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ABSTRACT
This paper proposes a novel method for detection and seg-
mentation of foreground objects from a video which contains
both stationary and moving background objects and under-
goes both gradual and sudden “once-off” changes. A Bayes
decision rule for classification of background and foreground
from selected feature vectors is formulated. Under this rule,
different types of background objects will be classified from
foreground objects by choosing a proper feature vector. The
stationary background object is described by the color fea-
ture, and the moving background object is represented by
the color co-occurrence feature. Foreground objects are ex-
tracted by fusing the classification results from both station-
ary and moving pixels. Learning strategies for the gradual
and sudden “once-off” background changes are proposed to
adapt to various changes in background through the video.
The convergence of the learning process is proved and a for-
mula to select a proper learning rate is also derived. Experi-
ments have shown promising results in extracting foreground
objects from many complex backgrounds including wavering
tree branches, flickering screens and water surfaces, moving
escalators, opening and closing doors, switching lights and
shadows of moving objects.

Categories and Subject Descriptors
I.4 [Image Processing And Computer Vision]: Seg-
mentation—pixel classification

General Terms
Algorithms

Keywords
Video processing, background modeling, foreground segmen-
tation, video surveillance, Bayes model, color co-occurrence.
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1. INTRODUCTION
Foreground object detection and segmentation from a video

stream is one of the essential tasks in video processing, un-
derstanding, and object-based video encoding (e.g., MPEG4).
An commonly used approach to extract foreground objects
from the image sequence is through background suppres-
sion, or background subtraction and its variants [3, 11, 12]
when the video is grabbed from a stationary camera. These
techniques have been widely used in real-time video pro-
cessing. However, the task becomes difficult when the back-
ground contains shadows and moving objects, e.g., wavering
tree branches and moving escalators, and undergoes various
changes, such as illumination changes and moved objects.
Many methods have been proposed for real-time foreground

object detection from video sequences. However, most of
them were developed under the assumption that the back-
ground consists of stationary objects whose color or inten-
sity may change gradually over time. The simplest way is
to smooth the color of a background pixel with an Infinite
Impulse Response (IIR) or a Kalman filter [5, 6] through
real-time video. A better way to tolerate the background
variation in the video is to employ a Gaussian function that
describes the color distribution of each pixel belonging to
a stable background object [14, 1]. The Gaussian model
parameters are recursively updated in order to follow the
gradual background changes in the video.
Recently, several other methods suitable for a variety of

background situations have been proposed. Among them,
Mixture of Gaussians (MoG) [11, 9] is considered as a promis-
ing method. In MoG, the colors from a pixel in a back-
ground object are described by multiple Gaussian distribu-
tions. Good foreground object detection results were re-
ported by applying MoG to outdoor scenes. Further investi-
gations showed that MoG with more than two Gaussians can
degrade the performance in foreground object detection [1,
2]. The background variation model employed in W 4 [3] is
a generalization of the Gaussian model. In [12], Toyama et
al employed a linear Wiener filter to learn and predict color
changes in each background pixel through the video. The
linear predictor can model both stationary and moving back-
ground objects. The weakness of this method is that it is
difficult to model the non-periodical background changes.
These methods can work for a real-time video containing
a variety of background variations. However, they are still
difficult to handle a wide range of changes in moving back-
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ground objects, e.g., moving background objects and various
shadows.
Another way to separate foreground objects from moving

background objects is to exploit the consistency of optical
flows over a short period of time [13, 4]. The methods were
reported as being able to detect foreground objects in com-
plex outdoor scenes that contain nonstationary vegetation.
The difficulty of this technique is that computing optical
flow is an ill-posed problem at the regions of less texture fea-
tures and the boundaries of image discontinuities [13]. In our
previous work [7], a method has been proposed which em-
ployed the color co-occurrence to describe the moving back-
ground. The preliminary result indicates that the feature is
more effective to model the dynamic parts of the background
than those employed by previous methods. However, it can
not recover the background from sudden “once-off” envi-
ronment changes in the video. Hence, a general background
model which can incorporate different features is required
for complex environments.
In this paper, we propose a novel method to extract fore-

ground objects from a real-time complex video under the
Bayes decision framework. A Bayes decision rule for classi-
fication of background and foreground from a general feature
vector is formulated. Meanwhile, an effective data structure
to learn and maintain the statistics of different feature vec-
tors is established. Based on these, two types of features
are employed to model the complex background containing
both stationary and motion objects. The statistics of most
significant colors are used to describe the stationary parts
of the background, and that of most significant color co-
occurrences are used to describe the motion objects of the
background. Foreground objects are extracted by fusing the
detection results from both stationary and motion points.
Meanwhile, learning strategies for gradual and “once-off”
background changes are proposed. Compared with our pre-
vious work in [7], several new extensions are introduced.
First, the Bayes decision rule has been extended to gen-
eral features. Under this framework, multiple features can
be integrated for background and foreground classification.
Hence, the proposed method can not only model the motion
background objects but also deal with sudden “once-off”
changes and multiple states in the stationary background.
Secondly, mathematical proof about the convergence of the
learning process is given. Finally, more extensive experi-
ments on difficult situations and some quantitative evalua-
tions have been reported. Many tested videos contain com-
plex background objects and, in our knowledge, no existing
methods had been tested on such complex cases before this
work.
The remaining of the paper is organized as follows. In

Section 2, we first give a specification about the background
scene and background changes in videos. Then we formu-
late the background and foreground classification problem
by utilizing a general feature vector based on Bayes the-
ory. The data structure to learn and maintain the statis-
tics for different types of background features is established.
It also describes how the features are selected for a com-
plex background. Section 3 describes the algorithm for fore-
ground object segmentation based on background model-
ing and Bayes classification. It contains four parts: change
detection, background and foreground classification, fore-
ground object segmentation, and background learning and
maintenance. The experimental results on various complex

videos and the quantitative evaluation are presented in Sec-
tion 4. The paper is concluded in Section 5.

2. BAYES CLASSIFICATION OF
BACKGROUND AND FOREGROUND

2.1 Problem Specification
For the general purpose of video processing, the back-

ground is usually considered as the scene without the pres-
ence of objects of interest, such as human objects or moving
vehicles. Background is usually composed of non-living ob-
jects that remain passively in the scene. In a video about
a general environment, the background can consist of both
stationary and moving objects. The stationary background
objects can be walls, doors, and furniture in an indoor scene,
as well as buildings, vegetation, and ground surfaces in an
outdoor scene. The moving background objects can be wa-
vering tree branches, flickering water surfaces or screens of
computers, wavering curtains, moving fans, running escala-
tors, and many more. Meanwhile, the background might be
undergoing two types of changes over the time. One is the
gradual changes caused by natural lighting variations, e.g.,
the change of illumination from day to night. The other is
the sudden “once-off” changes. The global sudden “once-
off” changes may be caused by switching on/off some lights
or the change of view angle of a camera, and the local “once-
off” changes may be caused by removing or depositing the
background objects, e.g., moving a chair to a different posi-
tion. Besides, the foreground object might be converted to
be a background object, such as a car moving into a parking
lot. In some cases, a background pixel may have multi-
ple states, such as sunny and cloudy scenes. Therefore, for
a complex environment, different parts of the background
should be described with different types of features. How-
ever, almost all existing methods only employ one type of
features, e.g., color or optical flow, to model both static and
dynamic parts of the background. In this paper, we propose
a general Bayesian framework which can integrate multiple
features to model the background for foreground object de-
tection.

2.2 Formulation of the Classification Rule
For one type of background object, there exist some signif-

icant features that can be exploited to effectively separate
the background from the foreground objects. Let vt be a
discrete value feature vector extracted from an image se-
quence at the pixel s = (x, y) and time instant t. Using
Bayes rule, it follows that the a posterior probability of vt

from the background b or foreground f is

P (C|vt, s) =
P (vt|C, s)P (C|s)

P (vt|s) , C = b or f (1)

Using the Bayes decision rule, the pixel is classified as back-
ground if the feature vector satisfies

P (b|vt, s) > P (f |vt, s) (2)

Noting that the feature vectors associated the pixel s are ei-
ther from background or from foreground objects, it follows

P (vt|s) = P (vt|b, s) · P (b|s) + P (vt|f, s) · P (f |s). (3)

Substituting (1) and (3) to (2), it becomes

2P (vt|b, s) · P (b|s) > P (vt|s) (4)
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This indicates that by learning the a prior probability P (b|s),
the probability P (vt|s) and the conditional probability
P (vt|b, s) in advance, we may classify a feature vt as either
associated with foreground or with background.

2.3 Representation of Feature Statistics
The mathematical form of P (vt|s) and P (vt|b, s) in (4)

are unknown in general cases. They could be represented
by the histograms of feature vectors over the entire feature
space. For a n dimensional feature vector with L quanti-
zation levels, the joint histogram for P (vt|s), or P (vt|b, s)
contains Ln bins. If L or n is large, operating on the joint
histogram would be expensive both for computation and
storage. A good approximation is therefore desirable.
Background is considered as containing non-living objects

which stay constantly in the same place in the scene, while
objects of interest would often move in the scene. Hence, if
the selected features are effective to represent background,
at a pixel s, the feature vectors from the background would
concentrate in a very small subspace of the feature his-
togram, while the feature vectors from foreground objects
would distribute widely in the feature space. This means,
with a good feature selection, it becomes possible to cover a
large percentage (e.g., more than 90%) of the feature vectors
associated with the background by using a small number of
bins in the histogram. Meanwhile, less feature vectors from
foreground objects would be distributed in these few bins.
Let P (vi

t|b, s), i = 1, · · · , N , be the first N bins from
the histogram sorted according to the descendent order of
P (vt|b, s), i.e., P (vi

t|b, s) ≥ P (vi+1
t |b, s). For giving percent-

age valuesM1 andM2, e.g,M1 = 90% andM2 = 10%, there
exists a small integer N1 such that the following conditions
are satisfied

N1X
i=1

P (vi
t|b, s) > M1 and

N1X
i=1

P (vi
t|f, s) < M2 (5)

Naturally, N1 value is also dependent on the selected fea-
tures and the number of quantitative levels used for the fea-
tures.
For each type of feature vectors (either from foreground or

background), a table of feature statistics, denoted as Ss,t,i
vt

,
i = 1, · · · , N2 (N2 > N1), is maintained at pixel s and time
t to record the statistics for the N2 most significant values.
Each element in the table consists of three components, i.e.,

Ss,t,i
vt

=

8<
:

pt,i
v = P (vi

t|s)
pt,i

vb = P (vi
t|b, s)

vi
t = [ai

1, · · · , ai
n]

T
(6)

The elements in the list are sorted according to the descen-
dent order of pt,i

v . Meanwhile, ps,t
b = P (b|s) is also main-

tained at each time t to adapt to the variation of busyness
in the scene over different time duration. The list forms
the most significant portion of the histogram for the fea-
ture vector vt. For many video processing applications, the
duration of background exposure at a pixel is much longer
than the time being covered by foreground objects. The
first N1 elements of the list is enough to cover the majority
part of the feature vectors from the background. Hence, the
first N1 elements from the table together with ps,t

b are used
for the classification of background and foreground changes.
Within the firstN1 elements in the table, there are p

t,i
v ≈ pt,i

vb

for the background features, otherwise, pt,i
v � pt,i

vb . The el-

ements from N1 to N2 in the list are used as a buffer to
learn the new significant features through the background
updating. The values of N1 and N2 are selected empirically.
For the stable features from the background, small values
are good enough. For the features with variations, slightly
large values are required.

2.4 Selection of Feature Vectors
When a pixel is associated with a stationary background

object, the colors of it are naturally selected as feature vec-
tors, i.e., vt in (1) to (6) is substituted by ct = [rt gt bt]

T .
When a pixel is associated with a moving background ob-
ject, the color co-occurrences of inter-frame changes from
the pixel are chosen as the feature vectors, i.e., vt in (1) to
(6) is substituted by cct = [rt−1 gt−1 bt−1 rt gt bt]

T . The
selection of color co-occurrences are based on the following
observation. For a moving background object, even though
the colors from a pixel associated with it varies greatly, the
color co-occurrences of the inter-frame changes from it is
quite significant since the similar changes always happen in
the same place in the image. To represent multiple states of
background at a pixel, such as the moving of tree branch and
the exposure of sky, both Ss,t,i

ct
and Ss,t,i

cct
are maintained at

each pixel.
To make the computation and storage efficiency, L = 64

quantization levels in each color component are used for
color vector. Meanwhile, N1 = 30 and N2 = 50 are cho-
sen. L = 32 with N1 = 50 and N2 = 80 are used for the
feature vectors of color co-occurrences. In this investiga-
tion, it was found with such parameter selections, (5) holds
for most pixels associated with both stationary and mov-
ing background objects. Obviously, there are 643 and 326

bins in the joint histograms for color and color co-occurrence
vectors, respectively. With N1 = 30 for color features and
N1 = 50 for color co-occurrence features, good represen-
tation of background has been achieved for the stationary
and moving background objects. This means the selected
features are quite effective.

3. ALGORITHM DESCRIPTION
With the formulation of background and foreground clas-

sification based on Bayes decision theory, an algorithm for
foreground object detection from a real-time video contain-
ing complex background are established. It consists of four
parts: change detection, change classification, foreground
object segmentation, and background learning and main-
tenance. The block diagram of the proposed algorithm is
shown in Figure 1. The light blocks from left to right cor-
respond to the first three steps, and the gray blocks for the
step of adaptive background modeling. In the first step,
non-change pixels in the image stream are filtered out by
using simple background and temporal differences. The de-
tected changes are separated as pixels belonging to station-
ary and moving objects according to inter-frame changes.
In the second step, the pixels associated with stationary or
moving objects are further classified as background or fore-
ground based on the learned statistics of colors and color
co-occurrences respectively by using the Bayes decision rule.
In the third step, foreground objects are segmented by com-
bining the classification results from both stationary and
moving parts. In the fourth step, background models are up-
dated. Both gradual and “once-off” learning strategies are
utilized to learn the statistics of feature vectors. Meanwhile,
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Figure 1: The block diagram of the algorithm.

a reference background image is maintained to make the
background difference accurate and adaptive to the chang-
ing background. The details for the four steps are described
in the following subsections.

3.1 Change Detection
In the first step, pixels of insignificant changes are filtered

out by simple background and temporal differencing. Let
I(s, t) = {Ic(s, t)} be the input color image and B(s, t) =
{Bc(s, t)} be the reference background image maintained by
the system at time instant t, and c ∈ {r, g, b} represents a
color component. The background and temporal differenc-
ing are performed as follows. First, a simple picture differ-
encing is performed for each color component with adaptive
thresholding, using the method described in [10]. The re-
sults from the three components are combined to generate
the background difference Fbd(s, t) and the temporal differ-
ence Ftd(s, t) respectively. The image differencing is used
to removed the imaging noise. The remainder changes will
be classified based on background features. The adaptive
global thresholding is accurate for this purpose.

3.2 Change Classification
The temporal differences classify the change pixels into

two types. If Ftd(s, t) = 1 is detected, the pixel is classi-
fied as a motion pixel belonging to a moving object. Oth-
erwise, it is a station pixel associated with a stationary ob-
ject. They are further classified as background or foreground
separately. For a station pixel s, the color feature vector
vt = ct = [rt gt bt]

T is generated with L = 64 levels for each
color component. For a motion pixel, the feature vector of
color co-occurrence vt = cct = [rt−1 gt−1 bt−1 rt gt bt]

T

is generated with L = 32. This feature vector vt is then
compared with the first N1 learned feature vectors from
the corresponding table of feature statistics for background
to retrieve the probabilities for the similar features. Let
vt = [a0, · · · , an]

T and vi
t from the table Ss,t,i

vt
(6). The

conditional probabilities are obtained as
8<
:

P (b|s) = ps,t
b

P (vt|s) =Pj∈M(vt)
ps,t,j

v

P (vt|b, s) =
P

j∈M(vt)
ps,t,j

vb

(7)

where the matched feature set in Ss,t,i
vt

is defined as

M(vt) = {k : ∀m ∈ {1, · · · , n}, |am − ak
m| ≤ δ} (8)

where δ = 2 was chosen so that if the similar features are
quantized into neighboring vectors, the statistics can still be
retrieved. If no element in the table Ss,t,i

vt
matches vt, both

P (vt|s) and P (vt|b, s) are set 0. Substituting the probabili-
ties in (7) into (4), the point are classified as background or
foreground.

3.3 Foreground Object Segmentation
It is observed that, after the background and foreground

classification, only a small percentage of the background
points are wrongly labeled as foreground ones. And more,
the remainders have become isolated points. A morpholog-
ical operation (a pair of open and close) is applied to re-
move the scattered error points and connect the foreground
points. The remaining regions are extracted with small ones
removed. The segmented foreground objects form a binary
output image O(s, t).

3.4 Background Learning and Maintenance
Background maintenance adapts the background models

to various background changes over time. In the proposed
method, the background maintenance includes two parts,
updating the tables of feature statistics and a reference back-
ground image.

3.4.1 Updating Tables of Feature Statistics
Two tables of color and color co-occurrence statistics are

maintained at each pixel. Two updating strategies are pro-
posed to adapt them to both gradual and “once-off” back-
ground changes.

3.4.1.1 Updating to gradual background changes.
Assume the feature vector vt is used to classify the pixel

s as foreground or background at time t, the statistics of
the corresponding features (color or color co-occurrence) is
gradually updated by8<

:
ps,t+1

b = (1− α2)p
s,t
b + α2M

s,t
b

ps,t+1,i
v = (1− α2)p

s,t,i
v + α2M

s,t,i
v

ps,t+1,i
vb = (1− α2)p

s,t,i
vb + α2(M

s,t
b ∧Ms,t,i

v )

(9)

for i = 1, · · · , N2, where α2 is the learning rate which con-
trols the speed of feature learning. The selection of the
learning rate α2 will be addressed late in this section. The
boolean values for matching labels are generated as follows.
Ms,t

b = 1 when s is labeled as the background at time t from

the feedback of final segmentation, otherwise, Ms,t
b = 0.

Ms,t,i
v = 1 when vi

t of Ss,t,i
vt

in (6) matches vt best and
Ms,t,i

v = 0 for the remainders.
The above updating equation states the following: If the

pixel s is labeled as a background point at time t, ps,t+1
b

is slightly increased from ps,t
b due to Ms,t

b = 1. Further,
the probability for the matched feature is also increased due
to Ms,t,i

v = 1. If Ms,t,i
v = 0, then the statistics for the

un-matched features are slightly decreased. If there is no
match between vt and the elements in the table Ss,t,i

vt
, the

N2th element in the table is replaced by a new feature vector

ps,t+1,N2
v = α2, ps,t+1,N2

vb = α2, vN2
t = vt. (10)

If the pixel s is labeled as a foreground point at time t, ps,t+1
b

and ps,t+1,i
vb are slightly decreased with Ms,t

b = 0. However,
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for the matched element in Ss,t+1,i
vt

, ps,t+1,i
v is increased.

The updated elements in the table Ss,t+1,i
vt

are re-sorted on
a descendent order for ps,t+1,i

v , so that the table may keep
the N2 most frequent features for the corresponding states.

3.4.1.2 Updating to “once-off” background changes.

When an “once-off” background change has happened,
the features of the new background appearance become dom-
inated immediately after the change. From (5) and (3), new
background features at s is detected if

P (f |s)
N1X
i=1

P (vi
t|f, s) > T (11)

where T is a percentage value which determines when the
new features can be recognized as new background appear-
ance. With a large value of T , the system is stable but
slow to response to the “once-off” changes. However, if T
is small, the system is easy to learn the frequent foreground
features as new background appearances. In our tests, T
was set as 90%. The factor P (f |s) prevents updating from
a small number of features. From (3) and (6), (11) becomes

N1X
i=1

ps,t,i
v − ps,t

b

N1X
i=1

ps,t,i
vb > T (12)

Noting P (f |s) = 1−P (b|s) for each type of feature vectors,
the statistics of the features are adjusted as follows once the
new background features are discovered at s,

�
ps,t+1

b = 1− ps,t
b

ps,t+1,i
vb = (ps,t,i

v − ps,t
b · ps,t,i

vb )/ps,t+1
b

(13)

for i = 1, · · · , N1. With this “once-off” operation, the
observed domination features are converted as the learned
background features.

3.4.1.3 Convergence of the learning process.
If the few most significant feature vectors represent the

background well, there will be
PN1

i=1 p
t,s,i
vb ≈ 1. In addition,

if the background features become significant, it is desirable
that

PN1
i=1 p

t,s,i
vb will converge to 1 with the evolution of up-

dating. The updating equation (9) meets such requirement.

Suppose there is
PN1

i=1 p
t,s,i
vb = 1 at time t, and at time

t + 1 the jth element of Ss,t,i
vt

matches the feature vector
vt+1 of image point I(s, t+1) labeled as background. Then
there is

N1X
i=1

pt+1,s,i
vb = (1−α2)

N1X
i=1

pt,s,i
vb +α2(M

t,s
b ∧M t,s,j

v ) = 1 (14)

This means the sum of the probabilities of the background
features keeps 1 by the updating equation (9).

Let’s suppose
PN1

i=1 p
t,s,i
vb 
= 1 at time t due to some rea-

sons such as the initialization or the operation of “once-off”
learning, and the vj

t from the first N1 elements of Ss,t,i
vt

matches vt+1 from I(s, t+ 1), then we have

N1X
i=1

pt+1,s,i
vb = (1− α2)

N1X
i=1

pt,s,i
vb + α2 (15)

From (15) one has

N1X
i=1

pt+1,s,i
vb −

N1X
i=1

pt,s,i
vb = α2(1−

N1X
i=1

pt,s,i
vb ) (16)

If
PN1

i=1 p
t,s,i
vb < 1, there will be

PN1
i=1 p

t+1,s,i
vb >

PN1
i=1 p

t,s,i
vb .

The sum of the probabilities for background features in-
creases slightly. On the other hand, If

PN1
i=1 p

t,s,i
vb > 1, there

will be
PN1

i=1 p
t+1,s,i
vb <

PN1
i=1 p

t,s,i
vb . The sum of the probabil-

ities for background features decreases slightly. From these
two cases it can be concluded that the sum of the probabil-
ities for background features converges to 1 as long as the
background features are significant and the most frequent.

3.4.1.4 Parameter selection for learning.
Another interesting problem about the learning strategy

is the selection of the learning rate α2. To make the grad-
ual updating operation adapt to the gradual background
changes smoothly and not to be perturbed by noise and fore-
ground objects too much, the α2 should be selected small.
On the other hand, if α2 is too small, the system will become
too slow to response the “once-off” background changes.
Here, we give a formulation to select α2 from the required
time to response to “once-off” background changes.
Let’s examine the response of the learning strategy to an

“once-off” background change. An ideal “once-off” back-
ground change at time t0 can be assumed as an step func-
tion. The features before t0 fall into the first K1 elements of
Ss,t,i

vt
(K1 < N1), and the features after t0 fall into the next

K2 elements of Ss,t,i
vt

(K2 < N1). So at time t0 there are
PK1

i=1 p
t0,s,i
v ≈PK1

i=1 p
t0,s,i
vb ≈ pt0,s

b,v ≈ 1,PK1+K2
i=K1+1 p

t0,s,i
v ≈PK1+K2

i=K1+1 p
t0,s,i
vb ≈ 0

(17)

After t0, since the new appearance of the background at
pixel s is classified as foreground, ptk,s

b,v ,
PK1

i=1 p
tk,s,i
v andPK1

i=1 p
tk,s,i
vb decrease gradually, whereas

PK1+K2
i=K1+1 p

tk,s,i
v in-

crease gradually and will be moved to the first K2 positions
in Ss,t,i

vt
by the re-sorting operation at each time step. Once

the condition of (12) is met at time tn, the new background
state is learned. To make the expression simple and clear,
let’s suppose no re-sorting operation is performed at each
time step. Then the condition (12) becomes

K1+K2X
i=K1+1

ptn,s,i
v − ptn,s

b,v

K1+K2X
i=K1+1

ptn,s,i
vb > T (18)

From (9) and (17), at time tn after t0 there are

ptn,s
b,v = (1− α2)

npt0,s
b,v ≈ (1− α2)

n (19)

K1+K2X
i=K1+1

ptn,s,i
v = (1− α2)

n
K1+K2X
i=K1+1

pt0,s,i
v +

n−1X
j=0

(1− α2)
jα2

≈ 1− (1− α2)
n (20)

K1+K2X
i=K1+1

ptn,s,i
vb = (1− α2)

n
K1+K2X
i=K1+1

pt0,s,i
vb + 0 ≈ 0 (21)

By substituting the items in (18) with (19-21) and doing
simple rearranging, we can obtain

α2 > 1− (1− T )1/n (22)
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This means, if we think that n frames for the system to re-
sponse to an “once-off” background change is quick enough,
we should choose the learning rate α2 from (22). As exam-
ple, if we want the system to response to an ideal “once-off”
background change after 20 seconds with 25 fps frame rate
and T = 90%, α2 should be larger than 0.0046 but not too
larger than it to prevent the system not to sensitive to noise
and foreground objects.

3.4.2 Updating the Reference Background Image
A reference background image that represents the most

recent appearance of the background is also maintained at
each time step to make the background difference accurate.
The gradual changes for stationary background objects

are updated by using an Infinite Impulse Response (IIR)
filter. If s is detected as a point of insignificant change
in change detection, the reference background image is up-
dated as

Bc(s, t+ 1) = (1− α1)Bc(s, t) + α1Ic(s, t) (23)

where c ∈ {r, g, b} and α1 is the parameter of the IIR filter.
Since the next operation can adapt to “once-off” changes,
a small positive number of α1 is selected to smooth out the
perturbs caused by image noise.
If O(s, t) = 0 and Ftd(s, t) = 1 or Fbd(s, t) = 1, it indicates

a background change is detected. The pixel is replaced by
the new background appearance

Bc(s, t+ 1) = Ic(s, t), for c = r, g, b (24)

With this operation, the reference background image can
follow the background motion, e.g., the changes between
tree branch and sky, and adapt to “once-off” changes in
stationary background parts.

4. EXPERIMENTAL RESULTS
Experiments have been performed on many difficult videos

of both indoor and outdoor scenes. The test videos in-
clude wavering tree branches and curtains, flickering screens,
lights, or water surfaces, moving escalators, opening/closing
doors, removed/deposited objects, switching on/off lights,
lighting condition changes from day to night or clouds and
raining, and shadows of people on the ground surface. Many
of the test scenes are so difficult that less of the previous
methods has been tested on. With the proposed method,
the foreground objects were detected and segmented satis-
factorily from these videos. Five examples from these diffi-
cult videos are presented in this paper. Meanwhile, quan-
titative evaluation of the performance and comparison with
two existing methods has been performed. The first is a
robust background subtraction (RBS) method [8] which is
robust to various background variations and accurate to the
camouflage of the foreground objects but a stationary back-
ground is required, and the second is the MoG method [11]
which employs multiple color clusters for background mod-
eling. For a fair comparison the same post-processing (i.e.,
the morphological smoothing and small region elimination)
was used for the two methods.
In the experiments, our method was automatically initial-

ized by setting all the prior and conditional probabilities to
zero, i.e., ps,0

b = 0, ps,0,i
v = 0, ps,0,i

vb = 0 for i = 1, · · · , N2

and vt = {ct, cct}. The gradual updating process learns
the most significant features gradually, and the “once-off”
updating process converts the most significant features as

(a) (b)

(c) (d)

(e) (f)

Figure 2: The test on a video containing wavering
tree branches in strong winds. (a) a frame from
the video, (b) the maintained background reference
image, (c) the result of RBS, (d) the result of the
MoG, (e) the result of the proposed method, (f) the
“ground truth”.

background features if (12) is held. After the “once-off”
learning, the system is able to work well for background
and foreground classification.
The segmentation results from five difficult videos are

shown in Figure 2 to 6. In each figure, the displayed im-
ages are: (a) a frame from the video, (b) the background
reference image maintained by the proposed method, (c) the
result of RBS, (d) the result of MoG, (e) the result of the
proposed method, and (f) the manually generated “ground
truth”.
The first example displayed in Figure 2 comes from a video

containing moving tree bushes in strong wind. The great
motion of tree branches can be seen from the result of RBS
which is obtained by subtracting the frame from an empty
frame just before the car moving into the scene. Comparing
the segmentation result of the proposed method with the
“ground truth”, one can see that the foreground object was
extracted accurately. As to MoG, since the coverage of back-
ground colors for moving trees are very large due to more
than one cluster being used, many parts of the foreground
object were mis-classified as the background.
The second example shown in Figure 3 displays human de-

tection in front of the wavering curtains. The great motion
of the curtains due to the wind can be seen from the result
of RBS which is generated from the frame and an empty
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(a) (b)

(c) (d)

(e) (f)

Figure 3: The test on a video containing moving
curtains. (a) a frame from the video, (b) the main-
tained background reference image, (c) the result of
RBS, (d) the result of the MoG, (e) the result of the
proposed method, (f) the “ground truth”.

frame just before the person coming into the scene. With
the comparison to the “ground truth”, one can see that the
proposed method has accurately segmented the person from
the video. RBS was too sensitive to moving background
objects. The MoG was still sensitive to the motion of cur-
tains. On the other hand, the color of curtains changes from
dark to bright gray during the motion. When the two strips
overlapped, the color is dark gray. Otherwise, the curtain is
bright gray. Since the color of the trousers of the person is
similar to the dark color of the curtains and the color of the
shirt is similar to the bright color of the curtains, great part
of the human body was mis-classified as background with
MoG.
The third example in Figure 4 came from a video of sub-

way station, which contains three moving escalators and hu-
man flow in the right sight of the images. The motion of the
escalators can be observed in the result of RBS which is ob-
tained from the frame and an empty frame with on persons
in the scene from the video. Even though both MoG and
the proposed method can suppress the moving escalators,
the MoG turned to be less sensitive to the human objects
on the escalators and the path of human flow since it learned
too many colors for backgrounds in the motion regions of the
images through the video. The proposed method segmented
the human objects on both the moving escalator and ground
surface quite well.

(a) (b)

(c) (d)

(e) (f)

Figure 4: The test on a video from a subway station
with moving escalators. (a) a frame from the video,
(b) the maintained background reference image, (c)
the result of RBS, (d) the result of the MoG, (e)
the result of the proposed method, (f) the “ground
truth”.

The fourth example which shows the segmentation of hu-
man objects in the presence of a large fountain is displayed
in Figure 5. This video contains several persons walking
in front of the fountain. With the color variation of the
falling water, the RBS detected many false foreground pix-
els since the background is not stationary. On the other
hand, MoG missed some foreground pixels with colors simi-
lar to the water. But the result of the proposed method was
more accurate than the two existing methods because two
types of the features were employed for the stationary and
motion background parts, respectively.
The last example shown in Figure 6 tests the performance

of the methods on a busy scene. In the example frame, there
are four persons in the scene and the left man cast significant
shadows on the ground surface. Compared with the “ground
truth”, the segmentation results can be evaluated visually as
follows. For the results of RBS and the proposed method,
four persons are detected well and the shadow of the left
man is suppressed. As to the result of MoG, the right man
and the great parts of the two middle persons were missed
while the shadow of the left person was mis-detected as the
foreground. In the maintained background reference image,
the shadows of the persons can be observed while no person
has been absorbed.
From these experimental results, it can be concluded as

8



(a) (b)

(c) (d)

(e) (f)

Figure 5: The test on a video containing a big foun-
tain. (a) a frame from the video, (b) the maintained
background reference image, (c) the result of RBS,
(d) the result of the MoG, (e) the result of the pro-
posed method, (f) the “ground truth”.

follows. The RBS method works well for a stationary back-
ground even there are variations of illumination changes,
but it fails when the background involves motion objects.
MoG can work for both stationary and motion background
parts, but it often mis-classifies the foreground points as the
background when there are moving background objects or
frequent crowds in the video. The proposed method per-
forms well for both stationary and motion background parts
since it employs different significant features for different
parts. These conclusions are more easy to be validated with
the observations through the whole videos1.
Quantitative evaluation of proposed method and compar-

ison with two existing methods were also performed in this
study. The results were evaluated quantitatively from the
comparison with the “ground truths” in terms of:

• The False Negative Errors (F. Neg): the number of
foreground points that are missed;

• The False Positive Errors (F. Pos): the number of
background points that are mis-detected as foreground.

The quantitative evaluation results over the examples dis-
played in Figure 2 to 6 are shown in Table 1. The quantita-

1Ten sequences (MPEG files) of test videos and results, in-
cluding the examples presented in this paper, are available
at http://perception.i2r.a-star.edu.sg

(a) (b)

(c) (d)

(e) (f)

Figure 6: The test on a video of a busy scene. (a)
a frame from the video, (b) the maintained back-
ground reference image, (c) the result of RBS, (d)
the result of the MoG, (e) the result of the proposed
method, (f) the “ground truth”.

tive evaluation agrees with the conclusions from the visual
observation of the experimental results.
There are a few parameters used in the proposed method,

i.e., N1, N2, T , α1, and α2. However, since the decision
of background and foreground classification using (4) is not
directly dependent on any heuristic threshold, the perfor-
mance of the proposed method is not sensitive to the pa-
rameters too much.

5. CONCLUSION
In this paper, we have proposed a novel method based

on Bayes decision theory to detect foreground objects from
complex videos which contain both stationary and moving
background objects. A Bayes decision rule for background
and foreground classification from a general feature vector is
established. It is then applied to both stationary and mov-
ing background objects with suitable feature vectors. Dif-
ferent feature vectors are selected for different background
parts. Foreground objects are segmented by fusing the re-
sults from both station and motion pixels. Both gradual
and “once-off” learning strategies for learning and updat-
ing the feature statistics of background are proposed. The
convergence of the learning algorithm is also analyzed. The
proposed method has been tested on numerous real scenes
containing wavering tree branches in strong winds, flickering
screens/water surfaces, moving escalators, opening/closing
doors, shadows of moving human objects, switching on/off
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Table 1: Quantitative evaluation and comparison of
the test results.

Sequence Method F. Neg F. Pos Total
Proposed 68 90 158

Trees MoG 370 58 428
RBS 134 5814 5948

Proposed 193 63 256
Curtain MoG 1250 293 1543

RBS 63 3533 3596
Proposed 567 427 994

Escalator MoG 1186 332 1518
RBS 295 2451 2746

Proposed 91 266 357
Fountain MoG 324 117 441

RBS 95 484 579
Proposed 401 268 669

BusyScene MoG 1311 615 1926
RBS 161 786 947

lights, and illumination changes from day to night as well
as clouds. Good results for foreground detection have been
obtained from these scenes. The comparison with existing
methods indicates that using different features to model dif-
ferent parts of background is more accurate than using just
one type of features for complex background.
The weak point of the proposed method is that it is prone

to absorb foreground objects if they are motionless for a long
time. This is because the proposed method only learns the
background features at pixel level. Further investigation
is being conducted for improving the learning strategy by
adding feedback control from high-level object recognition
and tracking.
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