
f=0;

i=0;

while(i<n)

{

 a=x[i];

 if((a<0)&&!f))

 {

 f=1;

 res=a;

 }

 if(f&&(a<0)

 && (res<a))

 res=a;

 i++;

}

if(!f)

{

 printf("There

are no right

elements");

}

Algorithm A1

f=0;

fseek(file, 0L,

SEEK_SET);

fscanf("%d",&a);

while(!feof(file))

{

 if(a<0&&!f)

 {

 f=1;

 res=a;

 }

 if(f&&(a<0)

 &&(res<a))

 res=a;

}

if(!f)

{

 printf("There are

no right elements

");

}

Algorithm B1

f=0;

i=p;

// p - head list

while(i!=NULL)

{

 a=i->info;

 if((a<0)&&!f)

 {

 f=1;

 res=a;

 }

 if(f&&(a<0)

 &&(res<a))

 res=a;

 i=i->next;

}

if(!f)

{

 printf("There

are no right

elements ");

}

 Algorithm C1

Application of SADT for source code generation in

learning the programming fundamentals

Kustov M.
1
, Guban B., Datsun N.

2

Department of Applied Mathematics and Informatics
Donetsk National Technical University

Donetsk, Ukraine
1
maksym.kustov@gmail.com,

2
datsun@pmi.dgtu.donetsk.ua

Abstract— Approach to generating source code from the SADT

(Structured Analysis and Design Technique) specification of the

program is offered. Invariants are allocated in basic algorithms.

Algorithm of generating source code on the basis of templates is

formulated. Data structures used for implementation of

algorithm are considered. Internal representation of the SADT

specification can be used to analyze the properties of the

generated program.

programming fundamentals, SADT, algorithms, invariants,

data structures, generating source code

I. INTRODUCTION

This paper presents the results of application of the SADT
(Structured Analysis and Design Technique) [1, 2]
specification for the generating source code. The course SE101
of SEEK (Software Engineering Education Knowledge) [3] is
focused on the solution of such learning objectives: develop
simple statements of requirements and write small programs in
some language. Modern methods of generating source code
from a Domain-Specific Language (DSL)/specification
language (SL) can be used in learning to create a structured
program based on the standard algorithms and simple data
structures. Development of methods for generating source code
from a DSL/SL is an actual problem for the various subject
areas [4-10]. There are textual and visual DSL/SL. UML and
UML-like languages are most popular among the visual
specification languages. C++, C#, Java, VB and VB.NET in
most cases are the source code languages [4-9]. But the
notation of UML and object-oriented languages for generating
source code are redundant for problems of learning the
programming fundamentals. SADT [1, 2] as a methodology for
functional modeling successfully works for the description of
clearly specified processes [11, 12]. Therefore it is possible to
apply SADT in learning the methods of decomposition
programs. Language SADT-methodology is a visual
specification language. Graphical notation of IDEF0 [2] in
such subject area as formalization of programs development
allows to consider the logic relations between functional blocks
of the program and provides the minimum toolkit for building
software projects with standard algorithms. Work objective is
to use the graphic notation of SADT for teaching of
decomposition program and generating source code for
procedural language from the SADT-specification with
standard algorithms on basic data structures.

II. SELECTION OF INVARIANTS OF BASIC ALGORITHMS

A. Selection of Invariants of The Algorithm With Respect To

The Input Data

Let's try to identify the invariants for basic search
algorithm of the maximum negative elements. For this we
consider the implementation of this algorithm for various data
structures. Fig. 1 presents these algorithms for the array, a text
file and linked list.

Figure 1. Basic algorithms of the maximum negative element for the array,

a text file and linked list.

After detailed analysis of algorithms, you may notice that
some parts are the same for all types of data structures. Let's
distinguish immutable parts (invariants) of algorithms.

f=0;

i=0;

while(i<n)

{

 a=x[i];

 if((a<0)&&!f)

 {

 f=1;

 res=a;

 }

 if(f&&(a<0)&&

 (res<a))

 res=a;

 i++;

}

if(!f)

{

 printf("There are

no right elements");

}

Algorithm A2

res=x[0];

i=0;

while(i<n)

{

 a=x[i];

if(a<rez)

 res=a;

 i++;

}

Algorithm B2

i=0;

while(i<n)

{

 a=x[i];

if(a>0)

 x[i]=0;

 i++;

}

 Algorithm C2

In Fig. 1, the invariants of these algorithms are marked in
bold. Thus we have the invariants of algorithms with respect
to the input data. That is, when you change structure of input
data invariant remains the same. The resulting invariants are
divided into three parts: initialization (in Fig. 1 marked in
underlined), main part, ending part (in Fig. 1 marked in italic).

Unchanging part of the processing algorithm determines
the input variable and the variable part of it represents this
variable to the input, looking over an array, file or linked list.

B. Selection of the algorithm invariant by the method of

processing

We consider algorithms for finding maximum of the
negative elements, minimum and replacement of the positive
elements of zeros for the same data structure (array). Fig. 2
presents these algorithms.

Figure 2. Various algorithms for the array.

Let's distinguish the invariants for the considered
algorithms. Common to these algorithms is the cycle for the
elements of the array. In Fig. 2, the invariants of these
algorithms are marked in bold. In these algorithms there are no
some parts: algorithm B2 has lost the ending part, and the
algorithm C2 lost the initialization and the ending parts.

III. GENERATION OF NEW ALGORITHMS BASED ON

INVARIANTS

Let's create a patterns of the algorithms obtained in the
previous sections. To do this, we will cut out the invariants
from the algorithm. Now we can get a brand new algorithm by
combining the algorithm C1 and algorithm B2. Fig. 3
illustrates the preparation of an entirely new algorithm based

on invariants. Further, the project implementation software for
generating program code based on the specifications of the
SADT-methodology will be discussed.

Figure 3. Process of obtaining a new algorithm based on invariants.

IV. DATA STRUCTURES

From the IDEF0/SADT graphic language for creation of
the SADT specification are used:

 functional blocks (Activity Box) to denote the
program modules at decomposition

 interface arcs (Arrow) of two types (“Input” to
transfer the input data and “Output” to transfer the
output data);

 names of interface arcs (Arrow Label) to denote the
names of the input and output data.

Consider the representation of the visual components of
SADT specification in the form of data structures

A. SADTUnit Structure

The main data structures is SADTUnit, describing a unit of
SADT diagrams, and SADTData, describing the type and data
structure of links SADT diagrams. Elements of structure
SADTUnit are:

 number of diagram unit (integer);

 links (list);

 containers (list).

“Number of diagram unit” serves for process ordering.
Process occurs consistently, according to numbers of diagrams.

List item "Links" is a pair <key (name); value (link
structure)>. This component will organize a logical relationship
of component with other diagram units.

List item "Containers" is a pair <key (name); value
(container structure)>. It contains a set of possible patterns of
code for generated program. Needed container is selected in
accordance with the data type and structure of the input data.

B. SADTLink Structure

Elements of structure SADTLink are:

 name (string);

 type of link (string);

 linked to the diagram (string);

 link on the external diagram (string);

 data (string).

"Name" is used to display in graphical representation of the
diagram. Also the name is used for this purpose what to refer to
this communication from external diagrams and
communication with various internal structures, such as the
mask of using of the diagram container.

"Type of link" specifies the type of communication with
respect to the diagram in which this connection is contained.
Link can be:

 input (intended to link a diagram to input data);

 output (intended to create of the reference to the data
received as a result of work of the diagram);

 modular (intended to connect the various modules to
the diagram, which can extend standard functionality).

"Linked to the diagram" specifies the name of an external
diagram. It is used in input and modular links to specify the
diagram connected with the current diagram through this link.

"Link on the external diagram" is the name of the output
link of external diagram, which is connected with this link. It is
used for input and modular links.

The field "Data" is used for output links. The value of this
field corresponds to a name of data which are created as a
result of work of the current unit diagram. This field establishes
compliance between data and links.

If the diagram generates new data, the fields "Linked to the
diagram" and "Link on the external diagram" are empty, and
the field "Data" refers to the structure of the newly created
data. Such a set is created only for the output links. Conversely,
if the field "Data" is empty, and the fields "Linked to the
diagram" and "Link on the external diagram" are filled, it
means that the link is connected with one of the external
diagrams, or that the link is associated with one of the inputs to
the current diagram. This occurs when new data aren't
generated, but only only to modify the input data.

C. SADTData Structure

Elements of structure SADTData are:

 data structure (string);

 data type (string);

 name of the data (string).

"Data structure" describes the type of the data structure
(array, list, file).

"Data type" describes the type of data in structure (integer,
character or real).

"Name of the data" used to identify the created data
structure.

By analogy to SADT diagrams, SADTUnit itself acts as a
diagram, and SADTData acts as links between diagrams. If we
consider the mechanism of processing of the workpiece in the
SADT specification, SADTData will act as a workpiece, and
SADTUnit will act as methods and techniques for handling the
workpiece. Accordingly, after processing of the workpiece is
obtained by the final product, which will be the output link. It
will be at the same time presented by SADTData structure.

D. Container Structure

Elements of container structure are:

 text field (string);

 mask of using (array of structures).

"Text field" contains one of versions of the generated text
of the program.

Structure of the field "Mask of using" contain the name,
structure and type of input links. The container contains some
such structures. If all parameters (structure and type), specified
in the mask, correspond to all the listed links, this particular
container is used for source code generation.

E. Mask of Using Structure

The mask of using is the array, each element of which is
the data structure:

 name of link (string);

 data type (string);

 data structure (string).
“Name of link” should correspond to one of names of links

of diagram units.

Type in the "Data Type" should match the type of the
corresponding input link. Then the container will be called, and
the code will be generated by its pattern.

"Data Structure" contains the name of the data structure
relevant to the input link.

Compliance of a mask of the input link is defined by the
coincidence of the input link name of diagram and the name of
link in the mask of using.

F. Data Structures Communication

The main block is «SADTUnit». It contains the array of
structures «Container» and «SADTLink». In turn, the structure
of the container contains the array of of structures «Mask of
Using», and the field «Data» of structure «SADTLink» refers
to a structure «SADTData».

V. SOURCE CODE GENERATION

A. Description of Problem

Input data:
ST: set /* set of basic data structures */
ST={array, matrix, list, sequential file, direct access file}
AT: set /* set of basic algorithms */
BD: set /* set of diagram blocks */
BD = <nbdid, BDIN, BDOUT, MET, INST>
nbdid: string /* ID of the diagram block */
BDIN: set /* set of inputs of diagram */
BDOUT: set /* set of outputs of diagram */
BDMET: set /* set of diagram methods*/
INST: set /* set of tools */

Restrictions: AT, ST, BD sets are not empty.

Results:
D: graph /* the problem specification from which the file PR
 is generated */
PR: file /* file of program code */

Relation “ input data - results ”:
D=BD union V
V = {vi}

vi = < bdin
k
i ,bdout

l
j > , i, j — numbers of input and

 output block diagram, k, l - numbers of inputs and outputs
 PR= AT × ST × P

B. Source Code Generation by SADT Specification

Using of templates is a common practice in programming.
Many programming languages have functions to work with
templates. But the usual patterns become powerless when the
variables substituted into the templates have different structure
(arrays, lists, files), because the processing of each data
structures is individual. For the array, it is possible to use the
loop, the matrix is required nested loops, for a tree - bypassing
the depth or breadth.

Several containers of a template used to solve this
problem. Appropriate container is selected according to the
type and structure of the input data. After that contents of the
container are used as a usual template.

Code generation is a substitution of data from the input
links in the text of container. The universality of this approach
is that the containers are defined for each data type and data
structure.

C. Source Code Generation Algorithm

1. Creation SADT diagrams.

2. Creation of links for SADT diagrams and giving them
names.

3. Numbering units in order to code generate.

4. Creation of containers with templates.

5. Specifying of mask of using for each of containers. The
algorithms contained in the containers can be created on the
basis of invariants of the algorithms.

6. Linkage of the created blocks. Linking of blocks occurs
by comparison to the input link of one diagram and the output
links of another diagram. Fields «Linked to the diagram» and
«Link on the external diagram» are filled. Link will be
recursively traced to the reference to data.

7. Selection of the container, which corresponds to the
input data. For this purpose it is necessary to compare the data
of each input link. Then, knowing type and data structure with
which should operate the diagram block, select the appropriate
template. From the list of all possible patterns is chosen the one
with the mask of using corresponds to the input data.

8. Replacement in a template of the container of values of
input links on names of data which correspond to this link.

9. Repeating steps 1-8 to all diagrams.

10. Arrangement of the obtained text of a program code
according to numbers of diagrams.

VI. DESCRIPTION OF TEST STAND

A. Implementation Toolkit

Qt library [13] was chosen as an instrument of
implementation. It includes all the basic classes that may be
required for the development of applied software. Qt is fully
object-oriented tool, easily expanded and supporting of
component programming technique. Thus, the designed
software product is cross-platform and can easily extended to
work over the network and databases.

Development of software is based on the Linux operating
system CentOS 5.5. Tests were carried out for the following
operating systems CentOS5.5, Fedora 14, Windows XP.
Compilation and debugging implemented in QT Creator.

B. Architecture Variants

Experiments were carried out on different hardware
architectures running different operating systems. Table I
presents options for the test stand.

TABLE I. VARIANTS OF TEST STAND

Hardware OS

Intel(R) Celeron(R) CPU E3300

2.5GHz 1GB RAM

Microsoft Windows XP
Professional Service Pack 3

AMD Phenom(tm) II X4 B45

Processor 3,1 GHz 1370112 KB

RAM

CentOS 5.5 x86_64

AMD Sempron(tm) 140

Processor 2,7GHz 1796440 KB

RAM

Fedora 14 x86_64

VII. TESTING

A. Description of Test Set

The experiment was performed on data structures: the array
of integers, the direct access file of integers, the array of
strings.

f=0;

res=-1;

i=0;

while ((i<n) && !f)

{

r=x[i];

if (r==a) {

 f=1;

 res=i; }

else

 i++;

}

Algorithm A3

f=0;

res=-1;

i=p;

while ((i!=NULL) && !f)

{

r=i->info;

if (r==a) {

 f=1;

 res=i; }

else

 i=i->next;

}

Algorithm B3

i=0;

while (i<Res)

i++;

while (i<n)

{

 a[i]=a[i+1];

 i++;

}

Algorithm A4

i=p; // p - head list

while (i!=Res)

i=i->next;

while (i!=NULL)

{

 i->info=i->next->info;

 i=i->next;

}

Algorithm B4

The blocks of diagram with containers ("find the
minimum", "find the maximum", "swap elements") were
created for processing of these data structures.

Containers are contained in each of blocks of diagrams.
Each of the container corresponds to a certain set of input data.
Table II presents the set of containers for each of the block.

TABLE II. SETS CONTAINERS FOR EACH BLOCK

Data Container
Array of Integer

Один контейнер,

создающий данные

int an=20;

int a[20];
Direct Access File of Integers (D/A File Int)

Один контейнер,

создающий данные

FILE *f;

if((f=fopen("rw","filename"))==NULL)

 printf("Cannot open file");

int fn=fseek(a,0,SEEK_END);
Array of Strings

Один контейнер,

создающий данные

int cn=20;

char c[20][100];

Minimum in Dataset (Min in Dataset)

ArrayInt int iMin=0;

for (int i=1; i<%xn%;i++) {

 if(%x%[i]<%x%[iMin]) iMin=i;

}

DAFileInt int iMin=0;

int Min,bufMin;

fseek(%x%,0,SEEK_SET);

fread (&Min, sizeof(Min), 1, %x%);

for (int i=1; i<%xn%;i++)

{

fread (&bufMin, sizeof(Min), 1, %x%);

if(bufMin<Min)

 { Min=bufMin; iMin=i; }

}

ArrayString int iMin=0;

for (int i=1; i<%xn%;i++)

{

if(strcmp(%x%[i],%x%[iMin])<0) iMin=i;

}

Maximum in Dataset (Max in Dataset)

ArrayInt, DAFileInt,

ArrayString

By analogy to the container Min in Dataset

Swap elements in Dataset

ArrayInt int buf; buf=%x%[%i1%]);

%x%[%i1%]=%x%[%i2%];

%x%[%i2%]=buf;

DAFileInt int changeMax,changeMin;

fseek(%x%,iMin*sizeof(int),SEEK_SET);

fread (&changeMin, sizeof(Max), 1, %x%);

fseek(%x%,iMax*sizeof(int),SEEK_SET);

fread (&changeMax, sizeof(Max), 1, %x%);

fseek(%x%,iMin*sizeof(int),SEEK_SET);

fwrite (&changeMax, sizeof(Max), 1, %x%);

fseek(%x%,iMax*sizeof(int),SEEK_SET);

fwrite (&changeMin, sizeof(Max), 1, %x%);

ArrayString char buf[100]; strcpy(buf,%x%[%i1%]);

strcpy(%x%[%i1%],%x%[%i2%]);

strcpy(%x%[%i2%],buf);

Fig. 4 shows the interface of the test stand.

Figure 4. Interface of the test stand.

VIII. EXPANSION OF SET OF BASIC ALGORITHMS

Let's consider source code generation by the SADT
specification on an example of search of an element "a" an and
further removal of the found element from the one-dimensional
array and the list. In Fig. 5, the invariants of these algorithms
are marked in bold.

Figure 5. Element search (array and list).

Having analyzed algorithms of A3-B3 and A4-B4, we see
that some parts of these algorithms are identical. Fig. 6 shows
that the same algorithm is specific to the different data
structures.

Figure 6. Remove with a shift (array and list).

f=0;

Res=-1;

i=0;

while(i<strlen(str)

&& !f)

{

r= str[i];

if (r==a)

{

f=1;

Res=i;

}

else

i++;

}

Algorithm A5

f=0;

Res=-1;

fseek(file, 0L, SEEK_SET);

i=ftell(file);

while ((fscanf(filein, "%d", &r) !=

EOF) && !f)

{

i=ftell(file);

if (r==a)

{

f=1;

Res= i;

}

else

i++;

}

 Algorithm B5

Fig. 7 represents the result of combining these two basic
algorithms. Under the proposed approach in this work, it is
possible to allocate the invariants of algorithms and to create
containers for source code generation for SADT diagrams for
the other data structures (direct access files and sequential files,
strings or trees).

Figure 7. Combining the basic algorithm A3 and A4.

In Fig. 8, the invariants of these algorithms are marked in
bold.

Figure 8. Element search (string and file).

The project results will be used for teaching the bachelors
"Software Engineering" in the discipline of "Programming
Fundamentals."

Prospects for the development of the project involve the
solution of such problems:

 analyze generated programs to determine their
efficiency;

 add an interface arc "Control" to describe conditions
that are imposed on standard algorithms.

IX. CONCLUSION

In learning the programming fundamentals of "Software
Engineering" students is necessary to develop their competence
of structuring problems. When studying standard algorithms
and basic data structures it is important to show the general
approaches and implementation features. Therefore, this
project focuses on the using of SADT-methodology for
learning the programming fundamentals. Possibilities of the
specification are limited to standard algorithms and basic data
structures. Approach of source code generation by SADT
specification is offered. Invariants are allocated in basic
algorithms. Source code generation algorithm on the basis of
templates is formulated. Possibility of creation of new
algorithm on the basis algorithms is provided. Data structures
used for implementation of algorithm are considered. Internal
representation of the SADT specification can be used to
analyze the properties of the generated program.

REFERENCES

[1] D. Ross, “Structured Analysis (SA): A Language for Communicating
Ideas”, IEEE Transactions on Software Engineering, vol. SE-3, N. 1,
pp. 16-34. 1, Jan. 1977.

[2] D.A. Marca and C.L. McGowan, "IDEF0 and SADT: a modeler's
guide,", Auburndale, OpenProcess, Inc., 2006, p.392.

[3] “Recommendations for teaching software engineering and computer
science in universities = Software Engineering 2004: Curriculum
Guidelines for Undergraduate Degree Programs in Software
Engineering; Computing Curricula 2001: Computer Science,” V.L.
Pavlov, A.A. Terekhov, and A.N. Terekhov, Eds. Moscow: INTUIT.RU
"Online University of Information Technologies", 2007, p. 462
[Рекомендации по преподаванию программной инженерии и
информатики в университетах, М.: ИНТУИТ.РУ "Интернет-
Университет Информационных Технологий", 2007, 462с.].

[4] S. Kelly, J.-P.Tolvanen, "Domain-Specific Modeling: Enabling Full
Code Generation," Wiley-IEEE Computer Society Press, 2008, p.448.

[5] J.-P. Tolvanen, “Domain-specific modeling for full code generation,”
Journal of Software technology, vol. 12, N. 4, Jan. 2010.

[6] B. Jager and M. Rosenau, “Method for generating source code in a
procedural, re-entrant-compatible programming language using a
spreadsheet representation,”. US patent application 11/057,430, issue
date 9/6/2011, patent number 8015481.

[7] N. M. Jakubiak and M. Kucharski, “System and method for generating
source code-based test cases,” application number 11/558241,
publication date 08/16/2011.

[8] J. M. Festa,”Systems and methods for generating source code for
workflow platform,” patent application number 20100281462,
publication date 11/04/2010.

[9] M. Fowler, “Code Generation for Dummies,” Methods & Tools, Spring
2009, vol. 17, N. 1, pp 65-82.

[10] K. Vogel, “A source code generator for C: a language-independent
means of building programs that are consistent, elegant, and fast,”
Journal Dr. Dobb's, vol. 16, pp. 28 -35, Aug. 1991.

[11] H.S. Delugach, "A Multiple-Viewed Approach to Software
Requirements," Ph.D. Dissertation, Department of Computer Science,
University of Virginia, Charlottesville, VA, May, 1991.

[12] O. Djebbi, “Eliciting Requirements Variability for Embedded Real-Time
System Family,” in Proceedings of the First International Workshop on
Situational Requirements Engineering Processes: Methods, Techniques,
and Tools to Support Situation-Specific Requirements Engineering
Processes (SREP'05), Paris, France, August 29-30, 2005, In Conjunction
with the Thirteenth IEEE Requirements Engineering Conference
(RE'05), J. Ralyté, P. J. Еgerfalk, and N. Kraiem, Eds. Ireland:
University of Limerick, 2005, pp. 192-199.

[13] M. Summerfield, "Advanced Qt Programming: Creating Great Software
with C++ and Qt 4," Prentice Hall, 2010, p.550.

