions

The vector space Vj of functions obtainable by re�ning sequences (aj;k)k
has an alternate description. Re�ning the Kronecker sequence a0;k = �k;0
yields fundamental functions � = �D. These functions and their integer

translations and dyadic dilations �j;k(t) = 2j=2�(2jt� k) generate the spaces
Vj = ff : f =

P
k �j;k�j;k(t)g. The parameters are identical to rescaled

averages: �j;k = 2�j=2aj;k. The Vj make up a multiresolution analysis which is
therefore biorthogonal to the usual Haar MRA. The operations of calculating

the averages (aj;k)k of f at scale 2�j and then re�ning those averages to
produce a limit function ~f ; the linear operator implicitly de�ned by ~f =
Pjf acts as the identity on Vj and is therefore a non-orthogonal projection.
Because the average interpolation scheme is exact on polynomials of degree
D, we have

Pj� = �

whenever � is a polynomial of degree D.
Given the averages at a scale j + 1, we of course know the averages at

scale j, because aj;k = (aj+1;2k + aj+1;2k+1)=2. The vector space Wj obtained
by re�ning sequences (aj+1;k)k where aj+1;2k = �aj+1;2k+1, consist entirely
of functions whose coarser-scale averages are zero; it is in fact the di�erence
space Wj = Vj+1 � Vj. This space has an alternate description. Re�ning the
Kronecker sequence a0;k = (�k;1 � �k;0)=

p
2 yields Mother wavelets  =  D.

These functions and their integer translations and dyadic dilations  j;k(t) =
2j=2 (2jt� k) generate the di�erence spaces: Wj = ff : f =

P
k �j;k j;k(t)g.

Let h(t) be the Haar function h(t) = 1(1=2;1]�1(0;1=2], and hj;k(t) = 2j=2h(2jt�
k). The parameters �j;k of an object f 2 Wj are identical to Haar coe�cients
of f : �j;k = 2�j=2(aj+1;2k+1 � aj+1;2k)=2 =

R
fhj;k. The di�erence space Wj

is therefore biorthogonal to the usual Haar detail spaces. Now consider the

operator which, given the averages of f at scale 2�j�1, calculates the averages

one scale coarser, re�nes those coarser averages, producing mock averages

(âj+1;k); then forms the residuals rj+1;k = (aj+1;k � âj+1;2k) and average-

interpolates that residual sequence. This produces an element of Wj, which
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we denote Qjf ; Qj is a non-orthogonal projection on Wj.

This multi-resolution system arose before, without the average-interpolation

interpretation, in Cohen, Daubechies, and Feauveau (1990), where it was

called a system biorthogonal to spline of degree 0; see the discussion in [19].

Corresponding to these schemes on the line are boundary-corrected mul-

tiresolutions on the interval [0; 1]. These are built from a boundary-corrected

re�nement scheme for the interval. This scheme has spaces V
[ ]
j and W

[ ]
j , with

projectors P
[ ]
j and Q

[ ]
j . These retain key properties from the line, such as

biorthogonality with respect to the Haar system, and the polynomial exact-
ness P

[ ]
j � = � , valid whenever � is a polynomial of degree D on [0; 1]. There

are 2j basis elements of V
[ ]
j , obtained by re�nement of appropriately normal-

ized Kronecker sequences and also 2j elements ofW
[ ]
j . We call these functions

�j;k and  j;k, respectively. See Figure 2.2. Fix j0 so that 2j0 > 2(D + 2).
Then every function in L2[0; 1] has an expansion

f =
2j0�1X
k=0

�j0;k�j0;k +
X
j�j0

2j�1X
k=0

�j;k j;k

unconditionally convergent in L2 norm.
Here the coe�cients are computed by

�j;k =
Z 1

0
�j;k(t)(f � P

[ ]
j f)(t)dt

where �j;k = 2j=21(2�jk;2�j(k+1)] is a normalized boxcar and

�j;k =
Z 1

0
hj;k(t)(f � P

[ ]
j f)(t)dt:

The mapping from f to its coe�cients ((�j0;k)k; (�j0;k)k; (�j0+1;k)k; : : :)) is

the non-segmented wavelet transform we are interested in.
This transform has the property that its basis elements are CR regular,

with an R = R(D), and the �j;k coe�cients all vanish for polynomials of
degree D, that the �j;k coe�cients of a function in Cr, 0 < r < R, are of

order 2�j(r+1=2); see Donoho (1993b) for more information.

Moreover, the transform has associated with it a fast algorithm. Given

the boxcar integrals �j1;k at a �ne scale 2�j1 � 2�j0 , coe�cients (�j0;k) and

(�j;k) at all coarser levels j0 � j < j1 can be computed in order n time,
where n = 2j1 .
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2.3 Segmented Re�nement

Consider now the following segmented re�nement procedure, with segmen-

tation point � . We assume that the segmentation point is in the heart of the

interval, so that D=2j < � < (2j �D=2j ). Given a sequence of averages aj;k,

0 � k < 2j , as in Figure 2.3 we synthesise mock averages at �ner scales by

the following procedure:

[1] At each site k which is more than D=2 sites away from the boundaries

0 and 1 and more than D=2 sites away from the segmentation point

� , use the earlier procedure to �nd the polynomial �j;k of degree D

which generates the same averages in the neighborhood (aj;k0 ; k
0 = k�

D=2; : : : ; k +D=2).

[2] At each site k which is at most D=2 sites away from the boundaries 0

and 1 �nd the polynomial �j;k of degree D which generates the same
averages in the neighborhood (aj;k0)k02N(k), where N(k) consists of the
D + 1 nearest neighbors of k.

[3] At each site k which is at most D=2 sites away from the segmentation
point � , we distinguish two cases. [3a] If � 62 [2�jk; 2�j(k+1)], then �nd
the polynomial �j;k of degree D which generates the same averages in
the neighborhood (aj;k0)k02N(k), whereN(k) consists of theD+1 nearest

neighbors of k which are all on the same side of the segmentation point
as k. [3b] If � 2 [2�jk; 2�j(k+1)], then �t, by constrained least squares,
left and right polynomials �Lj;k �

R
j;k of degree D to the block averages

in the neighborhoods on the right and left of the segmentation point,
respectively; the constraint is that the piecewise polynomial ��j;k which
is �L on the left of � and �R on the right of � should have an average

equal to the average aj;k.

[4] In cases [1], [2], and [3a], de�ne the mock-averages at the next �ner

scale as averages of the polynomial. On the left half of the sub-interval

we get
a�j+1;2k = Avej+1;2k�j;k

on the right half
a�j+1;2k+1 = Avej+1;2k+1�j;k:
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In case [3b], the steps are the same, only using the piecewise polynomial

��j;k.

[5] After having synthesized all the a�j+1;k's, set j := j + 1 and goto [1]

This segmented average-interpolating resolution has a variety of proper-

ties; a key one being that if �� is a piecewise polynomial of degree D, with

one knot, at � , then the re�nement process recovers �� exactly.

To see the possible bene�t of this procedure consider a piecewise lin-

ear function, with jump discontinuity at � = b:37 � 256c=256. Figure 2.4a

depicts the boxcar averages at scale j = 8; Figure 2.4b depicts the same av-
erages at scale j = 4. Re�nement from the coarse data at scale j = 4 by the
usual nonsegmented method produces Figure 2.4d; the attempted re�nement

misses the �ne-scale structure entirely; in fact, the transition in the synthe-
sized �ne-scale data retains the same slope as in the coarse scale data. In
contrast, Figure 2.4c illustrates the result of segmented re�nement; this has
perfectly reconstructed the �ne-scale data, despite being derived from much
coarser-scale data.

2.4 Fast Segmented Transforms

Combining results of the last two sections allows us to de�ne fast segmented

transforms, as follows. Given a segmentation point � at the \Heart" of the
interval, and a j0 satisfying D=2

j0 < � < (2j0 �D)=2j0 ), we transform f to
coe�cients

�j0;k =
Z 1

0
�j0;k(t)fdt; k = 0; : : : ; 2j0 � 1;

and

��j;k =
Z 1

0
hj;k(t)(f � P �

j f)(t)dt:

Given integrals at a �ne scale �j1;k, j1 � j0, we can calculate all needed

coe�cients at coarser scales j0 � j < j1 in order 2j1 time. Given (�j+1;k)k we
calculate �j;k = (�j+1;2k + �j+1;2k+1)=

p
2 exactly as in the fast algorithm for

the Haar transform. We then calculate (��j;k) as follows: re�ne the coarser

sequence (�j;k), getting (�̂
�
j+1;k)k, (this takes O(2

j ) time), and form the resid-

uals r�j+1;k = �j+1;k � �̂�j+1;k. These residuals obey r�j+1;2k = �r�j+1;2k+1 and
so

��j;k = (r�j+1;2k+1 � r�j+1;2k)=
p
2:
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As all computations at level j can be performed in a time proportional to 2j,

this algorithm for computing at all levels j0 � j < j1 is order 2
j1 .

2.5 Examples of Segmented Transforms

Now assume that we have been given a segmentation point � and n boxcar

averages, (aj1;k)k, of f , where n = 2j1 . We have seen that we can calculate

the �rst n wavelet coe�cients of f in order n time. (Incidentally, the re-

construction of boxcar averages from those wavelet coe�cients is also order

n).

We now give some examples of this fast transform in action. Figure 2.5
presents four objects: Ramp, Cusp, Junk, and HeaviSine. They all are seg-
mented at the point � = :3696. Data consist of boxcar averages at resolution
j = 11. We use D = 2 and j0 = 4 below.

Figure 2.6 presents the traditional wavelet coe�cients (�j;k) of these ob-
jects. In panels a,b, and d, the presence of the singularity is clearly signaled

by the signi�cant wavelet coe�cients in the vicinity of � . Similar information
is contained in Figure 2.7, which presents the multi-resolution displays Pj0f
and Qjf for these objects.

Figure 2.8 presents the segmented wavelet coe�cients (��j;k) of these ob-
jects. In Panels a, and b, they are all essentially zero; in Panel d they are

essentially zero after two resolution levels. The segmented coe�cients of ob-
ject Junk scarcely di�er from the ordinary non-segmented ones. Figure 2.9
portrays the same information in the form of multi-resolution displays P �

j0
f

and Q�
jf for these objects. The discontinuity in the MRA's is visible.

2.6 Application Areas

We now indicate three possible applications of segmented wavelet transforms

2.6.1 Data Compression

It is evident on comparing Figures 2.6 and 2.8 that coe�cients which are
signi�cant in the ordinary wavelet expansion become zero in the segmented
wavelet expansion. This is a consequence of the fact that if �� is a piecewise

polynomial of degree D, with breakpoint at � , then

��j;k(�
�) = 0; j � j0; k = 0; : : : ; 2j � 1:
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Ramp is piecewise linear; Cusp and HeaviSine are piecewise analytic, and so

well approximated by polynomials; hence the segmented wavelet transform

really should be sparser than the ordinary one.

To quantify sparsity, we use the following approach. Suppose that � =

T (f) is a transform of f into a sequence space; we measure sparsity in the

transform domain as follows. Let j�j(i) denote the i-th from largest coe�cient

in �, so that j�j(0) = maxk j�kj, and de�ne the compression number

cm =
X
i>m

j�j2(i):

The compression numbers measure how well we can approximate the vector

� by a vector with only m nonzero entries. If cm tends to zero rapidly with
m, then there are very few big coe�cients in �.

Figure 2.10 portrays the compression numbers cm for the two di�erent
transforms of each of the objects. In each case, the dashed line is the ordinary
transform and the solid line is the properly segmented transform. Evidently,

segmented compression is much better than ordinary compression in cases
a, b, and d, while it performs about the same as ordinary compression for
object Junk.

2.6.2 Subpixel resolution

As indicated in Figure 2.4, a properly segmented multi-resolution opera-
tor P �

j has the ability to reconstruct jumps much more precisely than the

usual 
(2�j) resolution of un-segmented operators. In principle this can even
continue at scales �ner than the data gathering, so that if we know the seg-
mentation point � with extreme precision, we can reconstruct at a resolution

which is just as accurate as our knowledge of � , and much more accurately
than our measurement model seems naively to permit.

2.6.3 De-Noising

As indicated in the introduction, one of our main interests in the present

topic is in improving the behavior of wavelet shrinkage de-noising. To illus-

trate how this can be done using segmented transforms, we present in Figure
2.11 a noisy version of the Ramp object, its segmented wavelet transform,
a thresholded version of the transform, and the reconstruction which was
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obtained by inverting the transform. The result displays a clean break, with

no messy Gibbs phenomena, nor any appreciable shrinkage of the jump.

In contrast, Figure 2.12 gives a side-by-side comparison of the segmented

recovery with the usual non-segmented method described in [25], using a pe-

riodized wavelet transform. The di�erence is pronounced; the non-segmented

method is plagued by Gibbs artifacts.

We also present, in Figure 2.13, a noisy version of the Cusp object, its

segmented wavelet transform, a thresholded version of the transform, and the

reconstruction which was obtained by inverting the transform. The result

displays a clean cusp in the correct location and amplitude.
Figure 2.14 gives a superposed comparison of the segmented recovery

with the usual non-segmented method described in [25], using a periodized
wavelet transform. The di�erence is not very pronounced; the non-segmented

method is plagued by downward shrinkage of peak amplitudes.
For fairness, it must be emphasized at this point that we are using ideally

segmented transforms, in which the exact value � of the break is known and
employed. Such exact knowledge would not be available in most situations.

2.7 Variations

Before leaving the topic of 1-dimensional segmented MRA's, it is worth re-
marking that many variations on these ideas are possible.

First, the speci�c average-interpolating re�nement scheme we are study-

ing is not the only one we could have used. Here we have obtained a poly-
nomial by interpolating averages at blocks in a neighborhood of a point.
We could equally well have �t, by constrained least squares, the averages at
blocks in a larger neighborhood, with the constraint that the polynomial in

question had an average that agreed exactly with the block average to be

re�ned. This would give a method with perhaps more numerical stability, at
the expense of longer �lters.

Second, it is not necessary to use average-interpolating wavelets; for ex-
ample, rather than modelling the system on biorthogonality with respect to

the Haar system, one could have used higher-order spline systems { at the

expense of greater complexity in certain re�nement calculations.
Third, the system considered here is only biorthogonal. To be maximally

consistent with the best-basis notions we will present below, it would be

very interesting to consider segmented orthogonal wavelet expansions. The
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ideas of Anderssen, Hall, Jawerth, and Peters (1993) may be useful in this

connection.

3 Adapting by Minimum Entropy

There is one obvious objection to the direction we have been headed. This

would argue that while segmented transforms may be attractive in the ideal

case where the appropriate point of segmentation is known exactly, one never

knows this point in advance, and so the concept of of segmented transform
is of uncertain usefulness.

In this section we will investigate the idea of selecting, adaptively, from
data, an appropriate segmentation. Let E = E(�) be an entropy, which in our
terms means merely a functional which is small for sparse vectors containing
very few nonzero components and which is large for vectors containing very
many nonzero components all of the same size. An example is the `1 entropy

E1(�) =
X
i

j�ij:

Other examples will be given below. We use the convention that if x denotes a

vector of dyadic length n = 2j1 containing block averages at scale 2�j1 , then
W t

nx denotes the segmented wavelet coe�cients ((�j0;k)k; (�
t
j;k)k) obtained

with segmentation point t. The Minimum Entropy Segmentation principle
(MES) is to select, from among all possible segmented bases for representing
x, that basis which gives the coe�cients with smallest entropy in the wavelet
coe�cient domain:

�̂ = arg mint2[0;1] E(W t
nx)

One ought to choose the entropy E so that the resulting segmentation
reects the task at hand. Consequently, there will be di�erent implementa-

tions of this principle, depending on whether one's goal is data compression

or de-noising.

3.1 Data Compression

Coifman and Wickerhauser (1992) in now-classic work, have proposed a
method of best-basis selection which, translated into the present framework,
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goes as follows. First, given wavelet coe�cients W t
nx, de�ne pj;k = (�tj;k)

2.

Then pj;k � 0.

Second, one de�nes the Coifman-Wickerhauser entropy by

ECW (�) = �
X
j;k

pj;k log(pj;k)

(We di�er here from Coifman-Wickerhauser in two ways. First, they

were working with orthogonal transformations, and it was therefore natural

to normalize the object to unit `2-norm 1. We do not adopt this convention
here. Second, our sum does not include the (�j0;k) terms, which anyways are
the same regardless of segmentation point t.)

To the original C-W entropy we add the following general family of en-
tropies E�, � 2 [0; 2],

E�(�) =
X
j;k

p
�=2
j;k :

We are particularly interested in the `1 entropy E1, the `1=2 entropy E1=2, and
the `2 entropy E2.

All of these measures are measures of anti-sparsity. The limit, as �! 0,
is simply the numerosity,

E0 = #f(j; k) : �tj;k 6= 0g:

At the other limit, as � " 2, we can obtain the C-W entropy:

d

d�
E�(�)j�!2� = ECW (�):

Hence the Coifman-Wickerhauser entropy is the tangent on a curve which
measures sparsity; the other entropies are simply points on that curve. See
Figure 3.1.

Note that in the original best-basis setting, one was considering a choice

among orthogonal bases, and the `2 entropy would not vary among bases;

but here, one is considering a choice among non-orthogonal bases, and the
`2 entropy is more reasonable.

We now compare the use of these entropies in choice of segmentation.

First we consider object Ramp; here n = 2048 and the correct segmentation

is at � = 757=2048. Figure 3.2 shows the unsegmented wavelet transform
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and three segmentations at pixel boundaries 756, 757, and 758. Because

the object is piecewise linear, at the correct segmentation 757, the wavelet

coe�cients �j;k all vanish. The �gure shows that at nearby segmentations,

the segmented wavelet transform entropy is intermediate between an unseg-

mented one and the appropriately segmented one. Figure 3.3 shows entropy

pro�les for pixel-level segmentations running from 749 to 765. At the correct

segmentation 757, all of the entropies vanish. As we move away from the

correct segmentation, the entropy more or less increases, but is more well-

behaved for the 2, 1- and 1=2 entropies than for the C-W entropy, which

seems erratic.
Next we consider the object Cusp; here n = 2048 and the correct seg-

mentation is again � = 757=2048. Figure 3.4 shows the unsegmented wavelet
transform and three segmentations at pixel boundaries 756, 757, and 758.

Because the object is piecewise analytic, at the correct segmentation 757,
the wavelet coe�cients �j;k nearly vanish. The �gure shows that at nearby
segmentations, the segmented wavelet transform entropy is intermediate be-
tween an unsegmented one and the appropriately segmented one. Figure 3.5
shows entropy pro�les for pixel-level segmentations running from 749 to 765.

At the correct segmentation 757, all of the entropies vanish. As we move
away from the correct segmentation, the entropy more or less increases, but
is again more well-behaved for the 2, 1- and 1=2 entropies than for the C-W
entropy, which has rather a broad minimum, and fails to point to a unique
optimum.

In both examples, the 1=2-entropy indicates a sharper preference for a
speci�c segmentation than the other entropies.

3.2 De-Noising

We now consider adaptive choice of basis in the presence of noise. With

n = 2j1 , we suppose that we have noisy block-averages

dk = Aveff jIj1;kg+ � � zk; k = 0; : : : ; n� 1

where the zk are a Gaussian white noise. We process these data as if they
were noiseless block averages, obtaining coarse-scale empirical block averages

vj0;k = �j0;k + � � �j0;k; k = 0; : : : ; 2j0 � 1;
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and empirical wavelet coe�cients

wt
j;k = �tj;k + �� tj;k; k = 0; : : : ; 2j � 1:

We act provisionally as if the �'s and �'s were independent and constant

variance 1, which they are not, owing to the lack of orthogonality of the

transforms.

We consider the problem of recovering the vector of coe�cients �t =�
(�j0;k)k; (�

t
j0;k

)k; : : : ;
�
, and we group the noisy empirical wavelet coe�cients

together into a vector yt =
�
(vj0;k)k; w

t
j;k; : : : ;

�
.

Initially, consider the following ideal problem (compare Donoho and John-
stone (1992a)). We have available an oracle which furnishes optimal weights

(wi) for use in a diagonal linear estimator �̂t = (wiy
t
i)i; these weights being

optimal in the sense that they minimize the mean squared error

E
X

(wiyi � �i)
2:

In reality such an oracle and such optimal weights are never available to us.
The risk of such an ideal procedure is within a factor of 2 of the following
proxy:

R(�̂t) =
X
i

min((�ti)
2; �2):

In terms of the compression number introduced earlier, we have

R(�̂t) = cN(�) + �2N(�);

where N(�) = #fi : j�ij > �g. As this \ideal risk"is therefore large for dense
vectors containing lots of entries and small for sparse vectors containing only
a few nonzero coe�cients, it is an entropy.

Figure 3.6, panel (a) displays the behavior of this ideal risk measure in

segmenting the Ramp object; panel (b) displays the behavior in segmenting
the Cusp object. In both cases the minimum risk segmentation is at the

natural location. There is a sharper preference for the minimum in the case of
the Ramp object, which is connected with the object's sharper discontinuity.

Now consider the behavior of a \real" de-noising procedure, as follows.

Setting a threshold � =
q
2 log(n)� we apply soft thresholds, getting esti-

mates

�̂i = ��(yi); i = 1; : : : ; n:
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(Again we are acting provisionally as if the yi all have the same variance �2).

As in Donoho and Johnstone (1993), we can estimate the risk of this estimator

using Stein's Unbiased Estimate of Risk for this nonlinear estimator:

SURE(y) = �2 �
 
n� 2

X
i

1jyij<�

!
+
X
i

min(y2i ; �
2):

This risk measure is smaller for sparse vectors and larger for dense vectors,

and so represents a kind of entropy.

Figure 3.6, panel (c) displays the behavior of this empirical risk measure
in segmenting the noisy Ramp object; panel (d) displays the behavior in
segmenting the noisy Cusp object. In both cases the SURE pro�le is much
noisier than the Risk pro�le (as expected); and the minimum SURE seg-

mentation is near, but not exactly at, the natural location. There is again
sharper preference for the minimum in the case of the Ramp object, which
is connected with the object's sharper discontinuity.

Apparently, even in the presence of noise, one can adaptively select a
transform which preserves the structure of strong discontinuities.

4 Fast Computation of all Segmentations

A further objection to the direction we have been headed is computational.
The segmented wavelet transform is an order n operation; to calculate all n
pixel-level segmentations therefore seems naively to require an O(n2) proce-

dure; this is unsuitable for many applications.
Fortunately, there is a method for calculating all n pixel-level segmenta-

tions in order n log(n) time and space. The method is based on the follow-

ing observation. In performing the segmented re�nement, only those blocks
within a distance D=2 of the block containing the segmentation point are

a�ected by the segmentation. That is to say, the resulting values are the
same as they would be in a non-segmented re�nement based on the average-

interpolating wavelets of section 2.1. We therefore propose to calculate, for
each pixel-level segmentation t = i=n; i = 0; : : : ; n � 1, only those speci�c

coe�cients which di�er from the non-segmented transform.
Label these coe�cients

�j;l(t); j = j0; : : : ; j1 � 1; l = �D=2; : : : ;D=2;
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where the subscript j again indicates resolution level and the subscript l

indicates o�set from the block bt2jc containing the segmentation point.

Suppose these coe�cients are all available for a given segmentation point

t, and that we also have available the unsegmented transform. By copying

values from the array of � into the appropriate locations of the array of un-

segmented wavelet coe�cients, we obtain the segmented wavelet coe�cients.

Each one of these coe�cients depends in a linear fashion on a �xed number

of block averages at scale j+1 in a neighborhood of a given block. Therefore

each coe�cient can be computed from scratch in order C �D work.

There are order log2(n) �D �0s attached to a given t; therefore the cal-
culation of all the �0s attached to that t, starting from scratch, is an order
D2 log2(n) operation.

It follows that we can evaluate, in sequence, all n pixel-level segmented

transforms by the following approach.

� 1. Compute the unsegmented AI wavelet transform. Make an extra

copy of the transform array.

� 2. For i = 0; : : : ; n� 1 do:

� 2.a. Calculate the �-coe�cients for t = i=n.

� 2.b. Copy them into the unsegmented array at the appropriate posi-
tions (these depend on t).

� 2.c. Evaluate the entropy of the resulting array

� 2.d. Restore the unsegmented array with the original unsegmented

wavelet coe�cients.

� 3. Using the best i arising in step 2, perform steps 2.a and 2.b once
more at that i.

The cost of this procedure, excepting the evaluations of entropy, is order
n � log(n) �D2.

We now point out how to rapidly minimize the entropy functional. Let

�0 denote the coordinates of the unsegmented wavelet transform. De�ne the

di�erential entropy

�E(t) = E(�t) � E(�0):
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The minimum of the entropy E(�t) will be at the same value of t as the

minimum of the di�erential entropy, so it is su�cient to minimize di�erential

entropy.

Now we remark that all the entropy functionals we have discussed are

coordinatewise sums; in addition, most of the coe�cients of �0 and �t agree.

Therefore most terms in the entropy di�erence E(�t)� E(�0) disappear, and
only those coe�cients which are potentially di�erent need be considered.

The di�erential entropy �E(t) is, up to a quantity which does not depend on

t, simply a functional of the � coe�cients, and of the unsegmented wavelet

coe�cients that they replace. Call the coe�cients being replaced

�j;l(t); j = j0; : : : ; j1 � 1; l = �D=2; : : : ;D=2:

(Of course, these are all present in the single n-element array of wavelet
coe�cients, so that one does not actually store the �'s; it is convenient to
have a notation referring to them). One can therefore simply evaluate the
entropy of the �-coe�cients, subtract the entropy of the �-coe�cients, and
minimize this di�erence as a function of t.

We therefore have the following streamlined algorithm, which requires
less time and space.

� 0. Calculate the ordinary unsegmented transform.

� 1. For i = 0; : : : ; n� 1 do:

� 2.a. Calculate the �-coe�cients for t = i=n.

� 2.b. Evaluate the entropy di�erence between those � coe�cients, and

the corresponding � coe�cients from the unsegmented transform.

� 3. Using the best i arising in step 2, calculate the segmented wavelet

transform for t = i=n.

The complexity of the unsegmented transform is again O(n), and the

whole algorithm is order n � log2(n) �D2.

Remarks.

1. With the exception of o�sets l = 0, each �j;l is actually the result of

a �ltering operation { simple convolution { applied to the block averages.
Thus �j;l is constant in blocks of size 2(j1�j). By exploiting this remark, all
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the �j;l(t) for l 6= 0 can be computed simultaneously in order O(n) time

(rather than n log(n)).

2. The vector �(t) is, in fact, a kind of multiresolution �lter bank, with

� (D + 1) log2(n) outputs at each \time" i. Therefore, we are searching for

an optimal segmentation by applying multiresolution �lters, and evaluating

the entropy of the output, searching for a minimum entropy output. Applying

this idea, we present, in �gure 4.1, a display of the entire �lter bank output

for object Ramp.

3. Although we started from the point of view of looking for a single

segmentation point, we can instead look for several. By displaying the whole
di�erential entropy pro�le �E(t) as a function of t, we may perhaps identify
several points of segmentation. To illustrate this fact, we display in Figure
4.2, panel (a), the object Blocks, which has many edges, and in panel (b),

the corresponding di�erential entropy pro�le.
4. Although the method we are discussing is order n log(n), the con-

stants involved are worse than, say, the constants involved in the Fast Fourier
transform, as order n log(n) inversions of a 2D + 2 by 2D + 2 matrix must
be made. (The matrices are all the same except for two rows, however, so

systematic use of the Sherman-Morrison-Woodbury formulas could improve
the constants over naive inversion.)

5. Most fundamentally, the current ideas completely change our opinion
of what makes sense in treating noisy data. We began with the prejudice that
using SURE to select bases was the most sensible approach. This was based

on the favorable experience of Donoho and Johnstone (1993) in using SURE
to adaptively select parameters of a de-noising procedure. In particular, we
would not have considered the use of an `2 entropy, because the noise in

such entropy would seemingly swamp any signal. But from the present point
of view, it is clear that minimizing the simple `2 entropy criterion involves

in an essential way only quadratic forms in order log2(n) noise variables.
Therefore, the noise variance in such a criterion grows with n in a moderate

way, and selecting a segmentation by minimizing the `2 entropy is no longer

ruled out.
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5 MES as an Edge Locator

The observation just made suggests a new multi-resolution �lter bank edge

locator: �nd the tminimizing the `2-entropy of the segmented empirical trans-

form. There is of course a massive literature on edge detection and location;

it is interesting to compare thisMinimum Energy Segmentation method with

existing approaches.

1. The segmented wavelet approach allows a de�nition of edges which

is very broad, including not only step discontinuities, but also cusps, and,

if high polynomial degrees D are employed in wavelet construction, discon-

tinuities in higher derivatives. Moreover, the segmented wavelet approach
allows considerable variety in behavior near the edge { a jump discontinuity
needn't be a simple Heaviside; it could also be a jump with di�erent slopes
on the two sides of the jump. In contrast, many existing schemes depend on
a speci�c shape of discontinuity (e.g. Heaviside); they may miss more subtle
e�ects and may produce biased locations if the simple models they assume

do not �t.
2. The segmented wavelet approach is based on a multi-resolution �lter,

whereas the traditional approaches are mono-resolution { based on �ltering
at one �xed scale. It is evident that if one �lters at one �xed scale, a variety of
tuning parameters need to be speci�ed; if these are misspeci�ed, the results

will be poor. The segmented wavelet approach based on the `2 entropy has
no tuning parameters.

3. The segmented wavelet approach seems to be near-optimal from the
point of view of statistical theory. Roughly speaking, when the object con-
tains a step discontinuity, the Minimum Energy criterion seems to give a

localization of the edge at a rate approaching the OP (1=n) which statistical
theory says is optimal; when the object contains a cusp discontinuity, the

Minimum-Energy criterion seems to give a localization of the edge of accu-

racy OP (1=
p
n), which statistical theory says is again optimal, and so on for

other discontinuity types.

This is not the place for an extended analysis or proof of the asymptotic

properties of this edge locator. However, we do o�er a simple heuristic anal-
ysis which may be persuasive, and with work can be re�ned into a rigorous

analysis. For simplicity, we argue below as if the various coe�cient function-
als had equal, unit, norms. A rigorous argument would allow for the fact

that they do not.
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Suppose that we have a function like Ramp with jump discontinuity at � ,

and poynomial behavior on both sides (polynomial of degree D). Consider

the segmented wavelet coe�cients �j;l(t) for t 6= � . We say that a non-central

coe�cient (l 6= 0) is \contaminated" if the formula producing it involves using

data from blocks containing the segmentation point, or on the opposite side.

For \uncontaminated" coe�cients with ` 6= 0, the magnitude of the coe�-

cient �j;l(t) is O(2
�j(D+1=2)). For \contaminated" coe�cients, the magnitude

of the coe�cient, unless a happy accident intervenes, is O(2�j=2).

The `2 entropy is an additive measure, so we may partition the risk mea-

sure by resolution level:

�E2(t) =
X
j

�
Q�
j (t)�Q

�
j (t)

�
;

with component at level j

Q�
j =

X
l

�2j;l(t); Q
�
j =

X
l

�2j;l(t):

Roughly speaking therefore, Q�
j is of order

Q�
j � #funcontaminated �j;lg � 2�j(2D+1) +#fcontaminated �j;lg2�j

Now, again roughly speaking

#fcontaminated �j;lg � min(2j jt� � j;D=2 + 1)

and

#funcontaminated �j;lg � D �#fcontaminated �j;lg:
We conclude that each Q�

j has a \well" of order 2
�j wide, and a depth which

is of order 2�j also. Combining over all scales, we get for expected behavior
that �E2(t) has a well with sides behaving like � jt� � j, for jt� � j � 1=n.

In case the underlying function has a cusp, \contaminated" coe�cients

are of size 2�j(3=2). Repeating the above analysis, we get an expected behavior

that E2(t) has a well with sides behaving like � jt� � j2, for jt� � j � 1=n.

In general, for a discontinuity in the m-th derivative, E2(t) has a well
with sides behaving like � jt� tjm+1, for jt� � j � 1=n.
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Let us now consider the noise in the objective function. De�ne the noise

process Z(t) = �E2(yt)�Ef�E2(yt)g. This is a continuous zero-mean stochas-

tic process, at each t a diagonal quadratic form in O(log2(n)) random vari-

ables, each one a Gaussian with variance �2=n. Hence Z(t) has tail probabil-

ities bounded by a double exponential distribution with variance parameter

C(�2 log2(n)=n)
2. We ignore, in this heuristic treatment, the issue of the

noncentrality parameters of various quadratic forms.

Now for the minimumto occur at a certain, �xed t, it is necessary that the

noise in Z(t)�Z(� ) exceed the drift Q(t)�Q(� ). The chance that the noise
is smaller than some multiple of �2 log2(n)=n is overwhelming. Therefore a
given t has a non-negligible chance to be better than � only if Q(t) � Q(� )
is smaller than some multiple of �2 log2(n)=n. This suggests that

Q(�̂ )�Q(� ) = OP (�
2 log2(n)=n):

(Rigorous proof of such a relation of course requires the use of techniques
from the theory of empirical processes.) Combining these relations with the

fact that, in the presence of a jump discontinuity, Q(�̂ ) � Q(� ) � j�̂ � � j,
and that, in the presence of a cusp, Q(�̂)�Q(� ) � j�̂ � � j2, and one gets the
following heuristic predictions.

First, the rate of convergence of the minimizer at a simple discontinuity
with polynomial behavior on either side is predicted to be

�̂ � � = OP (�
2 log2(n)=n):

Second, the rate of convergence of the minimizer at a simple cusp with poly-

nomial behavior on each side is predicted to be

�̂ � � = OP (�
q
log2(n)=n):

Third, the rate of convergence of the minimizer at an m-th order discontinu-
ity, with polynomial behavior on each side, is predicted to be

�̂ � � = OP ((�
2 log2(n)=n)

1=(m+1));

provided D > m.

We know from asymptotic decision theory that this behavior is essentially

the best one may expect. It is possible that if we knew that the discontinuity
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were of a certain type, say a ramp, we could invent a method which converges

at a slightly faster rate { avoids the logarithm terms. But the new method

makes no assumptions whatever, and achieves a near-optimal rate for the

given type of singularity without advance knowledge of the type of singularity.

We conjecture (based on related experience in [22]) that if one wants to adapt

to an unknown type of singularity, the logarithm terms can not be avoided.

We carried out a small simulation experiment to assess the performance

of the estimator. In the simulation, we attempted to locate the segmentation

point for objects Ramp and Cusp at various signal-to-noise ratios and sample

sizes.
The simulations show that the estimator had an all-or-nothing character.

At su�ciently high signal-to-noise ratio, the methods give accuracy at the
pixel level, while at signal-to-noise ratio below some critical threshold, the

methods fail completely. There was very little evidence of continuous or
gradual degradation in the estimator's quality with decreasing SNR. We did
not succeed in identifying a heuristic formula which would predict the SNR
at which the pixel-level resolution degraded completely.

6 Multi-Segmented Analysis

Figure 4.2 shows that, if one evaluates the di�erential entropy pro�le on
an object with several discontinuities, the pro�le will exhibit several local

minimizers. This suggests that tools for �nding a single best segmentation
might pro�tably be employed in the case of multiply-segmented objects.

The key issue in such an undertaking is that some kind of sequential

unmasking is necessary. Figure 6.1 shows an object, Bumps, together with
its di�erential entropy pro�le. Evidently, not all the bumps result in visible
local minima of the entropy pro�le. Figure 6.2 displays its segmentation-

coe�cients �j;l.

6.1 Sharp- and Flat-Components

Any function fj 2 V �
j is, in principle, smooth except at � . Hence we can

decompose the function into \potentially singular" and \certainly smooth"
parts solely by location. IfKj(� ) denotes those indices k where closure(support(�j;k))
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contains � , then for an fj 2 Vj we may write

fj = f
#;�
j + f

[;�
j

with \potentially singular" (sharp) part

f
#;�
j =

X
k2Kj(�)

��j;k�j;k

and \certainly smooth" (at) part

f
[;�
j =

X
k 62Kj(�)

��j;k�j;k:

We note also that the mapping f ! f#;�j is a non-orthogonal projection, and

similarly for f ! f
[;�
j

We can do the same sort of thing for a function d in Wj, getting non-

orthogonal projection operators S];�
j d and S[;�

j d.
If we now write f = fj0+

P
j0�j<J Q

t
jf , we can decompose each individual

term into sharp- and at- components, producing

f = f#;� + f [;� ;

where
f#;� = f#;�j0

+
X

j0�j<J

S];�
j Qjf:

The function f#;� is potentially singular at � ; and of compact support; the
complementary function f [;� is zero at � and also in a vicinity of width� 2�J .

To illustrate these ideas, we present in Figure 6.3 the corresponding func-
tions f#;� for object Bumps, where � runs through the points ti underlying
the construction of the Bumps object.

We may think of the functions f#;� as representing the \part of" f \ex-

plained by" any singularity at � .

6.2 Segmentation Pursuit

The ability to identify the part of a function \explained by" a singularity

at a �xed point suggests a sort of iterative cleaning operation, analagous to
Friedman and Stuetzle's Projection Pursuit in statistics and Mallat's Match-

ing Pursuit is Signal Analysis.
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1. Set r := f and i := 1.

2. Identify a point of likely segmentation via

ti := arg mintE(W tr)

3. Calculate f ];ti, the component of r \explained by" the segmentation.

4. Remove this component.

r := r � f ];ti

5. Unless satis�ed, set i := i+ 1 and go to 2.

We call this \segmentation pursuit"; it is in formal analogy with \projec-
tion pursuit" [27] and \matching pursuit" [31].

Figure 6.4 gives the result of applying segmentation pursuit to object
Bumps; shown are the functions f#;ti extracted in the �rst ten iterations of

the procedure. Several issues deserve comment. First, that while some of the
functions extracted are indeed sharp peaks, corresponding to sharp peaks in
the original object, some of the extracted objects are rather \dull" and not
exactly what one expects. The reason is that the points of segmentation do
not always correspond to actual singularities; the extracted components in

those cases are smooth rather than peaked. Second, the method appears,
in general, to leave \peaky" residuals even when peaks are being success-
fully extracted; this is caused by the inuence of peak shapes which di�er
from piecewise polynomial. Figure 6.5 displays the residual vector at several
stages.

Based on experience with projection pursuit [27], a variety of simple mod-

i�cations to the above should also be useful, and should address the two
objectionable features just seen. One example is \back�tting", where, after
adding a new term into the equation, we cycle through all previous terms;

on each cycle we add back to r the term under consideration, and then we

locate and extract a singular component all over.

1. Set r := f and i := 1.

2. Identify a point of likely segmentation via

ti := arg mintE(W tr)
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3. Calculate f ];ti, the component of r \explained by" the segmentation.

4. Remove this component.

r := r � f ];ti

5. for j := 1 to i� 1, set r := r+ f ];tj , and perform the analog of steps 2

and 3, extracting an \improved" f ];tj

6. Unless satis�ed, set i := i+ 1 and go to 2.

The idea is that we can thereby adjust the locations of segmentations to
allow for improved segmentation after neighboring peaks are unmasked.

E�cient implementation of this idea requires the implementation of an
e�cient updating scheme for the all-segmentations algorithm. When ex-
tracting a sharp-component of f , the �j;l coe�cients of the new residual r

di�er from the previous coe�cients only in order O(log(n)) positions. If we
develop a method to e�ciently update just those coe�cients, the intrinsic
computational complexity of this iterative scheme can be made quite small.
We have not yet implemented this scheme and so have little experience with
the method.

6.3 A Vacuum Cleaner

The computational toolkit we have assembled consists of several dozen pro-
cedures, expressed as MATLAB m-�les.

The principal application we have in mind for this toolkit at the present

time is the one indicated in the introduction: improving on ordinary wavelet
de-noising by adapting to the presence of a few singularities.

1. Apply several iterations of Segmentation pursuit to remove edges.

2. Apply standard wavelet de-noising to the edge-less object.

3. Apply segmented wavelet de-noising to each segmentation-component.

4. Superpose the results.

Armedwith a fast all-segmentations algorithm and a fast updating method

for extracting sharp-components, such ideas are practical and bear further

study.
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7 The Horizon problem

Now we analyze the horizon problem posed in the introduction. For de�-

niteness, consider Figure 7.1, which displays object HalfDome. This object

is de�ned by the following 1.5-dimensional imaging model:

di;k = Aveff(x; y)jy 2 Ij1;kg+ � � zi;k; 0 � i; k < 64; x = i=64:

The object itself has the following form. With horizon function

h(x) = 1=4 + x(1� x); x 2 [0; 1];

we have, above the horizon, f = s1(x; y) = 0, and, below the horizon, f =
s0(x; y) = x(1� x)y(1� y).

The 2-dimensional wavelet transform of this object is portrayed in Fig-

ure 7.2. Figure 7.3 portrays a 1.5-dimensional wavelet transform of the ob-
ject. Here the \1.5-dimensional transform" is obtained by �rst, applying
the 1-dimensional wavelet transform along each column, then applying the
1-dimensional wavelet transform along each row. Symbolically,

W1:5d = Wx[Wydx];

where dx denotes a column of the data array { all the samples corresponding

to a single x-value. The resulting transform has separable basis functions
obtained as simple tensor products of wavelets in x and wavelets in y.

It will be noted that in both transforms the nonzero wavelet coe�cients
tend to cluster, so that if a certain coe�cient is large, one expects that
coe�cients at nearby sites will also be large.

Figure 7.4 compares compression numbers of the two transforms. They
are roughly similar, though the full 2-d transform o�ers somewhat higher

accuracy at large m.

Consider now the segmented 1.5-dimensional wavelet transform, obtained
by applying an ideally- segmented wavelet transform to each column, followed

by a standard wavelet transform to each row.

W h
1:5d =Wx[W

h(x)
y dx];

Results are depicted in Figure 7.5. Note that the transform is by and large

missing the long strings of correlated wavelet coe�cients against a near-zero
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background. Figure 7.4 also compares the compression numbers of this trans-

form with the compression numbers of the other two transforms. Obviously,

the results are much better with ideal segmentation.

How to infer a horizon from data? In determining a minimum entropy

segmentation for this 1.5-dimensional case, two di�erent approaches suggest

themselves.

Ignoring Horizon Cost. Here one simply applies the 1-dimensional ideas

used so far on each column of the 2-d data array, without borrowing strength

from any apparent relationship between neighboring columns. Simply put,

one searches for the best segmentation point for each column separately;
only after this segmentation is found does one make the transition to a 1.5-
dimensional transform.

Enforcing Horizon Cost. Here one measures the entropy of the full trans-

form array, and attempts to �nd an appropriate segmentation for optimizing
this target.

As an example of the �rst approach, we consider the noisless case. Figure
7.6 portrays Entropy pro�le arrays as 2-d surfaces. Each column of the
underlying array is a 1-dimensional pro�le of the type seen before, for a

column of the corresponding HalfDome object. For clarity, we set positive
values to zero, only negative values being important for the minimization. In
all cases, we get a strong minimumnear the true horizon. Figure 7.7 portrays
the located horizon under each criterion, with the true horizon.

Second, we consider the noisy case. Figure 7.8 portrays the ideal risk

and SURE surfaces for the noisy HalfDome object of Figure 7.14. Figure
7.9 portrays the ideal-risk located horizon and the MES- located horizon.
Evidently, the quality of the horizon estimate has an all-or nothing character.

Either the estimate is accurate even at the pixel level, or else it is wildly
scattered about. This example shows that the noise level is too high and

the discretization too coarse for adaptively segmented methods to radically
improve things.

Finally, we display the results of de-noising with the ideally-speci�ed hori-
zon, in Figure 7.10.

For comparison purposes, we depict in Figure 7.11 a reconstruction by
de-noising the non-segmented wavelet transform. The result is somewhat

smoother looking, but it is less accurate. The mean squared reconstruction

error by segmented search is 308/4096; the mean-squared reconstruction error
by non-segmented transform is 812/4096. A good way to see the improvement
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is to compare Figures 7.12 and 7.13. These portray the reconstruction errors

made by each method. Evidently, the errors made by the segmented de-

noising are rather balanced in spatial distribution. On the other hand, the

errors made by non-segmented de-noising are very large near the horizon

discontinuity.

In some sense, the ideal segmentation has cleaned-up the structure in the

large errors associated with curves, giving errors which are more spatially

random. It is an interesting question whether for problems of this scale,

performance of realistic algorithms can possibly approach this ideal.

8 Topics for Further Work

In this section we briey mention some areas which are natural continuations
of work done here, but which we have not pursued. We aim mainly to make
the reader aware of the di�culties involved.

8.1 Multi-Segmented Multi-resolutions

In section 6 we aimed to treat multiply-segmented objects by iterative ap-
plications of operators derived from the single-segmentation case. Instead,
we could have developed an Multi-Resolution Analysis based on multiple
segmentations, and corresponding wavelet transforms.

The appropriate generalization of our earlier methods leads to the follow-
ing.

Algorithm: Multi-Segmented Refinement

Inputs:

Block averages: a[k], 0 <= k < 2^j.

Segmentation Points: 0 = t_0 < t_1 < ... < t_M = 1.

Outputs:

Refined Block Averages: r[k], 0 <= k < 2^(j+1)

for k=0 to 2^j-1 {

Break_in_box = True, if a breakpoint falls inside box k.

Nleft = Number of consecutive `unbroken' boxes on left of box k.
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Nright = Number of consecutive `unbroken' boxes on right of box k.

if(!break_in_box){

if(Nleft >= D/2 && Nright >= D/2){

Fit polynomial of degree D to the D+1 nearest box averages

Impute box-averages to finer scale using fitted polynomial

} else {

Impute as in Haar refinement

}

} else {

if(Nleft >= (D+1) && NRight >= (D+1)){

Fit left and right polynomials of degree D

to (D+1) averages on left and right sides of break point.

Impute box-averages to finer scale using left and right polynomials.

} else {

Impute as in Haar refinement

}

}

}

This re�nement scheme, iterated across levels, leads to leads to a se-
quence of spaces V

(t0;t1;:::)
j , and re�nement operators P

(t0;t1;:::)
j much as be-

fore. However, unlike before, it will not always be the case that the spaces Vj
contain all piecewise polynomials of degree D. In the fortunate case where

2j(ti � ti�1) > (D + 1) for each relevant i, this will be the case; that is, if
�(t0;t1;:::) denotes a piecewise polynomial with knots at the ti, we will have

P
(t0;t1;:::)
j �(t0;t1;:::) = �(t0;t1;:::):

However, if two breakpoints fall in the same box, then no such relation will

hold, in general.

It would be interesting to consider a variation of the ideas in section 6,
in which, when we decide that segmentation is occuring at t, rather than

removing the \sharp part" of a function, we augment the MRA by inserting
another point into the segmentation list. It is at the moment unclear to the

author how to search for segmentations \masked" by other, more pronounced,
segmentations.
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8.2 Enforcing Horizon Cost

In section 7 we ignored the cost of representing the horizon. In data-compression

terminology, in an N by N image, the position of the horizon gives N free

variables that need to be obtained, so unless we consider the issue, the com-

pressed storage can never be smaller than O(N), even when the object is

very simple, with a very simple horizon. In statistical-estimation terminol-

ogy, the horizon obtained from noisy data will itself be noisy; better horizon

estimates will be obtained by imposing some sort of smoothness, which will

help block the noise.
In the data compression setting, one might consider the use of an en-

tropy involving the sum of the representation cost in the horizon-segmented
transform and the representation cost of the horizon.

E(f; h) = E(W h
1:5x) + E(W1h)

This means that a horizon which is simple to represent, but not exactly the
\true" horizon, might be preferred over the \true" horizon, if that horizon is
complex and requires many coe�cients to represent.

In the statistical-estimation setting, one might consider the use of two

kinds of entropies. First, the unpenalized SURE method:

SURE(d; h) = SURE(W h
1:5d);

second, the penalized SURE method

P � SURE(d; h) = SURE(W h
1:5d) +

X
min(�j;k(h)

2; �2j;k);

Here one calculates a purely formal uncertainty �j;k, for example by exam-
ining the uctuations of the unpenalized SURE minimizer at the signal-free

model. That formal uncertainty is used to penalize uctuations in the horizon
model.

Much can be said about the attractiveness of these measures; however,
the computational issues involved in minimizing them are extremely thorny.

It seems natural to try gradient descent from a starting horizon estimate,

and to exploit the multi-resolution nature of the transform; this leads to a

framework as follows:

[1] Use the Univariate Segmentation as a starting guess for h(x).
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[2] Expressing h(x) in a standard Schauder Basis (piecewise-linearwavelets),

attempt multiresolution gradient descent to improve the guess.

[2a] Express the gradient of the objective in terms of the Schauder coe�-

cients.

[2b] Operating at coarsest scales, do a line search in the restricted gradient

direction to get a better horizon.

[2c] Express the new gradient of the objective in terms of the Schauder

coe�cients.

[2d] Operating at �ner scales, do a line search in the restricted gradient
direction to get a better horizon.

This framework is vague, and does not lead to any concrete algorithms.
We are skeptical that such ideas will ever lead to practical methods.

For one speci�c choice of entropy, however, there does seem to be an

algorithm with some hope of working. Suppose the entropy applied to the
two-2 array is just the L2-energy, and that the horizontal wavelet transform
Wx is orthogonal. Then by Parseval,

kWx[W
h(x)
y dx]k22 =

X
x

kW h(x)
y dxk22

and the above general form of entropy becomes

E(d; h) = (
X
x

kW h(x)
y dxk22) + E(Wxh):

The fast-all-segmentations algorithm in dimension 1 allows us to calculate
and store, in order n2 log(n) time, the surface S(x; y) = kW h(x)

y dxk22 at the

grid of O(n2) pixel values. In fact, surfaces of exactly this sort were presented

in Figures 7.6 and 7.7. The objective function then becomes

E(d; h) = (
X
x

S(x; h(x))) + E(Wxh):
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8.3 2-d Re�nement Schemes

The computational di�culty of carrying out a fully two-d segmented re�ne-

ment scheme is fairly high. In order to maintain the possibility of sub-pixel

resolution, one must faithfully model the sub-pixel details of an edge in two

dimensions. To see how this goes, we describe a simple two-d re�nement

scheme for horizons of a special type.

Assume the horizon is monotone increasing, and that we wish to re�ne

averages at the scale of the coarse grid, producing imputed averages at the

scale of the �ne grid. The horizon is modelled as a piecewise linear curve
with knots only at grid points.

The average-re�nement paradigm we have been using in 1-d �ts low-order
polynomials to block averages in a neighborhood of the block to be re�ned.

It is important that these neighborhoods themselves consist only of blocks
which are unsegmented. In 2-d, with a monotone increasing phase boundary,
the northwest quadrant and southwest quadrant are always unsegmented.
Therefore at any block which is segmented, we propose re�nement using
quarter-plane �lters as follows;

� Fit polynomials of degree D to block averages in the northwest and
southeast quadrants; call these the top and bottom polynomials.

� Use these polynomials to impute averages at each of the four subblocks.

The algorithm is similar at blocks with other geometries. For example,
at a block which is unsegmented, but whose immediate northern neighbor is
segmented, we may use the quarter-plane �lter facing southeast, with vertex
(northwest corner) at the block in question.

9 Discussion

This article describes computational experiments applying the persuasive

best-basis heuristic to the segmentation problem. It does not try to prove
anything, but to develop the implications of the wavelet/best-basis formal-

ism. It also represents a report on the development of a considerable body

of software, which the reader may wish to obtain for experimental purposes.
The author sees two principal issues raised by this work.
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1. There are many existing edge-detection schemes. A number of these

are based on wavelets themselves [32, 33]. The method we have discussed

here is di�erent, in that it tries to be true to the internal logic of the wavelets-

wavelet packets paradigm.

2. Fidelity to the internal logic of wavelets puts us in a kind of straight

jacket. We are limited in this paper to certain methods and attitudes; this

makes some questions, like how to handle fully two-d segmentation problems,

seem very di�cult.

The author also wishes he had the time to repeat these experiments using

more stable re�nement schemes. This would be his �rst priority for further
work.
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