
GPU-Based Foreground-Background Segmentation
using an Extended Colinearity Criterion

Andreas Griesser1, Stefaan De Roeck2 , Alexander Neubeck1 , Luc Van Gool1,2

1Swiss Federal Institute of Technology (ETH), Computer Vision Lab, Zürich, Switzerland
{griesser,aneubeck,vangool}@vision.ee.ethz.ch

2Katholieke Universiteit Leuven, VISICS, Leuven, Belgium
{luc.vangool,stefaan.deroeck}@esat.kuleuven.ac.be

Abstract

We present a GPU-based foreground-background
segmentation that processes image sequences in
less than 4ms per frame. Change detection wrt. the
background is based on a color similarity test in a
small pixel neighbourhood, and is integrated into a
Bayesian estimation framework. An iterative MRF-
based model is applied, exploiting parallelism on
modern graphics hardware. Resulting segmentation
exhibits compactness and smoothness in foreground
areas as well as for inter-frame temporal contigu-
ity. Further refinements extend the colinearity cri-
terion with compensation for dark foreground and
background areas and thus improving overall per-
formance.

1 Introduction

Robust and accurate foreground-background seg-
mentation is a relatively small but crucial step in
several computer vision applications. It is a key
element in surveillance, 3D-modelling from sil-
houettes, motion capture, or gesture analysis for
human-computer interaction (HCI). For several of
these - surveillance and HCI are cases in point -
real-time processing is crucial. Hence, for these
applications, foreground-background segmentation
should be extremely fast, as the bulk of the compu-
tation time on the CPU has to remain available for
the subsequent stages of processing and interpreta-
tion.

As a result, the type of foreground-background
segmentation that can be used on-line has typically
been kept as simple as possible, and has led to im-
portant constraints on the background. For instance,
in their semi on-line user modeling work, Matusik

et al. [8] had to resort to a rather simple background
subtraction. On the other hand, more sophisti-
cated algorithms are available today, like Bayesian
pixel classification based on time-adaptive, per-
pixel mixture of Gaussians color model [4, 5]. A
comprehensive survey of image change detection
algorithms is presented in [6]. Recently, Mester et
al. developed a color similarity criterion [1], which
has already performed well in our - offline - gesture
recognition setup [7]. However, these sophisticated
algorithms lack real-time performance.

Here we propose a GPU-based implementation
of Mester’s approach, combined with some refine-
ments to further improve performance. Our imple-
mentation takes less than 4 milliseconds per frame
and frees the CPU from this preprocessing step al-
together. Thus, our approach is especially useful
for algorithms already using the GPU in the further
processing stages.

The paper is organized as follows. Section 2 re-
capitulates the criterion developed by Mester and
colleagues, and describes the modifications that we
propose. Section 3 focuses on the GPU-based im-
plementation and section 4 gives results on the pro-
posed algorithm. Finally, we conclude the work in
section 5 and discuss some future work.

2 Mathematical Model

2.1 The Colinearity Criterion

Mester’s method compares the color values at pix-
els in a reference (background) image, and a given
image. In particular, all color values within a small
window around a pixel, here always a 3 × 3 neigh-
bourhood, are stacked into row vectors xb resp. xf

for the background resp. the given image, where the

VMV 2005 Erlangen, Germany, November 16–18, 2005

latter will typically contain some additional fore-
ground objects. In Mester’s analysis, change de-
tection amounts to assessing whether xb and xf are
colinear. If they are (the null hypothesis H0), no
change is judged to be present and the background
is still visible at that pixel in the given image. If
not, the pixels are considered to have different col-
ors, and a foreground pixel has been found.

Rather than testing for perfect colinear-
ity, one has to allow for some noise in

df

db
u

bx

xf

the measurement process.
A kind of bisector has to
exist (u in the figure) to
which both xb and xf lie
close. Indeed, when Gaus-
sian noise is assumed, the

unkown ’true signal’ direction u can be estimated
by minimizing the sum D2

= |db|2 + |df |2. By
defining

X :=

»
xf

xb

–

=

»
r1

f g1
f b1

f . . . rN
f gN

f bN
f

r1
b g1

b b1
b . . . rN

b gN
b bN

b

–

(1)
with N pixels in the neighbourhood of the consid-
ered pixel, Mester et al. [1] pointed out that the
test statistic D2 is identical to the smallest non-zero
eigenvalue of the 2x2 matrix XXT :

D2 = eig
“

XX
T

”

= eig

»
fore cross
cross back

–

(2)

with three image qualifiers defined as

fore := xf · xT
f

cross := xf · xT
b (3)

back := xb · xT
b .

This amounts to

0 =

˛
˛
˛
˛

fore − D2 cross
cross back − D2

˛
˛
˛
˛ . (4)

Mester [1] empirically showed that D2 follows
a χ2 probability density function with 3(N − 1)
degrees of freedom and a proportionality factor σ2

u.
Based on the knowledge of this distribution the null
hypothesis test can be reduced to a significance test,
whereby D2 is compared with a threshold t through
Prob[D2 > t|H0]=α with the significance level α.

2.2 Bayesian estimation

A Bayesian analysis allows the above decision to be
made on a principled basis. The result of this analy-
sis will be a foreground or ‘change mask’ Q, found
by maximizing its a-posteriori probability (MAP).
The binary change mask consists of pixels with la-
bels qi = u (unchanged, background) or qi = c
(changed, foreground). Based on the distance mea-
surement D2, change labels are assigned following
the decision rule:

p(Qc|D2)

p(Qu|D2)

c
>
<
u

t.

A ’changed’ label is assigned to a pixel if the left
term is greater than the threshold t, otherwise it gets
’unchanged’ assigned to it. Using Bayes’ theorem
we get

p(D2|Qc)

p(D2|Qu)

c
>
<
u

t · p(Qu)

p(Qc)
.

In order to calculate the fraction on the left side
of the above equation, both conditional probability
density functions must be estimated. By modeling
both pdf’s as Gaussian distributions with variances
σc and σu with σ2

c � σ2
u, the decision rule can be

simplified to (see [2])

D2
c
>
<
u

Ts + 2 · ln
„

p(Qu)

p(Qc)

«

| {z }

Tadapt

(5)

with a static threshold Ts and an adaptive threshold
Tadapt.

2.3 Adaptive Threshold

Without any prior knowledge of the change mask,
the adaptive threshold Tadapt in equation (5) is 0
because both probabilities p(Qu) and p(Qc) would
then be equal. This often results in scattered fore-
ground and background segments. To remedy this,
one would like to bring spatio-temporal compact-
ness considerations into play. Indeed, foreground
objects tend to cover larger and more compact re-
gions. If the object moves slowly compared to the
framerate, this adds a temporal smoothness.

Such considerations are now added. A first el-
ement, is the spatial compactness. A pixel should
have a higher chance of being considered fore-
ground if several of its neighbours have this status.

666

This is a bit of a chicken-and-egg problem, how-
ever, as this assumes we already have a mechanism
to decide on the neighbours first. In practice, this
deadlock is solved by designing an iterative scheme.
This will start with all pixels as background dur-
ing the first iteration for the first frame. After that
the results from the previous iteration for that frame
are used, or that of the last iteration of the previous
frame in case a next frame is started. Note that the
latter choice pushes towards temporal smoothness.

Still following Mester [1] and in order to bring
the spatial compactness idea to bear, the change
mask is considered to be sampled from a two-
dimensional Gibbs/Markov random field (MRF).
Hereby the a priori probability is expressed by

p(Q) =
1

Z
· e−E(Q) (6)

with a normalization constant Z and an energy-term
E(Q). The smoother the boundary of the change
mask within the considered window W , the lower
the energy-term E(Q) is. Evaluating the smooth-
ness and compactness can be simplified to account
for changes between pixel pairs only. A pixel pair
consists of two adjacent pixels in either horizontal,
vertical or diagonal direction. Within any neigh-
bourhood region, two kinds of pixel pairs can be
distinguished: those who comprise the currently
considered pixel, denoted as local pixel pairs, and
all other pairs not comprising the current pixel, de-
noted as global pixel pairs. Hence, the energy-term
can also be split into a local and a global term:

E(Q) = EL(Q) + EG(Q). (7)

Based on a squared image grid, the 8 possible local
pixel pairs within a 8-neighbourhood can be divided
into two groups: 4 pairs of horizontal/vertical pairs
(hv-dir.) and 4 diagonal pairs (diag-dir.). Desig-
nating the number of adjacent pixels in hv direction
as νB and in diag direction as νC wrt. the label qi,
equation (7) can be rewritten as

E(Q) = νB(qi) · B + νC(qi) · C + EG(Q), (8)

whereby B and C are constant multiplicative fac-
tors influencing the level of compactness.

Combining (8) with (6), inserting into (5) and
accounting for both labels qi = c (changed) and
qi = u (unchanged) yields to

Tadapt = 2 · [(νB(qi=c) − νB(qi=u)) · B
+ (νC(qi=c) − νC(qi=u)) · C].

Since νB(qi=c) + νB(qi=u)=4 and νC(qi=c) +
νC(qi=u)=4, and we choose B=2C, the equation
above is simplified to

M := 2 · νB(qi=c) + νC(qi=c)

Tadapt = 12B − 2BM (9)

D2
c
>
<
u

Ts + Tadapt

Indeed, the lower the amount of foreground pix-
els in the surrounding change mask is, the lower
M and therefore the higher the adaptive threshold
gets, increasing the barrier at which a considered
pixel may be assigned to foreground. This intuitive
behaviour results in smooth and compact regions,
even in small neighbourhoods, i.e. 3 × 3 pixels.

2.4 Darkness Compensation

Though an intensity-invariant method as Mester’s
does provide robustness against shadows and light-
ing changes, such invariance also has drawbacks.
Often, part of the foreground or background will
be dark, i.e. close to black. As black can be seen
as a low intensity version of any color, the current
approach will never trigger segmentation in those
areas.

Our solution consists of adding an additional
component to the vectors xb and xf in eq. (1). This
additional component has a fixed value of

√
Odc.

(The awkward use of the square-root has been opted
for as this simplifies further notation; e.g. fore,
cross, and back of eq. (3) are now increased by
Odc.) This additional component renders the color
similarity measure more sensitive to differences,
esp. when dark pixels are involved. Indeed, this ad-
ditional component has the effect of lifting the 3N -
dimensional ground plane in the enlarged 3N + 1-
space, to height

√
Odc, thereby distinguishing vec-

tors that were colinear but had different norms.
When running these new 3N + 1-dimensional

vectors through the criterion, we come to the fol-
lowing observations:

• The resulting distances never decrease (proof
is straightforward), thus regions that were pre-
viously segmented, remain segmented after
the manipulation (for the same threshold T).

• The comparison of equal vectors remains un-
hampered (D2 is 0 in both approaches).

• Moreover,when ‖xf‖ = ‖xb‖ (more or less
equal intensities), there is no impact whatso-
ever on the distance measure.

666

• Vectors that were previously colinear but of
different sizes, will not remain colinear. The
impact is dependent on the difference in inten-
sity.

• As Odc goes to infinity, the distance measure
becomes (fore + back − 2 · cross)/2. This
equals ‖xf − xb‖/2, which still yields a valid
distance measure for background segmenta-
tion, but totally lacks the illumination invari-
ance property useful to cope with shadows.
The choice of Odc determines how illumina-
tion sensitive the result is.

The above observations show that the provided
manipulation now correctly segments dark coloured
areas, compared with bright background. This was
previously not the case, as these areas were seen
as noise on a 0-vector. Furthermore, normal oper-
ation, where foreground looks like background or
where foreground was already segmented from the
background without the extra compensation, is not
impaired.

2.5 Final Decision Rule

We can now convert the final decision rule into a
form, which is suitable for computation. First, the
determinant in (4) has to be computed involving
a square root term, which is often a bottleneck in
high-speed implementations on the CPU:

D2 =
fore+back−

p
(fore−back)2+4 · cross2

2
.

Fortunately, the square root must not explicitely be
calculated, but D2 directly compared to a threshold
T = Ts + Tadapt (see formula 9). After some al-
gebraic manipulation we can deduce the following
two inequalities:

(fore+back−2T)2 > (fore−back)2+4cross2

fore+back−2T > 0,

which is equivalent to

(fore − T)(back − T) > cross2

fore + back > 2T.

The first inequality shows that either fore and back
are both > T , or both < T , while additionally con-
sidering the latter inequality forces fore > T or
back > T . As described in section 2.4, darkness
compensation can be integrated by adding Odc to

each of the three qualifiers fore, back and cross.
Now the final decision rule set can be formulated:

M = 2 · νB(qi=c) + νC(qi=c)

Tt = Ts + 12B − 2BM − Odc

fore
c
> Tt

(fore−Tt)(back−Tt)
c
> (cross+Odc)

2

(10)

Influenced by three user-defined parameters, a
static threshold Ts, a darkness offset Odc and a
compactness value B, a label ’changed’ is assigned
to a pixel if both inequalities are fulfilled. Other-
wise the pixel’s label is set to ’unchanged’. Notice
that the back qualifier only depends on the back-
ground image, which practically is the average over
several background images and has to be computed
only once, while fore and cross need to be updated
every frame.

2.6 Iterative, randomized MRF computa-
tion

Up to now we assumed that a change mask is
already known and the decision rule set updates
this mask allowing for smooth and compact seg-
ments. Starting with a pixel in an input image re-
quires the knowledge of all 8 adjacent pixel labels,
which themselves are mutually dependent on the
current pixel label. Additional information is avail-
able from the change mask of the previous frame.
Though sliding a 3 × 3 window through the image
plane once, starting from top left, whereby 4 labels
are already set and the other 4 are taken from the
prior frame (see [2, 3, 1]), does deliver good seg-
mentations, we designed a more general algorithm,
applicable to parallel computation hardware.

Under consideration of a 3 × 3 neighbour-
hood, we can observe that pixels with a chess-
board distance ≥ 2 do not directly affect each
other and can therefore be handled in parallel.

n
k l
m m m

mmm

n n

nnn
k k

kkk

l l

lll

This processing step, denoted as
substep, operates on a subset of
the input data, whereby pixels
within this subset are mutually
independent wrt. the MRF com-
putation. To cover all the input

data, several substeps have to be executed in se-
quential manner. The smallest number of substeps
is given by the local partition shown in the above

666

image. Four substeps k, l, m and n are sequen-
tially executed, whereby the execution order is cho-
sen randomly in order to guarantee uniform distri-
bution over time. The whole process is repeated
several times until convergence in the segmentation
wrt. compactness is reached. From the implemen-
tation point of view at each iteration j we select the
execution sequence by randomly picking one of the
24 possible permutations of (k, l, m, n).

Sj = rand (perm(k, l, m, n)) . (11)

It is important to mention that the result of each sub-
step is written back into the change mask, which
serves as input for the next substep. A priori knowl-
edge from the previous frame’s change mask is inte-
grated by initializing the change mask with the prior
change mask and then start the MRF-iterations. If
no prior frame is given, we set the prior change
mask to full background, i.e. black color.

The program flow, as depicted in figure 1, starts
with the computation of fore, back and cross
based on the average background image BG and
the current foreground image FG. This is followed
by one iteration comprising four substeps on the
previous change mask as input and a parameter set
1 (static threshold Ts, darkness offset Odc and com-
pactness value B1). Finally we run the iteration
j times with a parameter set 2, where the static
threshold and the darkness offset both remain the
same while the compactness value differs between
between both parameter sets.

Figure 1: Program flow for the iterative MRF com-
putation.

3 GPU-based Implementation

Modern graphics hardwares provide programmable
vertex- and pixel-shaders, interfacable by shad-
ing languages like Cg (C for graphics), developed
by NVIDIA Corporation and Microsoft Corpora-
tion. The graphics hardware is optimized for 32bit-
RGBA buffers, storing 8bits of data in each of the
four color channels red, green, blue and alpha. Vec-
tor operations are implemented directly in hard-
ware, which increases performance over standard
CPU’s. Moreover the internal pipeline structure
includes several parallel processing units, i.e. 16
shader units with 2 processing modules each on
NVIDIA’s GeForce 6 series.

Figure 2 gives an overview of the program flow
of the GPU implementation, whereby a fixed neigh-
bourhood of 3×3 is used. The round-shaped boxes
in the left column symbolize the different Shader-
programs, which are described in the following sec-
tions. Each Shader gathers information from one
or more inputs and writes into an offscreen PBuffer
object. A copy-command afterwards transfers the
currently written data into the target texture, as de-
picted in the right column. Thereby not the full tex-
ture object has to be written but just the affected
memory areas (grey-shaded in the right column of
the figure).

fore/cross back

Copy

Copy

Copy

fore/cross back

M min

Copy

Copy

fore/cross

Internal Mask
Format

MaskConvert

MRF−Iter

BGFG

CalcNorm

SumNorm

NormConvert

Ext. Mask

Ts,Odc,B1,B2

j−Iterations 4 Substeps

Figure 2: Program flow for GPU implementation.

666

3.1 The CalcNorm-Shader

This first Shader steps through the input image, cal-
culating for each pixel yi=[ri gi bi] at location i the
three qualifiers fi, bi and ci based on an input im-
age FG and the background average image BG by
computing the following three dot products:
fi=yi,f · yT

i,f , bi=yi,b · yT
i,b, ci=yi,f · yT

i,b

The indices f and b denote foreground and back-
ground pixels. The dot product computation on the
GPU is rather trivial, it is executed within one ma-
chine operation and thus much faster than a CPU
variant. It turns out that decision rule (10) is only
applicable when all three qualifiers have at least
16bit resolution. This could be reached by using the
floating-point extensions on modern GPU’s, which
-still- results in slow texture lookup times. Instead,
we decided for packing each 16bit qualifier into two
bytes of a standard 8bit-buffer.

Only when a background image has changed, the
b-buffer has to be updated, while remaining con-
stant during normal operation. Hence, we store the
values fi and ci in one RGBA texture and bi in a
separate RGBA texture.

3.2 The SumNorm-Shader

After the dot products are computed per pixel, the
three qualifiers fore, back, and cross can now be
derived by following eq. (3). Accounting for fi, bi

and ci, the equation is simplified to summing up all
dot products in the neighbourhood Wi around the
pixel location i:

fore=

X

jεWi

fj , back=

X

jεWi

bj , cross=

X

jεWi

cj

Again fore and cross are packed and stored in
an RGBA texture while back remains in a separate
RGBA buffer.

3.3 The NormConvert-Shader

Now that all parameters for testing the decision rule
(10) are known, the iterative MRF computation be-
gins. However, for each substep in an iteration the
required inequalities have to be recalculated. As
this would slow down the overall process the ruleset
is reformulated to a simpler test. The only variable
during a MRF iteration is M and therefore we can
rewrite the decision rule based on M

S :=
Ts + 12B − Odc

2B

D :=

p
(fore−back)2 + 4(cross+Odc)2

4B

M
c
> S − fore

2B

M
c
> S − fore+back

4B
+ D

The conjunction of both inequalities yields

Mmin = S−

fore

2B
+max

„

0, D+
fore−back

4B

«

(12)
and turns the decision rule into

M
c
>
<
u

Mmin (13)

Due to the fact that M can only vary between
0 and 12 and therefore consumes only 4 bits, both
Mmin,1 for the first parameter set and Mmin,2 for
the second parameter set are packed into one 8bit
color value by ((Mmin,1 � 4) | Mmin,2).

In order to gain maximum performance of the
GPU, all 4 color channels of the RGBA PBuffer
should be used at once, leading to a special inter-
nal data format, which is shown in figure 3.

Figure 3: Data formats used on the GPU

As described in section 2.6, each substep within
one iteration operates on a subset (k, l, m, n) of the
input data with size half of the image height and half
of the image width. Those subsets (left column in
figure 3) contain change/unchange-labels for each
considered pixel. We slice subsets into 4 equally
sized pieces by cutting along a horizontal cutting
edge and folding them to the 4 color channels R,
G, B, and A. Clearly, the topmost quarter of subset
k is now stored in the red channel of the internal
structure, that is kr. The bottommost quarter of the
same subset k is stored in the alpha channel (ka),
and so forth. This brings us to the internal data for-
mat, where 4 pixels are processed in parallel. It is

666

the task of the NormConvert-Shader to perform this
conversion while maintaining the Mmin,1+2 values
for both parameter sets (Ts, Odc, B1, B2).

3.4 The MRF-Iter-Shader

As already mentioned in the section above, the it-
erative MRF-computation consists of 4 substeps,
each of which solves the MRF for compactness and
smoothness. This is done by calculating M per
pixel and comparing it with the stored value Mmin.
The different subsets are selected based on eq. (11).
As calculation of Mmin for a pixel within a sub-
set depends on its neighbours, special care has been
taken on the cutting edges in figure 3. For exam-
ple, Mmin has to be computed for a pixel in the
border row of the subset kg (green channel of k),
which, amongst others, requires access to pixels one
line above. Indeed, these pixels do not reside in the
same subset but in kr (red channel of k).

Moreover, optimization is done wrt. the amount
of necessary texture lookups by utilizing the bilin-
ear interpolation functionality of the graphics hard-
ware. For example, computing the sum of 4 values
in a 2x2 grid would require 4 texture lookups and
3 summations. By placing the texture coordinates
in the middle of the 4 pixels and activating bilin-
ear texture filtering, only one texture lookup deliv-
ers the same result without loss of time.

3.5 The MaskConvert-Shader

After the iterative MRF-computation, the inter-
nal change mask has to be backtransformed into
an external format, suitable for further processing.
Hence, this last shader converts the internal change
mask into an RGB buffer, having the same dimen-
sions as the input image, with white foreground and
black background regions.

4 Results

The impact of the number of iterations during the
MRF computation to the segmentation result is
shown in figure 4, whereby the prior frame is com-
pletely black. Without iterating at all, some out-
liers are detected, depending on the threshold level.
With increasing number of iterations the segmented
regions become more smooth and compact and iso-
lated small foreground pixels are turned into back-
ground. The parameters used are Ts = 310, Odc =

5800, B1 = 2, and B2 = 200. We observed that
robustness of segmentation wrt. the static threshold
is increased with the MRF iterations.

Figure 4: Segmentation result with different num-
ber of iterations j=0,2,4,6 (from left to right) during
the MRF-computation.

As the algorithm is mainly designed for indoor
applications, we recorded some image sequences in
our 3D-scanning setup (see [10]). Accounting for
motion blur elimination and thus forcing low ex-
posure times, the grabbed images suffer from very
low contrast and high image noise. Therefore dark-
ness compensation is essential for acceptable seg-
mentations even the foreground object and the back-
ground are nearly similar in luminance. Figure 4
demonstrates the importance of darkness compen-
sation. All three segmentations use the same pa-
rameter set. The fourth image is the result of an
optimized CPU-version of the segmentation with-
out MRF-iterations, that is darkness compensation
added to the algorithm of Mester. Additionally we
tested the algorithm in outdoor environments (see
figures on the separate colorplate 5) and still get
good results.

To our knowledge, our GPU-based implementa-
tion outperforms any other existing image segmen-
tation wrt. runtime. The following table summa-
rizes the measured timings dependent on the num-
ber of MRF-iterations, whereby we used images
of size 640×480 pixels on an NVIDIA GeForce
6800GT graphics card with AGP 8x. The time
needed for uploading the input images to the GPU
and downloading the final segmentation is not in-
cluded here.

iter. time [ms]
0 2.51
2 2.97
4 3.44

iter. time [ms]
6 3.89
8 4.38
10 4.84

666

Figure 5: From left to right: BG-image, FG-image, segmentation without darkness compensation (d.c.),
CPU-based segmentation with MRF and d.c., GPU-based iterative segmentation with MRF, d.c. and 6
iterations.

5 Conclusion and Future Work

We have provided a high-speed foreground-
background segmentation algorithm based on an
extended colinearity criterion. Darkness compen-
sation helps the algorithm to correctly detect fore-
ground regions even if the object’s color is nearly
black. The colinearity criterion is integrated in a
MRF framework, which is solved in an iterative
manner. A priori knowledge is integrated through
the change mask of the prior frame as well as the
compact property of connected foreground regions.
The resulting segmentations are smoothly shaped
and the number of outliers caused by varying illumi-
nation or inappropriate thresholds is reduced. Our
GPU-based implementation runs in less than 4ms
and thus offers performance improvement in appli-
cations, which operate on silhouette images, i.e. vi-
sual hull reconstructions.

In the near future we plan to integrate our
segmentation algorithm into a 3D-scanning setup,
which operates on a GPU-based plane-sweep
method (see [11]). We are currently developing
a hybrid 3D-scanner consisting of several cameras
and projectors around the scanned object, i.e. hu-
man body, combining multi-view stereo, structured
light and shape from silhouette.

References

[1] R. Mester, T. Aach, L. Dümbgen,
“Illumination-Invariant Change Detection
Using a Statistical Colinearity Criterion”,
Proc. 23rd DAGM Symp., 2001.

[2] T. Aach, A. Kaup, “Bayesian algorithms for
adaptive change detection in image sequences

using Markov random fields’, Signal Process-
ing: Image Communication 7(2), 1995.

[3] T. Aach, A. Kaup, R. Mester, “Change detec-
tion in image sequences using Gibbs random
fields”, IEEE Int. Workshop Intell. Signal Pro-
cessing Com. Sys., 1993.

[4] C. Stauffer, W.E.L. Grimson, “Adaptive Back-
ground Mixture Models for Real-Time Track-
ing”, Proc. CVPR, 1999.

[5] N. Friedman, S. Russell, “Image Segmenta-
tion in Video Sequences: a Probabilistic Ap-
proach”, Proc. 13th Conf. on Uncertainty in
Artificial Intelligence, 1997.

[6] R. J. Radke et al., “Image Change Detec-
tion Algorithms: A Systematic Survey”, Im-
age Processing 14 (3), 2005.

[7] R. Kehl, L. Van Gool, “Real-time Pointing
Gesture Recognition for an Immersive Envi-
ronment”, Proc. 6th IEEE Intl. Conf. on Aut.
Face and Gesture Recog., 2004.

[8] W. Matusik, C. Bueler, L. McMillan, “Poly-
hedral visual hulls for real-time rendering”,
Proc. EGRW, 2001.

[9] M. Li, M. Magnor, H.-P. Seidel, “Hardware-
Accelerated Visual Hull Reconstruction and
Rendering”, Graphics Interface, 2003.

[10] A. Griesser, T.P. Koninckx, L. Van Gool,
“Adaptive Real-Time 3D Acquisition and
Contour Tracking within a Multiple Struc-
tured Light System”, Proc. 12th Pacific
Graphics, 2004.

[11] N. Cornelis, L. Van Gool, “Real-Time Con-
nectivity Constrained Depth Map Compu-
tation Using Programmable Graphics Hard-
ware”, Proc. CVPR, 2005.

666

Figure 6: Segmentation results in indoor and outdoor environments. From left to right: BG-image, FG-
image, Segmentation usind darkness compensation and 6 MRF iterations on the GPU. Processing time for
each image is less than 4ms

666

