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Abstract 
Point clouds models are a common shape representation for 
several reasons. Three-dimensional scanning devices are widely 
used nowadays and points are an attractive primitive for rendering 
complex geometry. Nevertheless, there is not much literature on 
collision detection for point cloud models.  
This paper presents a novel collision detection algorithm for point 
cloud models. The scene graph is divided in voxels. The objects of 
each voxel are organized in R-trees hierarchies of Axis-Aligned 
Bounding Boxes to group neighboring points and filter out very 
quickly parts of objects that do not interact with other models. The 
proposed algorithm also uses Overlapping Axis-Aligned 
Bounding Boxes to improve the performance of the collision 
detection process. Points derived from laser scanned data typically 
are not segmented and can have arbitrary spatial resolution thus 
introducing computational and modeling issues. We address these 
issues and results show that the proposed collision detection 
algorithm effectively finds intersections between point cloud 
models since it is able to reduce the number of bounding volume 
checks and updates.  
Keywords: Collision detection, virtual environments, surface 
segmentation, point cloud processing.  
 

1.  INTRODUCTION 
Point cloud models are an increasingly attractive representation 
used as the basis to capture and measure reality rapidly in an 
increasing number of applications such as environmental 
surveying, structure analysis and archaeology [1]. Point cloud 
models also share a remarkable similarity with a very popular 
computer game representation of the 80s, numerous Sinclair 
Spectrum games used axonometric projection of point models to 
convey details of buildings, interiors and avatars. A crucial 
element to enable laser scanned point models to be used in a 
similar scenario is collision detection of point clouds. In general 
interactive virtual environments often need very fast collision 
detection queries to simulate physical behaviour and to allow the 
user to interact. However, there is practically no literature on 
determining collisions between two sets of points. 
This paper describes a novel collision detection algorithm for 
point cloud models. 
The scene graph is organized in voxels. To speed up the process 
of finding collisions, for each voxel, each object is represented by 
an R-tree data structure of Axis-Aligned Bounding Boxes 
(AABB) defined in its own local coordinate system. The R-tree 
organizes spatially its geometry, grouping neighbouring points. 
The proposed algorithm is also based in the use of the 
Overlapping Axis-Aligned Bounding Box (OAABB) to improve 

the performance of the collision detection process. In addition a 
traversal algorithm for collision detection for point clouds that 
takes advantage of the OAABB is also presented, improving 
performance by reducing the number of bounding volume checks 
and updates. 
Results show that the proposed approach uses effectively the R-
tree structure and the OAABB concept to find intersections 
between point cloud models at interactive rates. In addition, unlike 
CAD objects which typically contain object hierarchies and the 
data is already segmented into surface groups, point data sets 
derived from laser scanned data do not have such information thus 
presenting computational issues. We address these issues and 
present a solution that adapts to point sets derived from different 
laser scanners and spatial settings.  
The paper is organized as follows. Section 2 presents collision 
detection approaches for the determination of intersections 
between polygonal and point cloud models. Section 3 describes 
the VIZIR project that highlighted the need to develop an efficient 
collision detection algorithm for point cloud models. Section 4 
describes the data structures for the representation of the scene 
graph that are used to improve the performance of the novel 
collision detection algorithm, which is presented in Section 5. 
Section 6 presents the evaluation results using CAD models and 
addresses laser scanned point sets. Conclusions and future work 
are presented in Section 7. 
 

2.  RELATED WORK 
Currently, there are many implementations of collision detection 
schemes for interactive system, most of them only support 
polygonal models. Frequently, they use bounding volume 
hierarchies (BVH), spatial subdivision methods and more recently 
use graphics hardware to accelerate collision detection by 
hardware. There is a lack of collision detection systems for point 
cloud models. 
Bounding volume hierarchies are frequently used to organize the 
triangles of an object to improve the performance of the collision 
detection process, by reducing the number of pairs of bounding 
volume tests. The classic scheme for hierarchical collision 
detection is a simultaneous recursive traversal of two bounding 
volumes trees A and B. 
Several types of bounding volumes are available. Bounding 
spheres can be used [2]. SOLID [3] and OPCODE [4] use axis-
aligned bounding boxes (AABB). RAPID [5], V-COLLIDE [6], 
PQP [7], H-COLLIDE [8], use oriented bounding boxes (OBB). 
QuickCD [9] and Dop-Tree [10] uses k-dops; and Swift++ [11] 
uses convex hulls (CH). There are also hybrid approaches like 
QuOSPOs [12] that use a combination of OBBs and k-dops.  



The main advantage of SOLID, OPCODE and Box-Tree is that 
AABBs are faster to intersect.  
RAPID approximates 3D objects with hierarchies of oriented 
bounding boxes (OBBs). The main advantage of RAPID is that 
OBBs are better approximations to triangles reducing effectively 
the number of intersecting operations.  
V-COLLIDE solves the broad-phase of the collision detection 
using a sweep-and-prune operation to find pairs of objects 
potentially in contact. It uses RAPID to find in the narrow phase 
which pairs of objects intersect.  
H-COLLIDE is a framework to find collisions for haptic 
interactions. It uses a hybrid hierarchy of uniform grids and trees 
of OBBs to exploit frame-to-frame coherence. It was specialized 
to find collisions between a point probe against 3D objects.  
The QuickCD and Dop-Tree implementations build a hierarchy 
tree of discrete orientation polytopes (k-dops). The main 
advantage of using discrete orientation polytopes is that k-dops 
are better approximations to the underlying geometry than 
AABBs with the advantage of its low cost compared to OBBs.  
Swift++ builds a hierarchy of convex hulls and intersection is 
tested using a modified Lin-Canny closest feature algorithm.  
He [12] uses a hybrid approach that combines OBBs and k-dops 
called QuOSPOs. This approach provides a tight approximation of 
the original model at each level. 
Another class of hierarchical data structures used for collision 
detection are spatial partitioning representations: regular grids [13, 
14, 15, 16], octrees [17, 18], BSP-trees [19] and R-trees [20]. 
Spatial subdivisions are a recursive partitioning of the embedding 
space occupied by objects. In general, spatial partitioning 
structures are used as a secondary representation for the collision 
detection process. 
The main idea behind all space partitioning methods is to exploit 
spatial coherency. For each object, we check for collision only 
objects of the neighborhood, eliminating comparisons with those 
objects that are far away and therefore cannot be colliding. 
Zyda [13] uses grids to find overlapping objects in the broad 
phase. García-Alonso [14] also uses uniform grids to find exact 
collisions between 3D objects for the narrow phase. Teschner [21] 
use uniform grid subdivision combined with hashing to reduce 
storage requirements for collision and self-collision detection of 
deforming objects that consist of tetrahedrons. Eits [22] also uses 
a spatial grid inspired by the work of Teschener together with 1D 
hash table to find collisions between deformable tetrahedral 
models. A hybrid approach is presented by Gregory [8] using 
regular grids, where each occupied grid cell stores an OBBs tree 
of those triangles on that cell. 
Hubbard [17] approach for finding collisions in real time is based 
on a time-critical computing algorithm and on octrees of spheres. 
Kitamura [18] algorithm for collision detection uses an octree for 
each object. Ganovelli [16] also associate an octree of axis aligned 
bounding boxes with each object, and keeps this hierarchy 
efficiently and dynamically updated for deformable objects. 
Luque [19] uses semi-adjusting BSP-trees for representing scenes 
composed of thousands of moving objects.  
Figueiredo [20] combines AABBs with R-trees to implement an 
efficient collision detection algorithm that determines intersecting 
surfaces. 
Various approaches have been recently introduced using existing 
graphics accelerated boards (GPU) [23, 24, 25, 26] or dedicated 
hardware [27] to accelerate collision detection by hardware.  

Algorithms using graphics hardware use depth and stencil buffer 
techniques to determine collisions between convex [23] and non-
convex [24] objects. CULLIDE [25] is also a GPU based 
algorithm that uses image-space occlusion queries and OBBs in a 
hybrid approach to determine intersections between general 
models with thousands of polygons. MRC [26] deals with large 
models composed of dozens of millions of polygons by using the 
representation of a clustered hierarchy of progressive meshes 
(CHPM) as a LOD hierarchy for a conservative errorbound 
collision and as a BVH for a GPU-based collision culling 
algorithm.  
These GPU-based algorithms are applicable to both rigid and 
deformable models since all the computations are made in the 
image-space. Collision detection methods using GPUs have the 
disadvantage that they compete with the rendering process, 
slowing down the overall frame rate. Furthermore, some of these 
approaches are pure image based reducing their accuracy due to 
the discrete geometry representation.  
All these collision methods have been applied only to polygonal 
objects. Recently Klein [28] presented a novel approach for 
collision detection of point clouds. They construct a point 
hierarchy of bounding volumes to enclose the points at different 
levels of the hierarchy. Points are stored in the hierarchy leaves. 
Each node stores a sufficient sample of the points plus a sphere 
covering of a part of the surface. Given two point cloud 
hierarchies, two objects are tested for collision by simultaneous 
traversal. At the leaves, an intersection is determined by 
estimating the smallest distance. 
Recently, Kim [31] et. al show the performance benefits of using 
compression of out-of-core AABBs for collision detection of  
polygon models that do not fit in main memory, namely they 
show that the resources of the CPU can be used to compensate the 
I/O lag of reading uncompressed data structures. 
 

3.  VIZIR 
The VIZIR project sets out to develop new visualization and 
interaction algorithms of massive out-of-core data. The 3D model 
of study consists of approximately 700 laser scans of the Batalha 
monastery, ~2 billion points, exceeding 100 GBytes.  
Collision detection is an important interaction cue to help user 
navigation in the virtual world. Unfortunately not much work 
exists with solutions for collision detection with point clouds.  
Before the full complexity of the model can be addressed, an 
efficient and reliable collision detection solution is needed for 
point clouds.  
For this purpose a simple scenario was designed to evaluate 
different user collisions that can occur whilst navigating and 
exploring a 3D point cloud model.  
In this scenario a subset of the model was chosen that enabled the 
user’s polygonal avatar, which is represented as a point cloud for 
collision detection purposes, to pass through open doors, walk 
alongside walls, but is stopped when colliding with the point 
cloud (Figure 1, 2). 
In addition standard collision detection tests were carried out, and 
collisions with points obtained from CAD models were also 
tested.  
In the next section we present our solution for efficiently detecting 
collisions with point clouds. 
 



two R-tree bounding volumes trees A and B. The approach 
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Figure 4: The OAABB is shown for two point cloud models 

intersecting. 
 
Figure 5 presents the pseudo code of the novel approach. 
 

Collide (A, B) 
1:AABBB(A)=MB A AABBA(A)//update BV 
2:if (AABBB(A) do not intersect AABBB(B))    
 return  
3:Determine OAABBB(A, B) 
4:DescendRtree( B, OAABBB(A,B)) 
5:for each point P(B) finside OAABBB(A,B) 
6:  Update point P(B) into coord. system of A PA(B) 
7:  DescendRtree( A, OAABBA(A,B), PA(B))  

Figure 5: Pseudo-code for finding two intersecting objects. 
 
The collision detection algorithm first checks if objects A and B 
are disjoint (line 1-2 in Figure 5). The bounding volumes of each 
object are originally computed in the object’s local coordinate 
system, AABBA(A) and AABBB(B), respectively. The 
transformation matrix that converts the local representation of 
object A into the local coordinate system of object B is defined as 
MB A. The bounding volume of object A is updated to the 
coordinate system of object B, by computing the cover axis-
aligned bounding box, AABBB(A). Once the bounding volumes of 
each object are in the same coordinate system they can be checked 
for overlap. If this pair of AABBs does not overlap, then the 
corresponding two objects are not intersecting and the process 
ends. If they overlap, then the system determines the Overlapping 
Axis-Aligned Bounding Box, OAABBB(A,B) of the two objects 
(line 3 in Figure 5), which is defined in the local coordinate 
system of object B.$
The next step of the collision detection process determines the 
points from object B inside the OAABB (line 4 of Figure 5). As 
mentioned before, the points of object B are organized in a 
bounding volume R-tree. The points of B are stored at the leaf 
nodes of the R-tree. By descending this R-tree, the points of object 
B outside the OAABBB(A,B) are filtered out. Only points at the 
leaf nodes inside the OAABBB(A,B) are candidate for collision.  

The objects of object B inside the OAABB are transformed into 
the coordinate system of object A, PA(B) (line 6).  
Then, the collision detection algorithm descends the bounding 
volume R-tree for object A (line 7 of Figure 5). In this step it finds 
points of object A inside both the OAABB and points in close 
proximity of object B.  
 

6.  EXPERIMENTAL RESULTS 
This section presents the performance evaluation results of the 
novel collision detection algorithm for point cloud models 
described in this paper.  
 
6.1. Using Points from CAD Models 
This section shows that the proposed collision detection for point 
cloud models is effective in determining collisions in real time. It 
is also shown that it compares favorably with other approaches 
that determine collisions with a model´s polygons instead of with 
a model´s vertices.  
To evaluate this, two case studies were designed. The first case 
study, evaluates the performance of the system with a real 
maintenance application, with interpenetrations between 3D 
models. The second case study, tests the performance of the 
collision detection algorithm for very close proximity when there 
are no intersections. 
The first case study represents user operations to assembly the 
components to build a digger mechanism (Figure 6, left). For this 
application, it is necessary to allow the user to interactively carry 
out assembly and disassembly operations on the virtual prototypes 
in a realistic way. The three-dimensional virtual prototypes need 
to simulate physical properties realistically and interactively.  
The functional modules used by this application are collision 
detection, constraint recognition, constraint satisfaction, constraint 
management and constraint motion. The automatic constraint 
recognition process uses collision detection services for various 
purposes such as (a) to provide collision response to stop object 
penetration, (b) to identify colliding parts to support the 
recognition of  assembly relationships between the assembly parts, 
(c) to simulate constrained motion, (e) to simulate kinematics 
motion and sliding, thus assisting users to carry out precise object 
manipulations. 
 

 
Figure 6: Test case scenario of: left) a Digger model; right) the 

grid scene. 
 
The second example is a scene with two grids from a collision 
detection benchmark suite [31] (Figure 6, right). This 
benchmarking system is used to to compare pairwise static 
collision detection algorithms for rigid objects. This benchmark 
generates a number of positions and orientations for a predefined 
distance in close proximity and no interpenetration. It does not test 



performance of collision detection approaches when intersections 
occur. 
Table 1 presents the complexity for the digger and grid case 
studies.  
The digger scenario has five parts that are assembled in a 
sequence of five hundred and seven intersecting steps. At each 
step it is found an intersection between parts of the scenario that 
are recognized and assembled appropriately. This experiment was 
conducted by the user executing the required assembly operations. 
The executed path was recorded and it was repeated only the 
intersecting steps to obtain the data values.  
The second scenario has two equal grid objects defined each one 
of them with forty thousand and eighty points. The benchmark 
generated six thousand and thirty eight steps that positioned the 
two objects very close to each other, but not touching each other.  
With these two case studies, the performance of the novel 
collision detection approach for cloud point models is evaluated.  
 

Table 1: Complexity of the case studies. 
 Digger Grid 

Number of Objects 5 2 
Number Points 7356 46080 
Number of steps  507 6038 

 
All the experiments run in an Intel Core 2 Duo T7300, 2GByte of 
RAM memory at 2GHz.  
The execution times, presented in this section, include only the 
time to determine collisions and do not include time for rendering 
or motion simulation. 
Table 2 presents these times. The proposed collision detection 
algorithm for point cloud models achieves interactive rates in real 
industrial applications as desired.  
 

Table 2: Collision detection time to find intersecting surfaces. 
 

Time in milliseconds per 
step to determine intersections 

3D models of 
Point Clouds 

Digger 0.03 
Grid 0.21 

 
The time to determine the collisions between two objects depends 
on: (1) the cost of intersecting and updating bounding volumes; 
and (2) on the number of such operations. Table 3 shows the 
number of operations executed to determine intersections. This 
table shows that the number of bounding volume updates is 
significantly lower than the number of bounding volume 
intersections. The update of a bounding volume is a more 
expensive operation than a bounding volume intersection. 
 

Table 3: Operations per step to determine intersections. 
Number of operations Digger Grid 
AABBs tests 149 634 
AABBs updates 26 131 

 
Table 4 shows the time and the number of operations executed to 
run the two test cases with the same collision detection algorithm, 
but it does not use the OAABB concept. This table presents 
results for the same traversal scheme to find collisions using only 
R-Trees.  

Table 4: Traversal scheme for collision detection using R-Trees 
and not using the OAABB. 
 Digger Grid 

Time to find intersections (ms) 0.15 3.79 
Number AABBs tests 230 4810 
Number AABBs updates 174 4625 

 
The performance of the collision detection approach proposed is 
better when it uses the OAABBs.  
From comparison of Tables 3 and 4, it is possible to see that the 
number of bounding volume checks and updates is reduced 
significantly by the use of the OAABB. 
It is also important to compare the performance of this algorithm 
with other collision detection systems, although public collision 
detection toolkits are supported by polygonal models. Table 5 
presents the times obtained for the two case studies with the S-
CD, PQP, RAPID, OPCODE and Dop Tree collision detection 
toolkits. The times presented were obtained in the determination 
of the first intersecting triangle.  
 

Table 5: Time to find first triangle intersection. 
Time to find first 

triangle intersection 
(milliseconds) 

Digger Grid 

PQP 0.94 8.99 
RAPID 0.36 6.02 
OPCODE 0.08 0.61 
Dop Tree 1.26 7.09 
S-CD 0.25 2.29 

 
Tables 2 and 5 shows there is an improvement in performance for 
the collision detection approach supported by point cloud models. 
This improvement can be explained by the fact that the novel 
approach presented in this paper is being supported by point cloud 
models and, in this way, it does not make triangle checks to find 
intersections, which is an expensive operation. For this reason, 
there is a difference on the number of intersections determined 
with a collision detection using polygonal models and the 
approach described in this paper. However, for the digger case 
study there was only 1,1% different answers reported, which is a 
low error probability for the new collision detection algorithm for 
point cloud models. 
 
6.2. Using Points from Scanned DataSets 
Collision detection algorithms designed for polygonal and CAD 
models can rely on the concept of collision between subset 
surfaces. This has the advantage that searches for instance can be 
faster as we are dealing with only subsets rather than the entire 
model. In addition since we are typically only interested in 
detecting the collision between surfaces, a small standard 
tolerance constant is used in the literature. However point clouds 
derived from laser scans present two main differences: they are 
not segmented, and points are only samples of the surface, making 
an actual collision between points a less likely event. Point based 
rendering algorithms such as QSplat [33] change the thickness and 
shape of a point splat to better convey visually the underlying 
surface while viewing in close range. Similarly we use the average 
closest point distance of a point divided by two to create bounding 
boxes at point level that ensure collision detection of the surface 
they represent. In addition for each voxel we use an octree to 
segment points into smaller working sets. 


