

AN EFFICIENT COLLISION DETECTION ALGORITHM FOR
POINT CLOUD MODELS

Mauro Figueiredo1, João Oliveira2, Bruno Araújo2, João Pereira2

1 Instituto Superior de Engenharia, Universidade do Algarve, Faro, Portugal
mfiguei@ualg.pt

2 IST/INESC-ID, Rua Alves Redol, 9, 1000-029 Lisboa
{joao.oliveira, bruno.araujo, jap}@inesc-id.pt

Abstract
Point clouds models are a common shape representation for
several reasons. Three-dimensional scanning devices are widely
used nowadays and points are an attractive primitive for rendering
complex geometry. Nevertheless, there is not much literature on
collision detection for point cloud models.
This paper presents a novel collision detection algorithm for point
cloud models. The scene graph is divided in voxels. The objects of
each voxel are organized in R-trees hierarchies of Axis-Aligned
Bounding Boxes to group neighboring points and filter out very
quickly parts of objects that do not interact with other models. The
proposed algorithm also uses Overlapping Axis-Aligned
Bounding Boxes to improve the performance of the collision
detection process. Points derived from laser scanned data typically
are not segmented and can have arbitrary spatial resolution thus
introducing computational and modeling issues. We address these
issues and results show that the proposed collision detection
algorithm effectively finds intersections between point cloud
models since it is able to reduce the number of bounding volume
checks and updates.
Keywords: Collision detection, virtual environments, surface
segmentation, point cloud processing.

1. INTRODUCTION
Point cloud models are an increasingly attractive representation
used as the basis to capture and measure reality rapidly in an
increasing number of applications such as environmental
surveying, structure analysis and archaeology [1]. Point cloud
models also share a remarkable similarity with a very popular
computer game representation of the 80s, numerous Sinclair
Spectrum games used axonometric projection of point models to
convey details of buildings, interiors and avatars. A crucial
element to enable laser scanned point models to be used in a
similar scenario is collision detection of point clouds. In general
interactive virtual environments often need very fast collision
detection queries to simulate physical behaviour and to allow the
user to interact. However, there is practically no literature on
determining collisions between two sets of points.
This paper describes a novel collision detection algorithm for
point cloud models.
The scene graph is organized in voxels. To speed up the process
of finding collisions, for each voxel, each object is represented by
an R-tree data structure of Axis-Aligned Bounding Boxes
(AABB) defined in its own local coordinate system. The R-tree
organizes spatially its geometry, grouping neighbouring points.
The proposed algorithm is also based in the use of the
Overlapping Axis-Aligned Bounding Box (OAABB) to improve

the performance of the collision detection process. In addition a
traversal algorithm for collision detection for point clouds that
takes advantage of the OAABB is also presented, improving
performance by reducing the number of bounding volume checks
and updates.
Results show that the proposed approach uses effectively the R-
tree structure and the OAABB concept to find intersections
between point cloud models at interactive rates. In addition, unlike
CAD objects which typically contain object hierarchies and the
data is already segmented into surface groups, point data sets
derived from laser scanned data do not have such information thus
presenting computational issues. We address these issues and
present a solution that adapts to point sets derived from different
laser scanners and spatial settings.
The paper is organized as follows. Section 2 presents collision
detection approaches for the determination of intersections
between polygonal and point cloud models. Section 3 describes
the VIZIR project that highlighted the need to develop an efficient
collision detection algorithm for point cloud models. Section 4
describes the data structures for the representation of the scene
graph that are used to improve the performance of the novel
collision detection algorithm, which is presented in Section 5.
Section 6 presents the evaluation results using CAD models and
addresses laser scanned point sets. Conclusions and future work
are presented in Section 7.

2. RELATED WORK
Currently, there are many implementations of collision detection
schemes for interactive system, most of them only support
polygonal models. Frequently, they use bounding volume
hierarchies (BVH), spatial subdivision methods and more recently
use graphics hardware to accelerate collision detection by
hardware. There is a lack of collision detection systems for point
cloud models.
Bounding volume hierarchies are frequently used to organize the
triangles of an object to improve the performance of the collision
detection process, by reducing the number of pairs of bounding
volume tests. The classic scheme for hierarchical collision
detection is a simultaneous recursive traversal of two bounding
volumes trees A and B.
Several types of bounding volumes are available. Bounding
spheres can be used [2]. SOLID [3] and OPCODE [4] use axis-
aligned bounding boxes (AABB). RAPID [5], V-COLLIDE [6],
PQP [7], H-COLLIDE [8], use oriented bounding boxes (OBB).
QuickCD [9] and Dop-Tree [10] uses k-dops; and Swift++ [11]
uses convex hulls (CH). There are also hybrid approaches like
QuOSPOs [12] that use a combination of OBBs and k-dops.

The main advantage of SOLID, OPCODE and Box-Tree is that
AABBs are faster to intersect.
RAPID approximates 3D objects with hierarchies of oriented
bounding boxes (OBBs). The main advantage of RAPID is that
OBBs are better approximations to triangles reducing effectively
the number of intersecting operations.
V-COLLIDE solves the broad-phase of the collision detection
using a sweep-and-prune operation to find pairs of objects
potentially in contact. It uses RAPID to find in the narrow phase
which pairs of objects intersect.
H-COLLIDE is a framework to find collisions for haptic
interactions. It uses a hybrid hierarchy of uniform grids and trees
of OBBs to exploit frame-to-frame coherence. It was specialized
to find collisions between a point probe against 3D objects.
The QuickCD and Dop-Tree implementations build a hierarchy
tree of discrete orientation polytopes (k-dops). The main
advantage of using discrete orientation polytopes is that k-dops
are better approximations to the underlying geometry than
AABBs with the advantage of its low cost compared to OBBs.
Swift++ builds a hierarchy of convex hulls and intersection is
tested using a modified Lin-Canny closest feature algorithm.
He [12] uses a hybrid approach that combines OBBs and k-dops
called QuOSPOs. This approach provides a tight approximation of
the original model at each level.
Another class of hierarchical data structures used for collision
detection are spatial partitioning representations: regular grids [13,
14, 15, 16], octrees [17, 18], BSP-trees [19] and R-trees [20].
Spatial subdivisions are a recursive partitioning of the embedding
space occupied by objects. In general, spatial partitioning
structures are used as a secondary representation for the collision
detection process.
The main idea behind all space partitioning methods is to exploit
spatial coherency. For each object, we check for collision only
objects of the neighborhood, eliminating comparisons with those
objects that are far away and therefore cannot be colliding.
Zyda [13] uses grids to find overlapping objects in the broad
phase. García-Alonso [14] also uses uniform grids to find exact
collisions between 3D objects for the narrow phase. Teschner [21]
use uniform grid subdivision combined with hashing to reduce
storage requirements for collision and self-collision detection of
deforming objects that consist of tetrahedrons. Eits [22] also uses
a spatial grid inspired by the work of Teschener together with 1D
hash table to find collisions between deformable tetrahedral
models. A hybrid approach is presented by Gregory [8] using
regular grids, where each occupied grid cell stores an OBBs tree
of those triangles on that cell.
Hubbard [17] approach for finding collisions in real time is based
on a time-critical computing algorithm and on octrees of spheres.
Kitamura [18] algorithm for collision detection uses an octree for
each object. Ganovelli [16] also associate an octree of axis aligned
bounding boxes with each object, and keeps this hierarchy
efficiently and dynamically updated for deformable objects.
Luque [19] uses semi-adjusting BSP-trees for representing scenes
composed of thousands of moving objects.
Figueiredo [20] combines AABBs with R-trees to implement an
efficient collision detection algorithm that determines intersecting
surfaces.
Various approaches have been recently introduced using existing
graphics accelerated boards (GPU) [23, 24, 25, 26] or dedicated
hardware [27] to accelerate collision detection by hardware.

Algorithms using graphics hardware use depth and stencil buffer
techniques to determine collisions between convex [23] and non-
convex [24] objects. CULLIDE [25] is also a GPU based
algorithm that uses image-space occlusion queries and OBBs in a
hybrid approach to determine intersections between general
models with thousands of polygons. MRC [26] deals with large
models composed of dozens of millions of polygons by using the
representation of a clustered hierarchy of progressive meshes
(CHPM) as a LOD hierarchy for a conservative errorbound
collision and as a BVH for a GPU-based collision culling
algorithm.
These GPU-based algorithms are applicable to both rigid and
deformable models since all the computations are made in the
image-space. Collision detection methods using GPUs have the
disadvantage that they compete with the rendering process,
slowing down the overall frame rate. Furthermore, some of these
approaches are pure image based reducing their accuracy due to
the discrete geometry representation.
All these collision methods have been applied only to polygonal
objects. Recently Klein [28] presented a novel approach for
collision detection of point clouds. They construct a point
hierarchy of bounding volumes to enclose the points at different
levels of the hierarchy. Points are stored in the hierarchy leaves.
Each node stores a sufficient sample of the points plus a sphere
covering of a part of the surface. Given two point cloud
hierarchies, two objects are tested for collision by simultaneous
traversal. At the leaves, an intersection is determined by
estimating the smallest distance.
Recently, Kim [31] et. al show the performance benefits of using
compression of out-of-core AABBs for collision detection of
polygon models that do not fit in main memory, namely they
show that the resources of the CPU can be used to compensate the
I/O lag of reading uncompressed data structures.

3. VIZIR
The VIZIR project sets out to develop new visualization and
interaction algorithms of massive out-of-core data. The 3D model
of study consists of approximately 700 laser scans of the Batalha
monastery, ~2 billion points, exceeding 100 GBytes.
Collision detection is an important interaction cue to help user
navigation in the virtual world. Unfortunately not much work
exists with solutions for collision detection with point clouds.
Before the full complexity of the model can be addressed, an
efficient and reliable collision detection solution is needed for
point clouds.
For this purpose a simple scenario was designed to evaluate
different user collisions that can occur whilst navigating and
exploring a 3D point cloud model.
In this scenario a subset of the model was chosen that enabled the
user’s polygonal avatar, which is represented as a point cloud for
collision detection purposes, to pass through open doors, walk
alongside walls, but is stopped when colliding with the point
cloud (Figure 1, 2).
In addition standard collision detection tests were carried out, and
collisions with points obtained from CAD models were also
tested.
In the next section we present our solution for efficiently detecting
collisions with point clouds.

two R-tree bounding volumes trees A and B. The approach
presented takes advantage of the OAABB and is implemented to
avoid visiting the same node several times to improve
performance. It visits the nodes of object A once. !"#$%&&''$()$
*+$ *,,-.*/"$ (+0-.12/#1$ 34$ 5678$ 0.$ (9,-.:#$ /.;;()(.+$
1#0#/0(.+$,#-<.-9*+/#=$ >.+)(1#-$ 0?.$.3@#/0)A$ &$ *+1$ 'A$
?".)#$ /.--#),.+1(+B$ *C()D*;(B+#1$ 3.2+1(+B$ 3.C#)$ *-#$
.:#-;*,,(+B$*+1$ 0"#-#<.-#$*-#$/*+1(1*0#)$ <.-$/.;;()(.+=$!"#$
%&&''$ ()$ 1#<(+#1$ *)$ 0"#$:.;29#$ 0"*0$ ()$ /.99.+$ 0.$ 0?.$
C()D;(B+#1$3.2+1(+B$3.C#)$EFigure 4F=

Figure 4: The OAABB is shown for two point cloud models

intersecting.

Figure 5 presents the pseudo code of the novel approach.

Collide (A, B)
1:AABBB(A)=MB A AABBA(A)//update BV
2:if (AABBB(A) do not intersect AABBB(B))
 return
3:Determine OAABBB(A, B)
4:DescendRtree(B, OAABBB(A,B))
5:for each point P(B) finside OAABBB(A,B)
6: Update point P(B) into coord. system of A PA(B)
7: DescendRtree(A, OAABBA(A,B), PA(B))

Figure 5: Pseudo-code for finding two intersecting objects.

The collision detection algorithm first checks if objects A and B
are disjoint (line 1-2 in Figure 5). The bounding volumes of each
object are originally computed in the object’s local coordinate
system, AABBA(A) and AABBB(B), respectively. The
transformation matrix that converts the local representation of
object A into the local coordinate system of object B is defined as
MB A. The bounding volume of object A is updated to the
coordinate system of object B, by computing the cover axis-
aligned bounding box, AABBB(A). Once the bounding volumes of
each object are in the same coordinate system they can be checked
for overlap. If this pair of AABBs does not overlap, then the
corresponding two objects are not intersecting and the process
ends. If they overlap, then the system determines the Overlapping
Axis-Aligned Bounding Box, OAABBB(A,B) of the two objects
(line 3 in Figure 5), which is defined in the local coordinate
system of object B.$
The next step of the collision detection process determines the
points from object B inside the OAABB (line 4 of Figure 5). As
mentioned before, the points of object B are organized in a
bounding volume R-tree. The points of B are stored at the leaf
nodes of the R-tree. By descending this R-tree, the points of object
B outside the OAABBB(A,B) are filtered out. Only points at the
leaf nodes inside the OAABBB(A,B) are candidate for collision.

The objects of object B inside the OAABB are transformed into
the coordinate system of object A, PA(B) (line 6).
Then, the collision detection algorithm descends the bounding
volume R-tree for object A (line 7 of Figure 5). In this step it finds
points of object A inside both the OAABB and points in close
proximity of object B.

6. EXPERIMENTAL RESULTS
This section presents the performance evaluation results of the
novel collision detection algorithm for point cloud models
described in this paper.

6.1. Using Points from CAD Models
This section shows that the proposed collision detection for point
cloud models is effective in determining collisions in real time. It
is also shown that it compares favorably with other approaches
that determine collisions with a model´s polygons instead of with
a model´s vertices.
To evaluate this, two case studies were designed. The first case
study, evaluates the performance of the system with a real
maintenance application, with interpenetrations between 3D
models. The second case study, tests the performance of the
collision detection algorithm for very close proximity when there
are no intersections.
The first case study represents user operations to assembly the
components to build a digger mechanism (Figure 6, left). For this
application, it is necessary to allow the user to interactively carry
out assembly and disassembly operations on the virtual prototypes
in a realistic way. The three-dimensional virtual prototypes need
to simulate physical properties realistically and interactively.
The functional modules used by this application are collision
detection, constraint recognition, constraint satisfaction, constraint
management and constraint motion. The automatic constraint
recognition process uses collision detection services for various
purposes such as (a) to provide collision response to stop object
penetration, (b) to identify colliding parts to support the
recognition of assembly relationships between the assembly parts,
(c) to simulate constrained motion, (e) to simulate kinematics
motion and sliding, thus assisting users to carry out precise object
manipulations.

Figure 6: Test case scenario of: left) a Digger model; right) the

grid scene.

The second example is a scene with two grids from a collision
detection benchmark suite [31] (Figure 6, right). This
benchmarking system is used to to compare pairwise static
collision detection algorithms for rigid objects. This benchmark
generates a number of positions and orientations for a predefined
distance in close proximity and no interpenetration. It does not test

performance of collision detection approaches when intersections
occur.
Table 1 presents the complexity for the digger and grid case
studies.
The digger scenario has five parts that are assembled in a
sequence of five hundred and seven intersecting steps. At each
step it is found an intersection between parts of the scenario that
are recognized and assembled appropriately. This experiment was
conducted by the user executing the required assembly operations.
The executed path was recorded and it was repeated only the
intersecting steps to obtain the data values.
The second scenario has two equal grid objects defined each one
of them with forty thousand and eighty points. The benchmark
generated six thousand and thirty eight steps that positioned the
two objects very close to each other, but not touching each other.
With these two case studies, the performance of the novel
collision detection approach for cloud point models is evaluated.

Table 1: Complexity of the case studies.
 Digger Grid

Number of Objects 5 2
Number Points 7356 46080
Number of steps 507 6038

All the experiments run in an Intel Core 2 Duo T7300, 2GByte of
RAM memory at 2GHz.
The execution times, presented in this section, include only the
time to determine collisions and do not include time for rendering
or motion simulation.
Table 2 presents these times. The proposed collision detection
algorithm for point cloud models achieves interactive rates in real
industrial applications as desired.

Table 2: Collision detection time to find intersecting surfaces.

Time in milliseconds per
step to determine intersections

3D models of
Point Clouds

Digger 0.03
Grid 0.21

The time to determine the collisions between two objects depends
on: (1) the cost of intersecting and updating bounding volumes;
and (2) on the number of such operations. Table 3 shows the
number of operations executed to determine intersections. This
table shows that the number of bounding volume updates is
significantly lower than the number of bounding volume
intersections. The update of a bounding volume is a more
expensive operation than a bounding volume intersection.

Table 3: Operations per step to determine intersections.
Number of operations Digger Grid
AABBs tests 149 634
AABBs updates 26 131

Table 4 shows the time and the number of operations executed to
run the two test cases with the same collision detection algorithm,
but it does not use the OAABB concept. This table presents
results for the same traversal scheme to find collisions using only
R-Trees.

Table 4: Traversal scheme for collision detection using R-Trees
and not using the OAABB.
 Digger Grid

Time to find intersections (ms) 0.15 3.79
Number AABBs tests 230 4810
Number AABBs updates 174 4625

The performance of the collision detection approach proposed is
better when it uses the OAABBs.
From comparison of Tables 3 and 4, it is possible to see that the
number of bounding volume checks and updates is reduced
significantly by the use of the OAABB.
It is also important to compare the performance of this algorithm
with other collision detection systems, although public collision
detection toolkits are supported by polygonal models. Table 5
presents the times obtained for the two case studies with the S-
CD, PQP, RAPID, OPCODE and Dop Tree collision detection
toolkits. The times presented were obtained in the determination
of the first intersecting triangle.

Table 5: Time to find first triangle intersection.
Time to find first

triangle intersection
(milliseconds)

Digger Grid

PQP 0.94 8.99
RAPID 0.36 6.02
OPCODE 0.08 0.61
Dop Tree 1.26 7.09
S-CD 0.25 2.29

Tables 2 and 5 shows there is an improvement in performance for
the collision detection approach supported by point cloud models.
This improvement can be explained by the fact that the novel
approach presented in this paper is being supported by point cloud
models and, in this way, it does not make triangle checks to find
intersections, which is an expensive operation. For this reason,
there is a difference on the number of intersections determined
with a collision detection using polygonal models and the
approach described in this paper. However, for the digger case
study there was only 1,1% different answers reported, which is a
low error probability for the new collision detection algorithm for
point cloud models.

6.2. Using Points from Scanned DataSets
Collision detection algorithms designed for polygonal and CAD
models can rely on the concept of collision between subset
surfaces. This has the advantage that searches for instance can be
faster as we are dealing with only subsets rather than the entire
model. In addition since we are typically only interested in
detecting the collision between surfaces, a small standard
tolerance constant is used in the literature. However point clouds
derived from laser scans present two main differences: they are
not segmented, and points are only samples of the surface, making
an actual collision between points a less likely event. Point based
rendering algorithms such as QSplat [33] change the thickness and
shape of a point splat to better convey visually the underlying
surface while viewing in close range. Similarly we use the average
closest point distance of a point divided by two to create bounding
boxes at point level that ensure collision detection of the surface
they represent. In addition for each voxel we use an octree to
segment points into smaller working sets.

