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Abstract 
 

   The use of adaptive (neural) networks for fault diagnosis and process control is explored.   Adaptive networks can 
be used as fault recognition systems, adaptive non-linear process models, and as controllers.  Connection strengths 
representing correlation between inputs (alarms and sensor measurements) and outputs (faults) are made to learn by 
the network using the Back Propagation Algorithm (BPA).  Results are presented for diagnosing faults in a Heat 
Exchanger � CSTR system.  The network employed in the present study has eight input nodes corresponding to the 
state variables and eight output nodes corresponding to the eight malfunctions (faults).  A hidden layer of an 
optimum number of eleven nodes is chosen based first on heuristics and later on various trial and error combinations.  
A learning rate of 0.7 is used.  The training used the lower and upper limits as keys for training as well as the limits 
for normalization.  The final fault diagnosis (after network training) involved rounding of the values from the 
network.  The network is able to identify all the faults correctly. 
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1. Introduction 
 

Changes in the physical conditions of process units, 
control systems or exogenous conditions may lead to 
what are generally referred to as faults.  Faults in the 
broadest sense include symptoms resulting from 
physical changes, such as deviations of temperature or 
pressure from their normal operating range, as well as 
physical changes themselves such as scaling, foaming, 
leaks and wear.  Even changes in unmeasured process 
parameters such as heat or mass transfer coefficients can 
be deemed to be faults.  A wide variety of techniques 
have been proposed to detect and diagnose faults using 
redundant instrumentation, Knowledge Based Expert 
Systems (KBES), process modeling statistical tools, 
digraphs and combinations of these (Watanabe et al., 
1994).  The difficulty with these techniques is that they 
involve process modeling for fault diagnosis itself can 
be quite a difficult job because errors in the model can 
be interpreted as faults thus yielding false alarms, or can 
prevent faults from being detected when they occur 
(Ungar and Powell, 1988). 

 What is of special interest is incipient fault diagnosis 
that is detection and diagnosis at the very beginning 
stages of the occurrence of the fault.  The present study  
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focuses on the use of Neural Networks to do incipient 
fault diagnosis for unsteady state processes in which 
faults occur.  A neural network can autonomously store 
knowledge by learning from historical fault information 
and has the characteristic of associative memory.  
Information about faults can be learnt by training the 
network on a set of data such as the values of steady 
state process variables for normal conditions and those 
for identified fault conditions.  If data cannot be found 
in the past, daily reports of process maintenance and 
data logs, the necessary data can be collected from a 
program designed to identify faults.  The neural network 
in identifying system inefficiency is directly related to 
the comprehensiveness of training data.  The network 
acts as a black box into which we send inputs and from 
which we get outputs.  Fault Diagnosis exploits the 
parallelism of the network.  The system chosen consists 
of a Heat Exchanger and CSTR.  The system is 
analyzed and a single fault case is tackled (Ungar and 
Powell, 1988). 

Most of the studies reported in literature on fault 
diagnosis using neural networks involve chemical 
systems with a CSTR as one of its components 
(Venkatasubramanian and Chan, 1989; Watanabe et al., 
1989; Ungar et al., 1990; Venkatasubramanian et al., 
1990; Sorsa et al., 1991; Watanabe et al., 1994).  Farell 
and Roat (1994) proposed a framework for enhancing 
fault diagnosis capabilities of Artificial Neural 
Networks. 



2. Artificial Neural Networks (ANN) 
 

Neural computing is largely motivated by the 
possibility of creating an artificial computing network 
similar to the brain and nerve cells in our body.  Recent 
advances in neuro science and in computers have 
sparked a renewed interest in neural network model for 
problem solving.  These networks are computing 
systems composed of a number of highly interconnected 
layers of simple neuron like processing elements.  
Computations are collectively performed by the entire 
network with the knowledge represented as distributed 
patterns of activity all over processing elements.  The 
collective activities result in a higher degree of 
parallelism, which enables the network to solve 
complex problems.  The distributed representation leads 
to greater fault tolerance and to graceful degradation 
when problems are encountered beyond the range of the 
network.  In addition, these networks can adjust 
dynamically to environmental changes, infer general 
rules from specific examples and recognize invariences 
from complex high dimensional data (Lippmann, 1987). 

Fig. 1 depicts a simple structure of feed forward 
network architecture.  The circles represent neurons 
arranged in three layers: input, hidden and output.  Each 
hidden input is connected to each input and output unit.  
Each hidden and output unit is also connected to a bias.  
The bias provides a threshold for the activation of the 
neuron and is essential in order to classify network input 
patterns into various subspaces.  Each connection has a 
weight associated with it.  For input layer, the input 
value is forwarded straight to the next hidden layer.  
The hidden and output layer carry out two calculations: 
first a weighted sum of the inputs and then the output is 
calculated using a non-decreasing and differential 
transfer function.  Usually a sigmoidal function is used 
(Lippmann, 1987).   

ANNs come in a variety of different architectures, the 
most popular being the feed forward network trained by 
back-propagation (Rumelhart and McClelland, 1986).  
Back-propagation is an example of a mapping network 
that learns an approximation to a function, y equal to 
f(x), from sample x, y pairs.  The fact that the function 
to be learned is nonlinear presents no problem to a back-
propagation net (BPN).  Representative applications of 
back-propagation include speech synthesis and 
recognition, visual pattern recognition, analysis of sonar 
signals, defense applications, medical diagnosis, and 
learning in control systems.  BPNs have been applied to 
pattern classification problems in a number of fields, 
which include classification of sonar targets (Gorman 
and Sejnowski, 1988), speech recognition (Lippmann, 
1989) and sensor interpretation (McAvoy et al., 1989).  
Application of BPNs to failure state recognition in 
chemical plants has been studied by Hoskins and 
Himmelblau (1988), Ferrada et al. (1989), Hoskins et al. 
(1988), Ungar et al. (1990), Venkatasubramanian and 

Chan (1989), Venkatasubramanian et al (1990), and 
Watanabe et al. (1989).  These studies have shown that 
BPN classifiers have the ability to learn the 
classifications of a set of training examples, and can 
often successfully generalize this knowledge to classify 
new cases of known failure types.  Other applications of 
ANN include dynamic modeling and control of 
chemical process systems (Bhat and McAvoy, 1989), 
diagnosis using back propagation neural networks 
(Kramer and Leonard, 1990), artificial neural network 
model for the equilibria prediction in ternary mixture 
extraction (Babu and Karthik, 1997), artificial neural 
networks for the estimation of heat transfer parameters 
in trickle bed reactors using radial basis functional 
networks (Babu and Sangeetha, 1998). 
 
3. Network Training 
 
Any network learns by making changes in the weights 
of the connections in accordance with the learning rule.  
There are a number of algorithms available for the 
above purpose but the most widely used is the back 
propagation algorithm (Masters, 1990), the pseudo code 
of which is listed below: 
 

• Initialize the weights and offsets.  Set all of 
them to low random values. 

• Present inputs and desired outputs.  This is 
done by presenting a continuous valued input 
vector and specifying the desired outputs.  If 
the net is used as a classifier all desired outputs 
are set to 1.  The input could be new on each 
turn or one could use a cyclic pattern to train. 

• Calculate the actual outputs using the 
sigmoidal non-linearity. 

• Adapt weights using a recursive algorithm 
starting at the output nodes and working back.  
Adjust the weights by the formula. 

 
Wij (t + 1) = Wij (t) + η δj xt

� 
 
Where,  
 
Wij  = weight from node i to node j at time t. 
η    = gain term 
δj    = error term for node j. 
 
If node j is an output node, then 
 
δj    = yj (1 -  yj)(dj � yj) 
 
where, dj = desired output of the node j 
and      yj = actual output 
 
If node j is an internal hidden node then 
 



δj    = xj
� (1 - xj

�)∑ δk wjk) 
where, 
 
k = over all nodes in layers above node j 
 
If a momentum term, α is added the network 
sometimes becomes faster and weight changes 
are smoothed by 
 
Wij(t+1) = wik(t) + η δj xj

�+ α[wij(t)-wij(t-1)] 
 
Where 0<η<1. 
 

• Repeat step 2. 
• Stop. 

 
4. Case Study 
 

In the present study, fault diagnosis has been carried 
out using BPN of ANN for a system consisting of a heat 
exchanger  and a CSTR (see Fig. 2).  The problem 
definition is as follows: 

483 lb/hr of a 42-API kerosene leaves the bottom of a 
distillation column at 390oF.  It will be cooled to 200oF 
by 1490 lb/hr of a 34-API mild content crude oil coming 
from storage at 100oF and heated to 170oF.  A 10-psi 
pressure drop is permissible.  The specifications of the 
heat exchanger are already fixed.  The outlet of this heat 
exchanger is the feed to a CSTR.  The CSTR has an 
exothermic reaction taking place in it.  The reaction is 
given by  A → B.  The concentration of the desired 
component in the feed is 0.2 lb/ft.  The temperature and 
flow rate of the feed are also fixed. 

The assumptions made are, (1) there is an unlimited 
quantity of hot fluid and the type of heat exchanger is 
fully specified, and (2) the CSTR has unlimited supply 
of coolant. 

The steady-state equation for the CSTR is given 
below, which is used for the calculation of steady-state 
values: 
 
Q = UAt(T-Tj), At = heat transfer area 
 
Energy balance equation: 
 
-UAt(T-Tj) + (-∆HA)VbRA = (∑MjCj) (dT/dt) 
 
However, some of the inputs for this equation come 
from the steady-state equation for a heat exchanger, 
which is given by: 
 
Q = FcoldCp(Tcoldout � Tcoldin) = FhotCp(Thotin � Thotout) 
 
The steady-state unknown temperatures are calculated 
using the above equation. 
 

5. Selected malfunctions for Case study 
 
The possible malfunctions (refer Fig. 2) in the heat 
exchanger are changes in Thotin, Thotout, Tcoldin, Fcold, and 
Fhot.  These are global faults because a change in any of 
these values from the steady-state values will result in 
the change in the values of Cout, Fout, and Tout.  In CSTR, 
the faults can be a change in Fin, Tin, Cin, Tj (temperature 
of the coolant), and Fj (flowrate of the coolant).  
However, the change in Fin and Tin are taken care of by 
the CSTR because these correspond to Fcoldout and 
Ccoldout of CSTR.  Therefore, these do not come under 
the fault list for the system.  The following table (Table-
1) gives the list of possible single fault scenarios: 
 
Table-1: List of Faults. 
 
S.No. Fault (Malfunction) Designation 

1. Change in Thotin F1 
2. Change in Thotout F2 
3. Change in Tcoldin F3 
4. Change in Fcold F4 
5. Change in Fhot F5 
6. Change in Cin F6 
7. Change in Tj F7 
8. Change in Fj F8 

 
Various faults were simulated and new steady-state 
measurement patterns were used to train the network.  It 
is not possible to know where a fault has occurred by 
measuring only the outlet concentration or temperature 
or flowrate.  Here comes the need for fault diagnosis. 
 
6. Network Architecture for Case study 
 

The network employed in this case has eight input 
nodes corresponding to the state variables and eight 
output nodes corresponding to the eight malfunctions.  
A hidden layer of eleven nodes was chosen based first 
on thumb rules and later on various combinations.  A 
learning rate of 0.7 was used.  The training scheme is as 
follows: 

The faults in the heat exchanger-CSTR system 
correspond to fluctuations in one of the eight input 
variables.  Deviations beyond 5% of the normal values 
are assumed to result in malfunctions.  The BPN 
algorithm was used to train the network.  A normal 
matrix containing all the normal values was initialized 
first.  Based on each value a lower limit and upper limit 
were used.  The training used these lower limit and 
upper limit values as keys for training as well as the 
limits for normalization.  The network was trained until 
the error was less than 0.1.  The final fault diagnosis 
(after network training) involved rounding-off of the 
values from the network. 
 



7. Results and Discussion 
 

The neural network was trained using BPN algorithm.  
The network was able to identify all the faults correctly.  
The learning rate was fixed at 0.7.  The mapping of the 
weights of the neurons from input layer to hidden layer 
and hidden layer to output layer are shown in Table-1 
and Table-2 respectively. The network used was a 
single layered perceptron (one hidden layer) with eight 
input nodes and eight output nodes.  The number of 
hidden nodes was first fixed using a thumb rule and 
thereafter the number of nodes in the hidden layer was 
experimented with.  It was found that the network took 
least time to train when trained with an 11 node hidden 
layer.  Fig. 4 shows this clearly.  The number of 
iterations that the network took for training is a 
reflection of the time it took for training. 

The learning rate is also experimented with and an 
optimum value of 0.7 was arrived at.  It was found that 
the network trained best with a combination of learning 
rate of 0.7 and 11 nodes of hidden layer as can be seen 
from Figs. 3 & 5).  

The present study focused on only single fault and 
multiple-fault (combination of two- or three- faults 
simultaneously) scenario is considered.  The network 
training becomes very difficult even for the two-fault 
case.  The reason for this is that there can be 36 
different cases.  This means that there will be 44 (36+8) 
total cases to take care of.  This would make training a 
very difficult task and that network itself would be very 
complicated.  A slightly better advancement on the 
program currently written is a single fault case where 
the ranges for fault values are fixed.  That way we can 
actually tell what kind of action can be taken while 
controlling this fault.  This sort of demarcation helps 
particularly when we use fuzzy logic or neural networks 
itself to control the process.  Fuzzy logic needs this sort 
of a demarcation to take an action based on the fault 
because it makes it easier to make a rule table. 
 
8. Conclusions 
 

• Artificial Neural Networks with Back 
Propagation Algorithm has been successfully 
applied for fault diagnosis with 8 faults in a 
Chemical Engineering system consisting of a 
heat exchanger and CSTR. 

• A single layered perceptron (one hidden layer) 
with eight input nodes, eight output nodes, and 
11 nodes in single hidden layer with a learning 
rate value of 0.7 gave very good results in the 
present study for fault detection. 
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Fig. 1: Structure of a Simple Artificial Neural Network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: A Heat Exchanger - CSTR System. 
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Fig. 3: No. of iterations vs. Learning rate 
(No. of hidden layers=1 of 10 nodes) 

Fig. 4: No. of iterations vs. No. of Nodes in hidden layer 

Fig. 5.: No. of iterations vs. Combinations. 
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Table-1. Mapping of the Weights of the neurons from input layer to hidden layer 
 

 1 2 3 4 5 6 7 8 9 10 11 

1 .442 .645 .458 .268 .900 .200 .053 .471 .259 .306 .419 

2 .966 .493 .437 .300 .195 .419 .780 .232 .430 .834 .202 

3 .672 .489 .047 .452 .769 .214 .087 .166 .676 .435 .870 

4 .142 .789 .891 .568 .774 .645 .470 .934 .575 .963 .596 

5 .499 .115 .631 .298 .218 .596 .094 .311 .094 .573 .887 

6 .401 .719 .246 .388 .937 .757 .750 .665 .830 .205 .213 

7 .982 .781 .035 .849 .499 .003 .631 .828 .046 .337 .379 

8 .275 .762 .094 .230 .129 .642 .443 .377 .822 .055 .385 

 
 
 

Table-2. Mapping of the Weights of the neurons from hidden layer to output layer 
 

 1 2 3 4 5 6 7 8 

1 .2134 .4541 .1121 .982 .3351 .4312 .8051 .4556 

2 .2312 .4873 .4462 .3916 .3221 .2314 .5024 .6438 

3 .4706 .0865 .7982 .1484 .4699 .837 .1633 .2619 

4 .0114 .7320 .3212 .0493 .4564 .4124 .6856 .6817 

5 .0021 .9820 .7661 .4849 .2965 .4299 .1337 .4356 

6 .0136 .0464 .3113 .3147 .2187 .34161 .8852 .4671 

7 .021 .0923 .4996 .2146 .8031 .9373 .4856 .0647 

8 .479 .5621 .0485 .9802 .4972 .5591 .3118 .4719 

9 .823 .7461 .1487 .1456 .6913 .4896 .4561 .4123 

10 .232 .4422 .0890 .4280 .5390 .1657 .6524 .3918 

11 .465 .3926 .1812 .3931 .3216 .3859 .0400 .6127 

 
 
 
 
 
 


