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ABSTRACT

We describe an algorithm to build a graphical model—more
precisely: a join tree representation of a Markov network—
for a steady state analog circuit. This model can be used to
do probabilistic diagnosis based on manufacturer supplied
information about nominal values of electrical components
and their tolerances as well as measurements made on the
circuit. Faulty components can be identified by looking for
high probabilities for values of characteristic magnitudes
that deviate considerably from the nominal values.

1. INTRODUCTION

In the past decades several approaches to the diagnosis of
circuits have been developed [9, 10]. Examples are: the
fault dictionary approach, which collects a set of common
or relevant faults and associates them with a set of measure-
ments by which they can be identified [2], the model-based
diagnosis of digital circuits based on constraint propagation
and an assumption-based truth maintenance system (ATMS)
[7], and the simulation of a circuit for different predefined
faults to generate training data for a classifier, for example,
an artificial neural network [1, 12]. Especially the diagnosis
of digital circuits is well-developed, but it is difficult to ex-
tend to analog circuits due to problems likesoft faults, (that
is, deviations from nominal values) and the non-directional
behavior of analog circuits.

Since existing methods for the diagnosis of analog cir-
cuits suffer from some drawbacks, like difficulties to take
into account tolerances of components and measurements
as well as the need for a predefined set of faults, we develop
an approach that is based on a probabilistic description of
the state of the circuit with the help of a graphical model.

This paper is organized as follows: in Section 2 we
briefly review the ideas underlying graphical models with an
emphasis on Markov networks. Section 3 explains the iter-
ative proportional fitting method, which is important for the
initialization of the probability distributions of the graphical

model. In Section 4 we describe our algorithm and illustrate
it with a simple example in Section 5. Finally, in Section 6
we draw conclusions and discuss future work.

2. GRAPHICAL MODELS: MARKOV NETWORKS

In the last decade graphical models have become one of the
most popular tools to structure uncertain knowledge about
complex domains [13, 8, 3] in order to make reasoning in
such domains feasible [11, 5]. Their most prominent repre-
sentatives are Bayes networks, which are based on directed
graphs and conditional distributions, and Markov networks,
which are based on undirected graphs and marginal distri-
butions or factor potentials. Here we focus on the latter.

Let V = {A1, . . . , An} be a set of (discrete) random
variables with respective domainsdom(A1),. . ., dom(An).
A Markov networkis an undirected graphG = (V,E) of
these random variables together with a set of functions on
the spaces spanned by the variables underlying the maximal
cliques1 of the graph. The structure of the graph encodes
conditional independence statements between (sets of) ran-
dom variables that hold in the joint probability distribution.
This is done byu-separation: two (disjoint) setsX andY of
variables are conditionally independent given a third setZ
if all paths from a variable inX to a variable inY contain a
variable inZ. Conditional independence ofX andY given
Z, writtenX ⊥⊥ Y | Z, means that

pXY |Z(x, y | z) ≡ pX|Z(x | z) · pY |Z(y | z),

wherex, y andz are value vectors from the spaces spanned
by the random variables inX, Y , andZ, respectively. It can
be shown [8] that if the graph encodes only correct condi-
tional independences byu-separation, then the joint proba-
bility distributionpV factorizes according to

pV (v) ≡
∏
C∈C

φC(c).

1A clique is a complete (fully connected) subgraph and it is called max-
imal if it is not contained in another complete subgraph.



Here the setC is the set of all setsC of variables underlying
the maximal cliques of the graphG. v andc are value vec-
tors over the variables inV andC, respectively. TheφC are
the functions on the spaces spanned by the variables in the
setsC ∈ C already mentioned above. They are calledfactor
potentials[5] and can be defined in different ways from the
corresponding marginal probability distributions.

For reasoning purposes a Markov network is often pre-
processed into a singly connected structure to avoid update
anomalies and incorrect results. The preprocessing consists
in triangulating the graph2 and turning the resultinghyper-
tree-structuredgraph into a join tree [5]. In a join tree there
is one node for each maximal clique of the graph it is con-
structed from. In addition, if a variable (node) of the origi-
nal graph is contained in two nodes of the join tree, it is also
contained in all nodes on the path between these nodes in the
join tree. A join tree is usually enhanced by so-callednode
separatorson each edge, which contain the intersection of
the variables assigned to the connected join tree nodes.

For join trees there exist efficient evidence propagation
methods [5] that are based on a message passing scheme, in
which the node separators transmit the information between
the nodes. In the following we work directly with join trees
and neglect that our model is actually a Markov network.

3. ITERATIVE PROPORTIONAL FITTING

Iterative proportional fitting (IPF) is a well-known method
for adapting the marginal distributions of a given joint prob-
ability distribution to desired values [13]. It consists in com-
puting the following sequence of probability distributions:

p
(0)
V (v) ≡ pV (v)

∀i = 1, 2, . . . : p
(i)
V (v) ≡ p

(i−1)
V (v)

p∗Aj
(a)

p
(i−1)
Aj

(a)

wherej is the((i − 1) mod |J | + 1)-th element ofJ , the
index set that indicates the variables for which marginal dis-
tributions are given.p∗Aj

is the desired marginal probability
distribution on the domain of the variableAj , p(i−1)

Aj
the cor-

responding distribution as it can be computed fromp
(i−1)
V

by summing over the values of all variables inV exceptAj .
In each step the probability distribution is modified in

such a way that it satisfies one given marginal distribution
(namely the distributionp∗Aj

). However, this will, in gen-
eral, disturb the marginal for a variableAk, which has been
processed in a previous step. Therefore the adaptation has
to be iterated, traversing the set of variables several times.

It can be shown that if there is a solution, IPF con-
verges to a (uniquely determined) probability distribution

2An undirected graph is calledtriangulatedor chordal if all cycles of
length greater than three have a chord, i.e., an edge between two nodes that
are nonadjacent in the cycle.

that has the desired marginals as well as some other con-
venient properties [4, 6]. Convergence may be checked in
practice, for instance, by determining the maximal change
of a marginal probability: if this maximal change falls be-
low a user-defined threshold, the iteration is terminated.

IPF can easily be extended to probability distributions
represented by Markov networks [6]. The idea of this ex-
tension is to assign each variable, the marginal distribution
of which is to be set, to a maximal clique of the Markov
network (or to a node of the join tree it has been turned
into), to use steps of iterative proportional fitting to adapt
the marginal distributions on the maximal cliques, and to
distribute the information added by such an adaptation to
the other maximal cliques by standard evidence propagation
(preferably carried out by join tree propagation).

4. CONSTRUCTING THE GRAPHICAL MODEL

Let N be a time-invariantn + 1 node,b branch steady state
circuit with known topology. Let the nodes be accessible
terminals for measurements, so that one of them is taken
as a reference (ground) and the node voltages are used to
study the circuit. We assume that for each component the
electrical law that governs its behavior (e.g. Ohm’s law for
a resistor), its nominal value(s) and a tolerance provided by
the manufacturer are known. We use the following notation:

Ūi, i = 1, . . . , n : node voltages,
Īj , j = 1, . . . , b : branch currents,
Z̄k = Rk + jXk, k = 1, . . . , b : branch impedances.

In order to build a graphical model for the circuitN, we have
to find partitions of the set of variablesV = {Ū1, . . . , Ūn,
Ī1, . . . , Īb, Z̄1, . . . , Z̄b} into three disjoint subsetsX1, X2

andX3, such that the variables inX1 andX2 are condi-
tionally independent given the variables inX3. That is, if
the values of the variables inX3 are fixed, a change of the
value of a variable inX1 has no influence on the values of
the variables inX2 and vice versa.

To find such partitions, we consider virtual cross-sec-
tions through the circuit (only through wires, not through
components). Each of these cross-sections defines a set of
variables, namely the voltages of the wires that are cut and
the currents flowing through them. Since this set of vari-
ables obviously has the property of making the variables on
one side of the cross-section independent of those on the
other side (and thus satisfies the conditional independence
property), we call it aseparator set. We select a set of cross-
sections so that each component is enclosed by two or more
cuts or is cut off from the rest of the circuit by a single cut
(terminal cross-section). Then the physical law governing
a component describes how the variables of its enclosing
cross-sections relate to each other. Note that there are usu-
ally several ways of selecting the cross-sections.



Given a set of cross-sections we construct the join tree
as follows: the separator sets form the node separators. For
each circuit part (containing one component) we create a
node containing the union of the separator sets of the bound-
ing cross-sections. In addition, we create a node for each
component, comprising the variables needed to describe its
behavior, and connect it to the node corresponding to the
circuit part the component is in. If the component node con-
tains currents not yet present in the circuit part node, we add
these currents to it. The connection is made through an ap-
propriate node separator, containing the intersection of the
sets of variables assigned to the connected nodes.

This initial graphical model is simplified in two steps.
In the first step, the number of variables is reduced by ex-
ploiting trivial Kirchhoff junction equations (like identity of
two currents). In the second step, we merge adjacent nodes
where the variables in one of them is a subset of the vari-
ables in the other. The result is the qualitative part of the
graphical model, i.e. the graph structure.

To find the quantitative part (probability distributions),
we initialize all node distributions to uniform. Next we en-
force Ohm’s law as well as Kirchhoff’s junction law (wher-
ever applicable). Finally we incorporate the manufacturer
supplied information about nominal values and tolerances
by iterative proportional fitting (see Section 3). The re-
sulting graphical model can then be used to diagnose the
modeled circuit by propagating node voltage measurements,
which may be specified as intervals to handle inaccuracies.

From the theory of graphical models it is well known
that the computational complexity of operations on a join
tree (IPF and evidence propagation) is governed by the size
of the node distributions, which depends on the number of
variables in a join tree node and the sizes of their domains.
If the distributions can be kept small by a proper selection
of cross-sections, the computation is very efficient.

5. A SIMPLE EXAMPLE

To illustrate our approach we consider the simple resistive
circuit shown in Figure 1, wheren = 5, b = 7. It is fed
by a voltage supplyU1, whose internal resistanceR1 we
assume to be zero. The set of (real valued) variables isV =
{U1, . . . , U5, I1, . . . , I7, R1, . . . , R7}. We select the set of
six cross-sectionsS1 toS6 that are shown in Figure 2. As an
example of the conditional independences referred to above
consider the cross-sectionS3: once we know the voltage of
the cut wires (U2 andU3) and the currents through them (I2

andI4, I4 = I2), all the magnitudes to the left ofS3 become
independent of those to the right ofS3.

The initial graphical model, as it is constructed from the
separator sets, is shown in Figure 3. The node separators
(rectangles) are labeled by the cross-sectionsS1 to S6 they
correspond to. The nodes are drawn with rounded corners
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Fig. 1. A simple resistive circuit.
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Fig. 2. The resistive circuit with cross-sections.
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Fig. 3. Initial graphical model for the example circuit.
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Fig. 4. Simplified graphical model for the example circuit.

and thicker lines. To simplify the network, we exploitI1 =
I2 = I4 andI5 = I6 = I7. Furthermore, we merge the
four leftmost nodes (two from the top row and two from the
bottom row), the third and the fourth nodes on the top row
and the two rightmost nodes (the last nodes from the top and
bottom row). The result is shown in Figure 4.



U1 = 20 U1 = 20 ∧ U5 = 5
R2 .11 .22 .39 .19 .09 .00 .04 .33 .32 .31
R3 .09 .18 .41 .21 .11 .17 .23 .38 .16 .07
R4 .12 .22 .40 .18 .08 .53 .29 .15 .03 .00
R5 .11 .21 .40 .19 .09 .05 .15 .39 .27 .15
R6 .11 .21 .40 .19 .09 .16 .25 .37 .16 .07
R7 .11 .21 .40 .19 .09 .16 .25 .37 .16 .07

Table 1. Resistor marginals after propagating the supply
voltageU1 = 20 and the measurementU5 = 5.

For our experiments we implemented the described
methods for discrete Markov networks in Matlab and C.3

We discretized the continuous ranges of values; resistors: 1
to 5Ω with 1Ω steps, voltages: 0 to 20V with 1V steps, cur-
rents: 0 to 4A with 1A steps. For the six resistors we set an
initial probability distribution roughly normal and centered
at 3Ω, i.e. fori = 2, . . . , 7 : pRi(r) = (0.1,0.2,0.4,0.2,0.1).

The initial probability distributions are determined as
described in Section 3. With a threshold of10−6 the IPF
procedure converges after 5 iterations. Next we set the volt-
age supply to 20 V and propagate this information using join
tree propagation. This changes the marginals of the resistors
only slightly as can be seen on the left in Table 1. Suppose
now that we measure the node voltageU5 and find it to be
5± 0.5V (inaccuracy). Propagating this evidence yields the
resistor marginals shown on the right in Table 1. It can be
seen that due to the measurement the distributions forR2

andR4 change considerably, indicating that at least resistor
R4 is highly likely to deviate from its nominal value.

6. CONCLUSIONS AND FUTURE WORK

We presented a novel method for modeling and diagnosis of
analog circuits that exploits probabilistic information about
production tolerances of electrical components. It consists
of: the construction of a join tree representation of a Markov
network from a set of cross-sections of an analog circuit; the
IPF procedure for the initialization of the probability distri-
butions; the join tree propagation for the incorporation of
(possibly inaccurate) measurements. For our experiments
we used a simple example to keep things comprehensible,
but the approach is fully general and can be applied to any
steady state, AC/DC circuit. Faults like shortcuts or open
connections can easily be included by adding them as pos-
sible states to the variable(s) describing a component.

In the future we plan to make our method more effi-
cient by exploiting the sparsity of the (discrete) probabil-
ity distributions (electrical laws rule out a large number of
value combinations) and by using parameterized continuous

3We plan to make the Matlab and C source files available online at the
URL http://fuzzy.cs.uni-magdeburg.de/˜girimont

distributions. Furthermore, we plan to develop a theory of
how to select measurements in a diagnosis process. The ba-
sic idea is to propagate possible outcomes of measurements
through the network, to compute (and to aggregate) the re-
sulting reductions in entropy of the distributions on compo-
nent values, and finally to select the measurement that leads
to the highest expected entropy reduction (similar to [7]).
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[6] R. Jiroǔsek and S. Pøeuèil. On the Effective Imple-
mentation of the Iterative Proportional Fitting Pro-
cedure. Computational Statistics and Data Analy-
sis 19:177–189. Int. Statistical Institute, Voorburg,
Netherlands 1995

[7] J. de Kleer and B.C. Williams. Diagnosing Multiple
Faults. Artificial Intelligence32(1):97–130. Elsevier
Science, New York, NY, USA 1987

[8] S.L. Lauritzen.Graphical Models. Oxford University
Press, Oxford, UK 1996

[9] R.-W. Liu, ed.Selected Papers on Analog Fault Diag-
nosis. IEEE Press, New York, NY, USA 1987

[10] R.-W. Liu. Testing and Diagnosis of Analog Circuits
and Systems. Van Nostrand Reinhold, New York, NY,
USA 1991

[11] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference (2nd edition).
Morgan Kaufman, San Mateo, CA, USA 1992

[12] R. Spina and S. Upadhyaya. Linear Circuit Fault Di-
agnosis Using Neuromorphic Analyzers.IEEE Trans.
Circuits and Systems II44(3):188–196. IEEE Press,
Piscataway, NJ, USA 1997

[13] J. Whittaker.Graphical Models in Applied Multivari-
ate Statistics. J. Wiley & Sons, Chichester, UK 1990


