
UNIVERSITY OF HAMBURG
Department of Informatics

Animated Sparse Voxel Octrees

Dennis Bautembach

Bachelor’s Thesis
February 25, 2011

Supervisors: Dr. Werner Hansmann (Betreuer),
Prof. Dr. Leonie Dreschler-Fischer (Zweitbetreuerin)

2

Abstract

In this thesis a general way of animating sparse voxel octrees during the rendering
process is presented. It is shown how one can apply it to rotation and skinning.
Furthermore, a rasterizer is introduced that yields real-time frame rates rendering
a model consisting of 3M voxels with phong shading, shadow mapping and skinning
on a 800 x 800 screen resolution. The rasterizer makes it possible to render mixed
graphical content consisting of both triangles and voxels that interact with each
other (e.g. cast shadows on one another).

3

4

Contents

1 Introduction . 7

1.1 What voxels are . 7
1.2 Storage format . 8
1.3 Advantages of sparse voxel octrees over triangle meshes 8
1.4 Disadvantages of sparse voxel octrees . 9

2 Previous work . 10

3 Animating SVOs . 10

3.1 The core idea of animating sparse voxel octrees 11
3.2 Rotation . 11
3.3 Skinning . 12

4 Rendering ASVOs . 13

4.1 The rasterizer . 13
4.2 CUDA implementation . 15

5 Results . 17

6 Limitations . 17

7 Conclusion . 18

8 Future work . 19

8.1 Possible enhancements for ASVOs . 19
8.2 Modeling Tools . 20
8.3 Physics simulation and more . 21

5

6

Figure 1: An example of a (low resolution)
voxel model.

Figure 2: The concept of SVO construction
illustrated.

1 Introduction

There are plenty of ways to represent three dimensional (3D) models, such as triangle
meshes, voxels, CSG (constructive solid geometry), etc. Triangle meshes are the most
common format among the others due to their use in computer and video games and
hardware support through GPUs. Voxels have many advantages over triangle meshes.
Such advantages are memory efficiency, implicit level of detail and resolution boundedness
(rather than geometry boundedness). They are not being used in mainstream real-time
graphics applications, mainly due to the fact that they are static. It turns out to be quite
impossible to animate them.

1.1 What voxels are

Voxels are cuboids. The idea is to approximate 3D models with many (several million)
little cuboids, as can be seen in figures 1 and 12. If the resolution of a voxel model is
considerably high (and one does not zoom in too much), its voxels become smaller than the
pixels of the display and are not distinguishable anymore. The model is perceived smooth
rather than blockish. Image enhancing techniques like anti-aliasing, supersampling and
interpolation finally completely hide the underlying cuboid structure of a voxel model –
the same way they hide the mesh structure of triangle based models.

1.1.1 What voxels are suited for

Voxels are suited for representing models with great mesostructural1 detail, such as rocks,
mountains, terrain, plants, vegetation, nature. Especially if those models have surface

1Object geometry is usually defined on three scales, the macrostructure level, the mesostructure level,
and the microstructure level. The mesostructure level includes higher frequency geometric details that
are relatively small but still visible such as bumps on a surface[8].

7

characteristics like hangovers which cannot be faked by techniques like parallax mapping2.
Under these conditions it can be stated that voxels are more memory efficient than

triangles, due to the fact that as many triangles as voxels are needed to accurately
represent such surfaces and a simple voxel implementation uses 1.25 bytes positional
data per voxel whereas a triangle typically consumes 14 bytes positional data, and two
triangles are needed to simulate one voxel (to form a rectangle that fills one pixel).

1.1.2 What voxels are inappropriate for

Voxels are inappropriate for representing flat surfaces, which can be found in architecture
and furniture for example. Such surfaces can be modeled with very few triangles, whereas
voxel models must always have maximal resolution to appear smooth – no matter the
kind of shape they represent.

This is the main reason why one should not stick to one technology exclusively but
mix both, tapping their full potential.

1.2 Storage format

Probably, the simplest storage format for voxel models is a uniform grid. It can be
realized as a 3D array wherein every single cell describes one voxel (its appearance). This
data structure is very memory inefficient. In order to only store the shape of a 3D model
with a resolution of 10243 voxels, 1 GB of memory is needed – and that would not even
be remotely detailed.

A more efficient solution and the most commonly used one is the sparse voxel octree
(SVO). It is a tree data structure in which every node can have up to eight children. It
is sparse in the sense that it does not include the subtrees corresponding to empty space.
The major idea is to start with one large cuboid and evenly split it up into eight smaller
cuboids and repeat this process for every child recursively until the leaves sufficiently
approximate the shape of an object. Figure 2 illustrates this concept.

SVOs are very memory efficient (state of the art voxel rendering engines can compress
the memory footprint of one voxel down to one bit[1]) and their hierarchical nature
benefits many operations used in computer graphics.

1.3 Advantages of sparse voxel octrees over triangle meshes

Even though the octree structure adds a little bit of hierarchical overhead to all compu-
tations done on SVOs, the resulting benefits outweigh it by far.

• Implicit level of detail (LOD): Traversal needs not to continue when voxels reach
the size of a pixel. Thus, only as many voxels are rendered as the model occupies
pixels and SVO rendering becomes resolution bound. That means, indepen-
dently of the geometrical detail, the rendering process will take a fixed amount
of time for a certain pixel occupancy, as can be seen in figure 3. Therefore, SVOs
are only limited by memory.

2An image enhancing technique in 3D computer graphics that increases geometrical detail without
actually changing the geometry[8].

8

Figure 3: The frame rate increases as the projected size of the model decreases (58 fps vs. 97
fps), since the octree needs not be traversed as deeply to achieve the same visual quality.

• Streaming: During the rendering process the nodes are only traversed as they are
visible and still need further subdivision. This information, namely which nodes
are traversed, can be used as feedback to implement automatic streaming, so
that it can be possible to render models that do not fit completely into memory.

• Many algorithms like culling, collision detection, etc. benefit from the hierarchy
of the octree and also from the fact that all nodes are axis-aligned cuboids.

1.4 Disadvantages of sparse voxel octrees

SVOs are static, not in the sense of immutability (of course the data structure can be
altered (at runtime)), but in the sense of animation. The approximation of a 3D model
through a SVO can be imagined as the set of cells within the uniform grid spanned by
the octree boundaries that are intersected by the model’s surface. If this model changes
(for example a moving character), the set of intersected cells will also change and the
octree which describes the altered model looks totally different from the original one.
Voxel octrees have no sense of organizational hierarchy (like model→arm→hand→fingers)
which could be animated. Therefore, the only way to animate a model is to construct

9

a distinct octree for every pose of the character, or to reconstruct it from another (an
animatable) 3D model storage format in every single frame. The first solution consumes
too much memory, while the second one consumes too much time.

There are still use cases for SVOs, for example representing static geometry like rocks,
mountains, terrain, etc. Upcoming engines and games are going to do exactly that[2, 3].
But, considering the growing percentage of animated objects in games, voxels end up
being of limited use.

2 Previous work

Samuli Laine and Tero Karras[4] evaluated the viability of voxels as a generic data struc-
ture for representing arbitrary geometry on current GPUs. They introduced ,,contour
information” which greatly enhances image quality at high zoom levels.

Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre and Elmar Eisemann[5] focused on
rendering extremely large data sets that exceed GPU memory by far, using voxels. They
use information gained during the rendering process to steer the streaming process. Their
technology ,,Gigavoxels” is not limited to solid geometry but is able to represent atmo-
spheric effects such as clouds.

Branislav Siles[1] created ,,Atomontage”, a voxel rendering engine featuring highly
detailed, visually appealing scenes. What makes this technology stand out among the
others is the possibility to render voxels and triangle meshes simultaneously and let them
interact with each other. Furthermore, the storage format has to be considered very
efficient and it supports runtime decompression. Finally, Atomontage’s goal is to use
voxels not only for visualization, but also for the simulation of physics, chemistry and
some other atom-based scientific models.

3 Animating SVOs

Triangle meshes consist of vertices (points). Connected via lines they form triangles.
Triangles are chosen because they are the simplest 3D structure. They define a plane and
therefore make visualization and interpolation easy. A special feature of triangle meshes is
that the triangles form a surface which defines the shape of a 3D model. This means that
any transformations can be applied on the vertices and – as long as the transformations
are not that drastic – preserve the 3D model’s general shape and recognizability.

This is not possible for SVOs because they are rigid: Every node’s coordinates are de-
rived by its position inside the octree hierarchy and the octree’s minimum and maximum
vector. The nodes themselves do not store any position/orientation that could be altered
by simulated physical forces or other means of transformation. The only ”real” ways of
transforming voxel octrees are the ones described in chapter 1.4. Both are unsuitable for
real-time applications.

This thesis does not solve the animation problem with one all-mighty algorithm.
Neither does it provide specific solutions to all imaginable types of animation. What it
does, is to present a general concept, that can be easily applied to particular animation
types. Furthermore, two examples are shown to illustrate what this application can look

10

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁

❆
❆
❆

❆
❆
❆

❆
❆
❆

❆
❆

✱
✱
✱

✱
✱
✱

✱
✱
✱✱

❛❛❛❛❛❛❛❛❛❛

Figure 4: Left: A quadtree representation (blue rectangles) of a 2D model (red triangle). Right:
The same quadtree rotated by x degrees.

like: Rotation (as an example of a rigid transformation3) and Skinning (as an example
of a non-rigid transformation).

3.1 The core idea of animating sparse voxel octrees

1. Treat every node of a SVO like an atom; a rigid, axis-aligned cuboid; that can
be transformed independently from all other nodes inside the octree.

2. Apply the transformation to each node during the rendering phase, when the
node’s final screen position is computed on the fly anyway.

This is the general concept. Two examples of its application follow.

3.2 Rotation

Figure 4 (left) shows a SVO representing a 3D model. 2D quadtrees are used for simplicity
but the principles shown are valid for 3D octrees as well.

In order to rotate this model by x degrees, the following steps must be executed (for
simplicity LOD is not taken into account and the octree is traversed to the leaf level and
rendered on the highest available resolution):

1. Traverse the octree to the leaf level and compute every node’s minimum and
maximum vectors on the fly by deriving them from the node’s position inside
the octree hierarchy and the octree’s minimum and maximum vector.

2. Apply the transformation, in this case a simple rotation matrix, to every leaf
node by determining the center point of each leaf node, rotating it, and re-
constructing the node at the new position (figure 4 right). (Actually, no data
structures have to be altered at all to ”reconstruct” a node. The node only has
to be drawn at its new position, leaving the octree itself untouched.)

3A transformation that treats the model like a rigid body. The distance between any two given points
of a rigid body remains constant in time[9].

11

✒✑
✓✏�❤❤❤❤❤❤❤

✭✭✭✭✭✭✭✒✑
✓✏�❤❤❤❤❤❤❤

✭✭✭✭✭✭✭

✒✑
✓✏��������✒✑

✓✏�❍❍❍❍❍❍❍
❤❤❤❤❤❤❤

✒✑
✓✏��������✒✑

✓✏�❍❍❍❍❍❍❍
❤❤❤❤❤❤❤

Figure 5: Left: A trivial skinning implementation causes holes in the surface. Right: Voxels in
regions where the surface stretches are enlarged to prevent holes.

This procedure obviously introduces a visual error. The ”real” way of transforming
SVOs, or even the construction of the octree in the very first place, introduce a visual error
as well, because in both cases not necessarily axis-aligned geometry is approximated with
axis-aligned cuboids. However, triangle meshes are also an approximation. Furthermore,
the results will show that the visual error is negligible if a high enough sampling rate is
used and that the sampling rate for animated SVOs needs not be higher than the one for
static SVOs to achieve the same visual quality.

In Fact, the procedure described above can be applied to every rigid transformation
and every non-rigid transformation that preserves a 3D model’s proportions (like scaling).
Non-rigid transformations that do not preserve a 3D model’s proportions are a bit more
complicated to implement. The problem is that this kind of transformations changes the
distance between voxels. As for triangle meshes, this is no problem since the triangles
stretch ”naturally” across the vertices like a skin. But it can lead to holes in the case of
SVOs, if neither the voxel’s size nor their sampling rate is adapted accordingly. There
does not seem to be a general procedure that can handle every non-rigid transformation
as there is for rigid transformations. Rather, one has to come up with an individual one
for every single case. This should not be too difficult or too much work. The next chapter
shows, how the problem was solved in the case of skinning.

3.3 Skinning

Skinning4 causes certain areas of the 3D model to stretch which creates holes in the
surface (figure 5 left, figure 11). The implementation of skinning does not differ from
the one of rotation, other than it circumvents holes by adapting the size of voxels in
those regions (figure 5 right). The stretch factor S by which the voxel is enlarged is
approximated with a very simple formula: S = min(2,W), where W is the number of
the voxel’s bone weights that are greater than 0. While this technique is very primitive,

4A technique in computer animation, in which a model is represented in two parts: A surface rep-
resentation used for visualization (called the skin) and a hierarchical set of bones used for animation
(called the skeleton)[10].

12

❥
❥ ❥ ❥
❥ ❥ ❥

✑
✑

✑✑

◗
◗
◗◗

✁
✁✁
❆
❆❆

✲ +

Figure 6: Render an octree and store the depth information in the depth buffer and the visual
data (normals in this example) in a set of textures.

it produces acceptable results. Chapter 6 covers its implied limitations in more depth
and chapter 8.1.3 discusses possibilities to improve it and make it more robust.

4 Rendering ASVOs

The presented approach solves the animation problem for SVOs, but it introduces a new
one: Visualization or rendering. SVOs favor ray tracing as the rendering mechanism
because of their hierarchical nature. The fact, that all child nodes geometrically lie inside
their parent node makes octrees a very good acceleration structure for intersection tests
– which ray tracing is all about. ASVOs clearly destroy this hierarchical nature. The
fact that a parent node’s boundaries do not necessarily contain the boundaries of its
child nodes, makes ray tracing unsuitable as a rendering mechanism since it prohibits the
implementation of efficient intersection tests. Of course an acceleration structure could be
applied right after the transformation, but that would be too computationally expensive.
Therefore a rasterizer implemented on NVIDIA’s compute unified device architecture
(CUDA) is used to render ASVOs.

4.1 The rasterizer

Before the functionality of the renderer is explained, some great advantages of using a
rasterizer shall be noted:

• Since rasterizers are the first choice for rendering triangle meshes, triangle meshes
and SVOs become compatible and can interact with each other (e.g. cast shad-
ows on one another, reflect each other, etc.).

• All existing visual effects in form of shaders can be used and do not have to be
reinvented.

• A fast hardware implementation is possible on current GPU architectures.

13

+

Triangle mesh Voxel model preprocessed with CUDA

❄

vertex shader, rasterizer
pixel/fragment-
shader

Figure 7: Use the textures containing the vi-
sual data to compute the final screen color of
every pixel occupied by the voxel model. Out-
put the depth values inside the pixel/fragment
shader which makes it possible to determine
correct visibility of all models rendered in
the same pass – whether those are triangle
meshes or voxel models themselves.

The actual functionality of the rasterizer is not very special:

1. Using the approach described in chapter 3.1, traverse the octree and determine
each visible node’s final screen position and depth.

2. Write the depth value in the depth buffer and the visual information (texture
coordinates, normals, etc.) associated with the voxel in a separate set of textures.

3. Render a huge quad which occupies the whole screen and therefore forces the
graphics card to launch a pixel/fragment shader for each pixel on the screen.

4. Using the depth information from the depth buffer, determine visibility, making
it possible to render multiple objects (no matter whether voxel octrees or triangle
meshes) correctly.

14

5. Using the visual information stored in the extra textures, compute the final
appearance (color) of each pixel with existing shader effects.

Figures 6 and 7 illustrate the rendering process.

4.2 CUDA implementation

The abstract rendering algorithm described can be implemented in many different ways –
a GPU implementation with CUDA being just one. That is why this chapter does not go
too much into detail, but it spends some words on the implementation of the rendering
process for several reasons:

• A hardware implementation is the obvious choice when performance matters.

• As a proof of concept: To show that a real-time voxel rasterizer exists and
produces visually appealing results.

• The GPU implementation of the renderer was one of the most outstanding chal-
lenges regarding this thesis. Some of its specialties should be revealed.

The CUDA renderer is only responsible for the first two steps of the rendering process.
The remaining steps are realized by classical graphics code and shaders.

GPUs are massive SIMD (Single Instruction, Multiple Data) architectures. Mod-
ern GeForce GPUs consist of one to at most a few so called ,,multiprocessors” and a
couple hundred so called ,,streaming processors”. A streaming processor is only capable
of arithmetic and logic operations, texture lookups, etc., but has no means to handle
program flow. This work is done by the multiprocessor. A multiprocessor is able to do
context switching, scheduling, task prioritizing, etc. It steers the streaming processors.
One conclusion is that GPUs can perform a vast number of parallel operations due to the
many streaming processors. Another conclusion is that the previous statement is only
true, if all streaming processors are assigned the same task, because if the program flow
diverges (takes different execution paths – for example because of a conditional branch
whose condition was evaluated differently among the streaming processors) the multi pro-
cessor will choose one execution path and halt every streaming processor not executing
this path. The execution proceeds until the path merges back to the main program flow
and this behavior is repeated for all execution paths until every one is terminated.

These circumstances contradict the desire to traverse SVOs, since traversal of hierar-
chical data structures in its nature is everything but divergence-free. But traversal has to
be done in order to realize LOD and derive the voxel’s final screen positions. Addition-
ally, most NVIDIA GPUs do not support recursive function calls and on the ones that
do, they are very expensive. The local memory per thread is low which makes it hard to
implement an explicit (call-) stack. The global memory on the other hand is not scarce
at all, but it is much slower.

From all constraints arose the need for a stackless, divergence-free, parallel

octree traversal algorithm - a subject worth its own thesis. The problem was solved
with a queue based rasterizer. The result was a stackless, low-divergence, parallel octree
traversal algorithm. The algorithm is given in figure 8.

15

1: { Calling code for the rasterizer-kernel }

2: q ← init() { q: Queue }

3: insert(q, rootNode)

4: while q is not empty do

5: launchKernel(length(q))

6: end while

7:

8: { Rasterizer-kernel }

9: v ← removeAny(q)

10: if projectedSize(v) > pixelSize and hasChildren(v) then

11: for all c in getChildren(v) do

12: insert(q, c)

13: end for

14: else

15: draw(v)

16: end if

Figure 8: Rasterizer
code.

In the first part a queue (q) storing voxels is initialized and the root node of the
octree is inserted. As long as q is not empty a kernel is launched with as many threads
as q contains elements.

Every thread operates on a single voxel in the queue. It determines its position and
size and also decides whether the voxel needs further subdivision. If so, its children are
inserted into the queue to be processed in the next kernel call. Otherwise, the voxel is
drawn.

This is a very basic implementation only featuring LOD. Optimizations like viewing
frustum culling or occlusion culling could be easily added in form of a predicate (between
lines 9 and 10) that determines if a voxel should be processed at all. This solution fulfills
nearly all the requirements stated before. It is not divergence-free, but only has very
low divergence, mainly when some of the threads launched draw voxels and the others
subdivide voxels. This results in a maximum of one branch per warp5.

5On CUDA devices, the multiprocessor creates, manages, schedules, and executes threads in groups
of 32 parallel threads called warps[6].

16

5 Results

A new way of animating SVOs was introduced, it is called Animated Sparse Voxel Octree,
or ASVO. The animation takes place inside the renderer when the final screen positions
of voxels would have to be computed anyway and does not alter the initial data structure,
making it very efficient. It was shown how the presented general concept can be applied
to specific types of animation and two examples – rotation and skinning – were provided.

Furthermore, a hardware based rasterizer was presented. It accomplishes a frame rate
of ∼40 fps on a screen resolution of 800 x 800 and a virtual model resolution of 10243

voxels with phong shading, shadow mapping and hardware skinning. Hereby it is only
limited by the GPU memory, since the memory consumption grows exponentially with
every octree level. Model resolutions of up to 40963 voxels could have been achieved if it
focused on storage efficiency which it does not: State of the art voxel rendering engines
use ∼one bit per voxel[1] whereas this rasterizer uses 48 bytes per voxel. Figure 13 shows
the results.

6 Limitations

The presented technique relies on model animations to be moderate. If the boundaries
of a node were completely unrelated to the boundaries of its children, it would not be
possible to make any assumptions on the children’s positions which would prevent LOD:
A node could not be culled (and therefore all its children be dismissed), because some of
its children might still be visible in the viewing frustum. Traversal could not be stopped
when a node reaches the desired size, because some of its children might be 10 times closer
to the camera and therefore still require further subdivision. But all of that is possible
if the animations are moderate. Because then, LOD and culling operations can depend
on a threshold and only be applied when voxels meet certain conditions plus/minus
an experimentally determined margin. With the same argumentation ASVOs could be
rendered with a ray-tracer. For example, voxels could be artificially enlarged to be hit
by more rays and not be rejected too early. A rasterizer was chosen because it seemed
easier to implement at the time of writing this thesis.

The computation of the stretch factor in its current form has several drawbacks:

1. It is very inflexible. The stretch factor can only have one of the values 1 and
2 (theoretically it could also have the value 0, but normally voxels with zero
bone weights don’t occur in skinned models). So either a voxel is stretched or
it is not. When it is stretched there are situations in which a factor of 2 is too
high, unnecessarily enlarging the voxel and either forcing further subdivision or
occupancy of multiple pixels on the screen. There are also situations in which a
factor of 2 is too low and holes are still visible in the surface.

17

❅
❅
❅

❅
❅
❅
❅

❅
❅❅�

�
�

�
�
�
�

�
��

full LOD

no LOD

completely
deformable
body (∼jelly)

completely
rigid body

Figure 9: Relationship between the animation grade of a model and how effectively LOD can be
applied to it.

2. It is static. The stretch factor is applied independently of whether the bones
a voxel belongs to are animated in the current frame or not. By not taking
this information into account, LOD is mostly prevented: The more bones and
animations a model contains, the more often voxels are enlarged and subdivision
forced even when it might not be needed. Figure 9 illustrates the relationship
between the animation grade of a model and how effectively LOD can be applied
to it, given the current form of stretch factor computation.

7 Conclusion

The current study on SVOs proves their suitability for being used in real-time graph-
ics applications and for representing arbitrary geometry. id software’sInc ,,Rage” and
Crytek’sGmbH ,,Crysis 2” will be the first mainstream games which feature voxels[2, 3].
Voxels have great benefits over triangle meshes such as:

• Geometrical detail independency (screen resolution bound)

• Memory efficiency (for models with great mesostructural detail)

• Being an ”all-in-one” data structure whose hierarchical nature enables (includ-
ing, but not limited to):

– Level of detail

– Live streaming of huge data sets that do not fit into device memory

– Simulation of atom-based physical models

Not only possibilities to render voxels in a fast way have been researched but also
techniques to circumvent some of their major drawbacks:

• The fact that voxels are suitable for representing objects with great mesostruc-
tural detail, but their animation is not feasible, led to making voxels and triangle
meshes compatible and appear inside the same scene, interacting with each other.

18

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

❜✘✘✘✘✘✘✾
0 1

2 3 5

76

v

Figure 10: A plane perpendicular to the viewing direction v moving towards the node center,
would intersect the voxels in the order ,,2 0 3 1 6 4 7 5”. Rendering them in this order fills up
the depth buffer early with small values and many nodes can be rejected faster.

• The present thesis explored a completely different way of rendering and ani-
mating SVOs in the hope that it serves as an inspiration for others and voxels
eventually become usable for more than just static scenes one day. Plants, vege-
tation and nature are perfect examples of what can be visualized with animatable
voxels.

For a long time the lack of freedom in GPU programmability prohibited extensive
use of voxels. As it increases and considering the recent work on the topic, voxels most
likely will continue to be a current research field – especially with the release of the new
video game console generation (XBOX 3 and PlayStation 4).

8 Future work

I would like to keep on working on this great technology. Despite the progress in voxel
graphics, much work still has to be done. Future research topics will not only cover im-
proving visual quality, rendering performance and making voxels more powerful, but the
whole voxel infrastructure: Modeling tools, integration of physics simulation (including
destructible models), and more.

8.1 Possible enhancements for ASVOs

8.1.1 Viewing frustum culling

The viewing frustum (VF) is the region of space that may appear on the screen. It is
determined by the camera.

After projection each voxel is given in normalized screen coordinates. Every point
(x, y, z) inside the viewing frustum satisfies the equations -1 ≤ x ≤ 1, -1 ≤ y ≤ 1 and
0 ≤ z ≤ 1. All that is left now is to test whether two axis-aligned rectangles intersect
which can be done very fast. This test would be much slower between a rectangle and a
triangle to perform.

8.1.2 Occlusion culling

Another reason for a model not to be visible in the rendered image is because it is occluded
(completely or partially) by another model. This issue is generally solved by using the

19

z- or depth buffer. However, the depth buffer is only able to dismiss pixels, so it will not
save one from traversing the octree, but only guarantee correct visibility.

The hierarchical visibility algorithm[7] solves this problem in a more efficient way:
Instead of using a flat depth buffer, it uses a quadtree in which every node stores the
depth value of the child which is nearest to the camera. Again, this algorithm is suited
to be used along with voxels as intersection tests between them and quadtree nodes are
very fast.

The earlier the depth buffer fills up with small values, the better, because future
octree nodes can be dismissed faster. This fact does not satisfy to sort all scene objects
by distance to the camera, but each octree can be traversed in a way that visits nodes
close to the camera first. This technique is illustrated in figure 10.

8.1.3 Improved skinning

The problem of holes in surfaces of animated voxel models could be solved very easily:
Bone weights and indices would have to be stored per voxel corner, rather than per voxel.
Instead of transforming the voxel center, all eight corners would get transformed and
the new voxel would be defined as the axis-aligned bounding box of those eight points.
Although this technique is not quite optimal as it leads to too big voxels in many cases,
it eliminates holes completely, since all voxels form a closed surface in the binding pose
and share corners with each other which therefore would be animated equally across all
voxels. Unfortunately this technique is too computationally expensive.

More opportunities arise to improve the current implementation, if ASVOs are created
with modeling tools that natively support voxels. Stretch factors could be automatically
computed, manually refined and stored per voxel. However, it most likely would not be
possible to store adjusted stretch factors for every animation frame as this would consume
large amounts of memory.

A better solution has still to be found.

8.2 Modeling Tools

Modeling tools that support creating voxel models natively will become inevitable for
several reasons. A modeling tool should give the designer WYSIWYG results, which
is not possible with triangle→voxel conversion. Furthermore, memory consumption of
SVOs depends less on the voxel count than on the number of octree levels (assuming real
world conditions). Thus, a designer needs not to fear exceeding the hardware budget by
adding more nodes. He will choose an appropriate octree depth at the start and then
freely sculpt the model. Designers need to really step out of the box and make models
that otherwise could not be created with triangles or shading tricks – for example by
creating hang overs at the mesostructure level which cannot be simulated with parallax
mapping. Finally the modeling process will change from moving vertices around to actual
sculpting, very similar to making pottery. Zbrush6 and 3D-Coat7 are two modelers that
already support this technique.

6A 3D modeling tool. http://www.pixologic.com
7A 3D modeling tool. http://www.3d-coat.com

20

8.3 Physics simulation and more

Most voxel rendering systems (including the one presented here) use static SVOs. How-
ever, deformable and destructible objects will need a voxel data structure that is alterable
at runtime. A dynamic data structure does not offer as many optimization possibilities
regarding space and time requirements as a static data structure does. It has to be
researched whether such a format is still feasible for real-time applications.

As stated before, voxels have the potential to become an ”all-in-one” data structure.
This characteristic could be strengthened by using voxels for more than only visualiza-
tion: Simulation of atom-based physical and chemical models whereby voxels would play
the role of atoms. It is questionable if compression schemes will allow to use such a high
number of voxels inside a simulation.

Acknowledgments. I thank Onno van Braam and Dimitry Parkin for providing me
with 3D models for testing and illustration purposes. I thank Sylvain Lefebvre and Arjan
Westerdiep for providing me with illustrations for this thesis. I thank Dr. Werner Hans-
mann and Prof. Dr. Leonie Dreschler-Fischer for their great and professional support
and advice.

Figure 11: The effects of surface stretching
with voxel size adaption turned off.

Figure 12: Extreme zoom levels reveal the un-
derlying voxel structure.

21

Figure 13: Imrod walk cycle; voxel count: ∼3M; frame rate: 36 fps; GPU: Nvidia GeForce
GTX 460 with 2 GB of memory; resolution: 800 x 550 pixels; effects: Phong shading, normal
mapping, shadow mapping, hardware skinning.

22

References

[1] Branislav Siles:

Atomontage engine.

A voxel rendering engine.

http://atomontage.com/?id=home

[2] Ryan Shrout:

,,John Carmack on id Tech 6, Ray Tracing, Consoles, Physics and more”.

Interview with John Carmack, in PC Perspective, March 12, 2008.

http://www.pcper.com/article.php?aid=532

[3] Cevat Yerli:

,,Future of Gaming Graphics”.

Keynote at GCDC 2008.

http://video.golem.de/games/1577/gcdc-2008-panel-future-of-gaming-graphics.

html

[4] Samuli Laine and Tero Karras:

,,Efficient Sparse Voxel Octrees”.

In Proceedings of ACM SIGGRAPH 2010 Symposium on Interactive 3D Graphics and Games,

pages 55–63. ACM Press, 2010.

http://www.tml.tkk.fi/~samuli/

[5] Crassin, Cyril and Neyret, Fabrice and Lefebvre, Sylvain and Eisemann, Elmar:

,,GigaVoxels: Ray-Guided Streaming for Efficient and Detailed Voxel Render-
ing” (author’s version).

In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D), to appear.

ACM Press, Boston, MA, Etats-Unis, February 2009.

http://artis.imag.fr/Publications/2009/CNLE09/

[6] ,,NVIDIA CUDA C Programming Guide”.

http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_

C_Programming_Guide.pdf

[7] Tomas Möller and Eric Haines:

,,Occlusion Culling Algorithms”.

Excerpt from Real-Time Rendering, in Gamasutra, November 9, 1999.

http://www.gamasutra.com/view/feature/3394/occlusion_culling_algorithms.php?

page=2

23

[8] László Szirmay-Kalos, Tamás Umenhoffer:

,,Displacement Mapping on the GPU - State of the Art”.

In Computer Graphics Forum, Volume 27, Number 6, pages 1567–1592. 2008.

http://sirkan.iit.bme.hu/~szirmay/egdisfinal3.pdf

[9] ,,Rigid body”.

In Wikipedia. Retrieved September 11, 2010

http://en.wikipedia.org/wiki/Rigid_body

[10] ,,Skeletal animation”.

In Wikipedia. Retrieved September 11, 2010

http://en.wikipedia.org/wiki/Skeletal_animation

24

Erklärung

Ich versichere, dass ich die Arbeit selbstständig verfasst und keine anderen, als die
angegebenen Hilfsmittel - insbesondere keine im Quellenverzeichnis nicht benannten In-
ternetquellen benutzt habe, die Arbeit vorher nicht in einem anderen Prüfungsverfahren
eingereicht habe und die eingereichte schriftliche Fassung der auf dem elektronischen Spe-
ichermedium entspricht.

Ich bin mit der Einstellung der Bachelor-Arbeit in den Bestand der Bibliothek des De-
partments Informatik einverstanden.

Dennis Bautembach
Hamburg, den 25. Februar 2011

25

