
Chapter 1
Introduction and motivation

1.1 Motivation: Real-time rendering of large and complex scenes

Figure 1.1. Illustration of a multiscale scene. Sources: (Left-to-right) San-Francisco by arcortvriend , San-
Francisco from www.staysf.com, Coit-tower from http://wsisf.com

Photorealism has always been a major goal for computer graphics (CG). Today, one of the key prob-
lems is the management of details. Rendering large multi-scale scenes (such as the one presented in
figure 1.1) and very detailed objects (Figs. 1.2 and 1.3) accurately and efficiently is now one of the
most challenging problems in computer graphics, not only for real-time applications, but also for CG
featured films. Usual rendering methods tend to be very inefficient for highly complex scenes because
rendering cost is proportional to the number of primitives. In such scenes, many geometrical details
have to be accounted for in each single pixel. The small size of primitives creates high-frequency
signals that lead to aliasing artifacts which are costly to avoid. In order to produce high quality ren-
dering, all lighting contributions of these details must be integrated in order to compute the final color
of a given pixel. This integration poses two kinds of problems: how to do it efficiently (in terms of
performance), and how to do it accurately (in terms of quality).

In this section, we will show how current rendering approaches reach their limits both in terms of
quality and performance when dealing with very complex and multi-scale scenes. In this context,
scalability is an absolute necessity. We will see that massive per-pixel supersampling is not afford-
able for real-time applications, and does not scale to an increasing number of details to be integrated
per-pixel. Thus, geometrical simplification approaches have to be used, in order to deal with large
amounts of geometrical data, and to prevent aliasing problems. But such simplifications inevitably
remove details that would have contributed to the final image, and fails to preserve important shading
effects (eg. roughness). The challenge in this context is to be able to keep shading details while allow-
ing interactive rendering and maintaining a reasonable memory consumption. We will demonstrate
how some form of geometrical pre-filtering is required to tackle this problem, and explain how we
propose to rely on a volumetric enriched representation to handle it.



16 chapter 1. Introduction and motivation

1.1.1 Limits of current mesh-based rendering approaches

All current rendering models used today to display geometry are based on a triangle or quad mesh rep-
resentation. With this representation, objects are modeled by their surface, and are decomposed into
simple primitives for rendering. Rendering is a view-based sampling operation. The idea is to sample
a 3D scene in order to reconstruct a 2D image. The 3D scene represents the continuous source signal,
while the 2D image is the signal we want to reconstruct. According to the Nyquist-Shannon sampling
theorem [Nyq28], sampling frequency needs to be at least twice the highest signal frequency in order
to reconstruct it correctly. Sampling below this Nyquist limit leads to so-called "aliasing". Conceptu-
ally, this means that we need no less than one sample for each peak and another for each valley of the
original signal. That means that for each surface primitive to render, at least two samples need to be
calculated in order to accurately reconstruct its contribution to the final image. Thus, increasing the
geometrical complexity of a scene necessarily means increasing the sampling density used to compute
the rendered image in the same proportions, in order to ensure a high quality reconstruction.

Figure 1.2. Example of an highly detailed mesh modelized using ZBrush [Spe08]. Image courtesy of Yeck.

The problem is that the amount of available processing power does not scale as fast as the need for
more and more complex objects, and even if it did, increasing the computation proportionally to the
complexity of a scene do not seems to be a scalable or sustainable solution. Similarly, the amount of
memory available for rendering is a limited resource and storing and quickly accessing arbitrary large
and complex scenes is a challenging problem.

The primary challenge in computer graphics has always been to bit these constraints in order to pro-
duce a more and more detailed rendering, without increasing the processing time and needed storage
in the same proportions. Real-time rendering of highly complex geometrical scenes poses two kinds
of problems. First, a quality problem: how to accurately integrate the shading contributions of all
details, in order to prevent aliasing and capture expected lighting effects. Second, a performance
problem: how to efficiently deal with large amounts of geometrical data, both in terms of computation
and storage.

Classical mesh+texture representation

The classical way to deal with detail rendering is to split geometry representation into a coarse
triangle-based surface mesh representation and fine scale surface details, reflectance and illumina-
tion properties, specified with 2D texture maps [Cat74] and used as parameters in a local illumination



1.1.1 Motivation: Real-time rendering of large and complex scenes 17

model. When objects can be seen from a relatively limited range of distances, this representation
makes it possible to use a unique coarse mesh and to pre-filter detail maps linearly and separately.
The idea is to estimate the averaged outgoing radiance from a surface to a pixel by applying the lo-
cal illumination model on the averaged surface parameters from the map, instead of averaging the
result of this application on fine-grained details. To do so, the classical approach is to rely on MIP-
mapping [Wil83], with multiple map resolutions pre-computed before rendering. Such texture filtering
does not prevent aliasing to appear at the boundary of meshes and on the silhouette of objects. This
issue is usually addressed using a multi-sampling technique [Ake93], estimating per-pixel triangle
visibility at higher frequency (>1 sample per pixel) than the shading itself.

This classical approach works well for moderate range of view distances, and low-detail meshes, when
triangles cover at least one pixel on the screen and silhouettes do not contain thin details. But when
highly detailed meshes viewed from a wide range of distances need to be rendered, many mesh trian-
gles project to the same screen pixel and simply relying on the pre-filtering of the maps and a limited
multisampling becomes insufficient to integrate all surface details, and leads to aliasing artifacts.

Figure 1.3. Left: Example of an highly detailed character mesh modelized using Z-Brush. Right: Very com-
plex mesh modelized using 3D-Coat, a voxel-based 3D sculpting tool. Images courtesy of Benerdt.de (left) and
Rick Sarasin (right)

Adaptive supersampling

The classical way to integrate per-pixel geometrical details is to rely on supersampling [Whi80,
CPC84]. For each pixel, a weighted average of the illumination coming from all meshes elements
and falling into that pixel is computed, i.e., an integral of the contributions of all these elements,
which can be extremely costly. The outgoing radiance from a surface is given by a local illumination
model as a function of the incident radiance and the surface properties. Computing this integral nu-
merically during rendering (using massive sampling) can be extremely costly and many adaptive and
stochastic multi-sampling methods have been proposed to speed-up its computation by optimizing the
placement and distribution of samples. Adaptive supersampling allows us to push back slightly the
limit of complexity that can be handled per-pixel, but still does not scale with an arbitrary increase of
geometrical complexity. In addition, the cost of such supersampling of the geometry is usually not
affordable for real-time application.

Mesh simplification and geometric LOD

In such situations, the approach usually employed to deal with aliasing problems and reduce rendering
time is to simplify the geometry itself, in order to adapt it to the rendering resolution. This is done
by relying on geometric level-of-details (LOD) approaches that progressively remove mesh details.
The idea is to maintain a constant number of primitives to be rendered per screen pixel, whatever the
viewing distance and complexity of the original mesh.


	1 Introduction and motivation
	1.1 Motivation: Real-time rendering of large and complex scenes
	1.1.1 Limits of current mesh-based rendering approaches
	1.1.2 Voxel-based approach to geometry pre-filtering

	1.2 Other applications and usage of voxel representations
	1.2.1 Voxels for volumetric materials and effects
	1.2.2 Voxels in special effects
	1.2.3 Scan and simulation data
	1.2.4 Voxels as an intermediary representation for authoring

	1.3 GPU development
	1.3.1 Hardware generations
	1.3.2 Compute mode
	1.3.3 Limited video memory, limited bandwidth from the CPU
	1.3.4 Memory regions
	1.3.5 Increasing gap between memory access speed and processing power

	1.4 Problems and objectives
	1.4.1 Problems with voxel-based rendering
	1.4.2 Target scenes
	1.4.3 Objectives

	1.5 Contributions

	2 Related work
	2.1 Anti-aliasing filtering
	2.1.1 Geometry anti-aliasing filtering
	2.1.2 Texture filtering

	2.2 Volume representations in Computer Graphics
	2.2.1 Adding details and realistic appearance
	2.2.2 Octree textures : sparse solid-texturing
	2.2.3 Brick maps

	2.3 Volume rendering for scientific visualization
	2.3.1 Physics of volume light transport
	2.3.2 Main volume rendering approaches

	2.4 Managing the complexity: Representations and algorithms
	2.4.1 Rendering
	2.4.2 Spatial data structures
	2.4.3 Visibility culling
	2.4.4 Multiresolution rendering approaches for volume rendering

	2.5 Out-of-core data management
	2.5.1 Caching : Virtual memory based paging systems
	2.5.2 Texture streaming
	2.5.3 Out-of-core scientific visualization


	I Contributions: core model
	3 The GigaVoxels rendering pipeline
	3.1 Global scheme
	3.2 Overview
	3.3 Technological choices
	3.3.1 Preliminary GPU performance characterization


	4 Volumetric geometry representation and pre-integrated cone tracing
	4.1 Overview
	4.2 Pre-integrated cone tracing
	4.2.1 Volume pre-integration theory
	4.2.2 Discrete composition scheme
	4.2.3 World-space definition

	4.3 MIP-map pre-integration model
	4.3.1 Quadrilinear interpolation
	4.3.2 Cone-shaped beams

	4.4 The decorrelation hypothesis
	4.4.1 Decorrelation of densities along a beam
	4.4.2 Impact of the correlation
	4.4.3 Typical cases

	4.5 Pre-filtering shading parameters : toward a multiresolution reflectance model
	4.5.1 Material parameters
	4.5.2 Simple normal distribution function
	4.5.3 Local shading model

	4.6 Practical implementation of the model
	4.6.1 Initial voxelization of surface geometry
	4.6.2 Isotropic and anisotropic voxel representations
	4.6.3 Compact isotropic voxels
	4.6.4 Anisotropic voxels for improved cone-tracing

	4.7 Conclusion

	5 Data Structure
	5.1 The octree-based voxel MIP-map pyramid: A sparse multi-resolution structure
	5.1.1 Octree + Bricks representation
	5.1.2 Constant regions and frequency-based compression
	5.1.3 The N3-tree : A Generalized Octree
	5.1.4 The bricks

	5.2 GPU implementation
	5.2.1 Structure storage: the pools
	5.2.2 Octree nodes encoding

	5.3 Structure characteristics

	6 Rendering
	6.1 Hierarchical volume ray-casting
	6.1.1 Global scheme
	6.1.2 Traversing the structure
	6.1.3 GPU scheduling and traversal efficiency
	6.1.4 Descending in the Octree
	6.1.5 Brick marching
	6.1.6 Empty or constant space skipping

	6.2 Integration with traditional CG scenes
	6.3 Performance analysis
	6.3.1 Performance comparison with rasterization
	6.3.2 Rendering costs and silhouettes


	7 Out-of-core data management
	7.1 Overview and contributions
	7.1.1 Application controlled demand paging on the GPU
	7.1.2 Details on our approach

	7.2 Multi-pass update scheme and progressive refinement
	7.2.1 Top-down refinement
	7.2.2 Update strategies

	7.3 A High Performance GPU Cache for graphics applications
	7.3.1 Cache structure and storage
	7.3.2 Building GigaVoxels data structures based on cached storages
	7.3.3 Interface with the cache
	7.3.4 LRU replacement policy
	7.3.5 Managing data requests
	7.3.6 Parallel data load
	7.3.7 LRU invalidation procedure
	7.3.8 Application specific optimizations

	7.4 Handling data requests : Voxel producers
	7.4.1 Managing multiple objects
	7.4.2 Writing into texture pools
	7.4.3 GPU load producer
	7.4.4 Loading from disk and system memory caching
	7.4.5 Examples of dynamically loaded datasets
	7.4.6 GPU procedural and mixed producers

	7.5 Results and performance analysis
	7.5.1 Repartition of the costs per frame
	7.5.2 Cache efficiency
	7.5.3 Comparison with CPU-based transfers
	7.5.4 Comparison with CPU-based LRU management
	7.5.5 Out-of-core ray-tracing of triangle scenes



	II Contributions: Applications of the model
	8 Direct applications
	8.1 Octree-based synthesis
	8.2 Voxel object instancing
	8.3 MipMap-based blur effects
	8.3.1 Soft shadows
	8.3.2 Depth-of-field


	9 Interactive Indirect Illumination Using Voxel Cone Tracing
	9.1 Introduction
	9.2 Previous Work
	9.3 Algorithm overview
	9.4 Our hierarchical voxel structure 
	9.4.1 Structure description
	9.4.2 Interactive voxel hierarchy construction
	9.4.3 Voxel representation

	9.5 Ambient Occlusion
	9.6 Voxel Shading
	9.7 Indirect Illumination
	9.7.1 Two-bounce indirect illumination
	9.7.2 Capturing direct Illumination

	9.8 Results and discussion
	9.9 Conclusion


	III Conclusion
	10 Conclusions and perspectives

	IV Appendix
	A Preliminary GPU performance characterization
	A.1 Characterizing texture cache behavior
	A.2 Rasterization and scheduling of fragment shading
	A.2.1 Motivations
	A.2.2 Methodology
	A.2.3 Summary of our "interpretations and discoveries"




