
Khalil : Hardware Implementation of Backpropagation Neural Networks on Field

62

Hardware Implementation of Backpropagation Neural Networks

on Field programmable Gate Array (FPGA)

Rafid Ahmed Khalil
rafidamori@yahoo.com

University of Mosul, College of Engineering, Mosul, Iraq

Abstract

 In this paper, a design method of neural networks based on VHDL hardware

description language, and FPGA implementation is proposed. A design of a general neuron

for topologies using backpropagation algorithm is described. The sigmoid nonlinear

activation function is also implemented. The neuron is then used in the design and

implementation of a neural network using Xilinx Spartan-3e FPGA. The simulation results

obtained with Xilinx ISE 8.2i software. The results are analyzed in terms of operating

frequency and chip utilization.

Key words : Artificial, Neural , Network, Backprobagation, FPGA,VHDL.

-

(VHDL).(FPGA)

BP.

BP .(VHDL)

Xillinx® .

 Xilinx ISE 8.2i .

.

1. Introduction Received 29 May 2007 Accepted 2 Sep. 2007

Al-Rafidain Engineering Vol.16 No.3 Aug. 2008

63

 Artificial neural networks (ANN) have been used successfully in pattern recognition

problems, function approximation, control, etc. Their processing capabilities are based on a

parallel architecture [1]. There are different kinds of electronic implementations of ANN :

digital, analog, hybrid, and each one has specific advantages and disadvantages depending on

the type and configuration of the network, training method and application . For digital

implementations of ANN there are different alternatives : custom design, digital signal

processors, programmable logic. Among them, programmable logic offer low cost, powerful

software development tools and true parallel implementations [2].

 Field programmable gate arrays (FPGA) are a family of programmable logic devices

based on an array of configurable logic blocks (CLB), which give a great flexibility in the

development of digital ANNs [3].

 The backpropagation algorithm [1], is one of the most useful algorithms of ANN

training. In this paper, we present the neuron implementation for the in topologies that are

suitable for this algorithm. The tanh sigmoid activation function is also implemented. The

neuron is then used in a multilayer neural network.

 For the implementation, VHDL language was used [4]. VHDL (Very high speed

integrated circuit Hardware Description Language) is a hardware description language which

simplifies the development of complex systems because it is possible to model and simulate a

digital system form a high level of abstraction and with important facilities for modular

design.

 The purpose of this work is to suggest and analyze several neuron implementations,

show a way for the integration and control of the neurons within a neural network, and

describe a way to implement a simple feedforward neural network trained by BP algorithm

using XC3S500E Xilinx FPGA.

2. Neuron Implementation
 The common mathematical model of a neuron is shown in Fig. (1) [1].

Fig. (1), Mathematical model of artificial neuron.

The neuron output can be written as:

1

R

j j

j

w pa f ………………..(1)

where jp are inputs, jw are weight coefficients, f activation function, and a neuron output.

 Two distinct neuron implementation were designed using 8-bit and 12-bit binary

MAC (multiply accumulate) circuits. The sigmoid activation function is used for

implemented neurons in hidden layer, and linear activation function is used for output layer

neuron. For all neurons (8-bit and 12-bit), the product of signed input (4-bit / 8-bit) and

Khalil : Hardware Implementation of Backpropagation Neural Networks on Field

64

signed weight (4-bit) form a signed result (8-bit/ 12bit). These products value are

accumulated into activation state. The final output value is obtained by applying the activation

function. The weight coefficients are stored in a ROM within neurons.

 Referring to Fig. (2), the MAC unit which accepts a serial processing of weights and

parallel inputs pairs, each pair is multiplied together and a running total is recorded. An index

control module controls the multiplexing order. Once all input pairs have been processed, the

final sum is passed through the activation function to produce the neuron’s output. The main

advantage of serial processing is the small constant area required, regardless of topology, to

implement one MAC and some routing for one input and one weight contained in the weight

ROM module. The obvious disadvantage is the processing speed. If the network involves a

large number of inputs, serial processing will suffer from slow processing.

Fig. (2), Neuron structure—serial processing.

3. Sigmoid Activation Function Hardware Design

 A very important part of neuron implementation is activation function hardware

design. One of the most frequently used activation function in backpropagation neural

networks applications is the hyperbolic tangent (tanh) sigmoid function (refered to as "tansig"

in Matlab), and is given as:

()
n n

n n

e e
f n

e e
 ……………….(2)

This function is not suitable for direct digital implementation as it consists of an infinite

exponential series. Many implementations use a lookup table for approximation. However the

amount of hardware required for these lookup tables can be quite large especially if one

required a reasonable approximation [5,6]. A simple second order nonlinear function exists

which can be used as an approximation to a sigmoid function [7]. This nonlinear function can

be implemented directly using digital techniques. The following equation is a second order

nonlinear function which has a tanh-like transition between the upper and lower saturation

regions :

Al-Rafidain Engineering Vol.16 No.3 Aug. 2008

65

'

1

() ()

1

for L n

f n f n for L n L

for n L

 ………………..(3)

where L depends on the level of saturation of the function and '()f n is defined by

'
() 0

()
() 0

n n for n L
f n

n n for L z
 ……………………(4)

where and are parameter for setting the slop and gain. Fig.(3) shows the comparison

between the sigmoid defined by equation (2) and the hardware approximation defined by

equations (3 and 4).

Fig.(3) Real tanh sigmoid activation function and hardware approximation.

For an 8-bit neurons, figures 4 and 5 show the time diagrams for implementing two neurons,

one with approximated tanh sigmoid activation function and the other with linear activation

function. The RTL (register transfer level) hardware circuits for implementing the two

neurons are shown in figures 6 and 7, leading to different hardware complexity and different

operating speeds.

Fig.(4) Time diagram of implementing an 8-bit artificial neuron with approximated tanh

sigmoid activation function.

Fig.(5) Time diagram of implementing an 8-bit linear artificial neuron.

Khalil : Hardware Implementation of Backpropagation Neural Networks on Field

66

Fig.(6) RTL hardware schematic circuit for implementing tanh sigmoid artificial

neuron.

Fig.(7) RTL hardware schematic circuit for implementing linear artificial neuron.

4. comparison Results
 Table (1) gives performance and resource use summary for the two implemented 8-bit

neurons. As it can be seen, the linear neuron require very few hardware resource in

comparison with tanh sigmoid nonlinear neuron. The operation speed in all cases gives a good

results and shows the advantages of using FPGAs in neural realization.

Al-Rafidain Engineering Vol.16 No.3 Aug. 2008

67

Table (1) Comparative data for implemented 8-bit artificial neurons.

5. Neural Network Simulation and Implementation Results

The architecture of feedforward neural network used in this work is 3-3-1 (input,

hidden, output) layers. It is shown in Fig.(8).

Fig.(8) Two layer feedforward (BP) neural network architecture of dimension

 3-3-1 (referred to nntool matlab schematic notation).

The network is composed of three input , the hidden layer with three sigmoid neurons , and

the output layer with single linear neuron. All neurons in the same layer are handled in

parallelism. It fully uses the parallel, quick characteristic of the FPGA.

 Considering the tradeoff area and speed in the design of the chip, the parallel inputs of

every neuron from the previous layer are sent to the multiplication and accumulated to the

activation function. The principle diagram of the top level and RTL level neural network

design is shown in Fig.(9 a ,b, and c).

Khalil : Hardware Implementation of Backpropagation Neural Networks on Field

68

 (a)

(b)

(c)

Fig.(9) (a) Top level diagram of implementing 3-3-1 feedforward neural network, (b)

RTL level circuit diagram of implementing hidden layer, (c) RTL level circuit diagram

of implementing output layer.

Al-Rafidain Engineering Vol.16 No.3 Aug. 2008

69

Where 1 2 3, ,p p p is the 4-bit input signals to hidden layer neurons. The 4-bit nine weights

coefficients are stored in a ROM within neurons. The tanh sigmoid activation function of

hidden neuron is implemented as VHDL package code according to kwan approximation [7].

The 8-bit outputs of hidden layer neurons 1 2 3, ,a a a are applied as input to output layer

neuron. The output signal _out rdy is applied as start signal to output layer _in rdy . The

clk signal drive both network layers. The three 4-bit weights coefficients of output layer are

also stored in a ROM within output neuron . The overall network 12-bit output is a .

 We adopt the ISE Xilinx foundation 8.2i software. The synthesized result is as follows:

To validate the performance of the neural network, we establish the test-bench considering the

actual situation of the neural network operation. The test-bench adopting three type of input

signal vectors, and the weight coefficient of hidden and output layers are stored in ROMs.

The simulative results (time diagram) of the hidden layer and overall neural network are

shown in figures 10 and 11 respectively.

As a result of synthesis and implementation of multilayer feedforword neural network on a

Xilinx xc3s500 FPGA device. The device utilization summary, and timing summary gives a

good results and shows the advantages of using FPGAs in neural realization.

Fig.(10) Time diagram for (3-3) single layer tanh sigmoid neural network (assumed has

identical performance to hidden layer).

Khalil : Hardware Implementation of Backpropagation Neural Networks on Field

70

Fig.(11) Time diagram for (3-3-1) feedforward BP neural network.

6. Conclusions

 Construction solutions for implementation of neural networks using FPGAs are

described. The main purpose of this research was to design and implement single neuron in

the domain of speed and hardware complexity, and to suggest a solution for connecting

neurons into a multilayer feedforward BP neural network. An important part of this work was

the hardware implementation for the approximation of sigmoid activation function.

Since the more advanced families of FPGAs can contain more than 100,000 CLB

(configurable logic block) [8], then it is clear that we can implement a network with an

interesting number of neurons working in parallel in just a single chip. On the other hand,

using hardware description, such as VHDL, represent a very practical option when dealing

with complex systems. Finally, we can say the FPGAs constitute a very powerful option for

implementing ANNs since we can really exploit their parallel processing capabilities.

References

1. M.Hagan , H . Demuth , M. Beele , " Neural Network Design" , University of Colorado

Bookstore, 2002, ISBN : 0- 9717321- 0-8.

2. R. Omondi, C. Rajapakse," FPGA Implementation of Neural Networks", Springer U.S.,

2006,ISBN 10-0-387-28485-0.

3. O. Maischberger ,v. Salapura , " A Fast FPGA Implementation of a General Purpose

Neuron ", Technical University , Institute of in formatik , Austria , 2006.

4. D. L. Berry, "VHDL programming by examples", McGraw-Hill, fourth edition, 2002.

5. Pavlitov K., Mancler O., " FPGA Implementation of Artificial Neurons" , Electronics,

No.9 September , 2004 , pp . 22-24 .

6. J. Blake , L. McDaid , " Using Xilinx FPGAs to Implement Neural Networks and

Fuzzy Systems" , Faculty of Eng . , University . of Ulster , Magel college , Northland Rd

. Derry , 2005.

7. Kwan , H.K. , " simple sigmoid . like activation function suitable for digital hardware

implementation" , Electronic Letters , V.28 , July , 1992 , pp. 1379 – 1380 .

8. Xilinx , XST User Guide , Xilinx Inc . 2003.

The work was carried out at the college of Engg. University of Mosul

