
Solid Simulation with Oriented Particles

Matthias Müller Nuttapong Chentanez
NVIDIA PhysX Research

Figure 1: Using particles with orientation enables us to simulate a complex model like this monster truck with plastically deforming body,
free spinning wheels with soft tires, and high fidelity mesh skinning in real time all with a sparse physical representation.

Abstract

We propose a new fast and robust method to simulate various types
of solid including rigid, plastic and soft bodies as well as one, two
and three dimensional structures such as ropes, cloth and volumet-
ric objects. The underlying idea is to use oriented particles that store
rotation and spin, along with the usual linear attributes, i.e. posi-
tion and velocity. This additional information adds substantially to
traditional particle methods. First, particles can be represented by
anisotropic shapes such as ellipsoids, which approximate surfaces
more accurately than spheres. Second, shape matching becomes ro-
bust for sparse structures such as chains of particles or even single
particles because the undefined degrees of freedom are captured in
the rotational states of the particles. Third, the full transformation
stored in the particles, including translation and rotation, can be
used for robust skinning of graphical meshes and for transforming
plastic deformations back into the rest state.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically Based Modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation and Virtual Reality

Keywords: oriented particles, shape matching, position based dy-
namics

Links: DL PDF

1 Introduction

Physical simulation of solids has been investigated for more than
two decades in computer graphics. In contrast to the computational
sciences, computer graphics is more concerned with creating the
overall look and feel of objects than the accurate reproduction of
their small scale behavior. Also, artists require easy tuning of the
physical attributes as well as full control of object behavior.

Lately, the trend in solid simulation in computer graphics has been
to increase the accuracy of the mathematical models. This typically
requires an increase in their complexity. Advantages of using repre-
sentations based on continuum mechanics are that object behavior
can be controlled using physical parameters such as Young’s mod-
ulus, and that the discretization converges toward the continuous
solution with increasing mesh resolution.

However, in computer games, where robustness and speed are often
more essential than accuracy, simpler unconditionally stable geo-
metric methods such as position based dynamics (PBD) [Müller
et al. 2006] can be sufficient to create the desired physical effects.
For these reasons we decided to come up with a method that is as
simple and as fast as possible, yet able to create the desired vi-
sual fidelity required in many computer graphics applications. Our
method is based on generalizations of PBD and the shape matching
approach [Müller et al. 2005]. The novel idea of using oriented par-
ticles in connection with shape matching allows us to create com-
plex dynamic objects with only a small number of simulation par-
ticles. This makes turning a visual mesh into a physical object a
simple task which can be performed in just a few minutes.

In the first part of the paper we will present our research contribu-
tions which are

• An extension of PBD to handle orientation and angular veloc-
ity of particles

• A generalized formulation of the shape matching method in-
corporating particle orientations. This new formulation guar-
antees stability for arbitrary numbers and arrangements of par-
ticles.

http://doi.acm.org/10.1145/1964921.1964987
http://portal.acm.org/ft_gateway.cfm?id=1964987&type=pdf

• To leverage the orientation information to (1) approximate
shapes by ellipsoids instead of spheres for more accurate col-
lision handling and (2) to skin a visual mesh to the simulation
nodes.

In the second part we will describe our content creation and simula-
tion framework, which we developed based on our the new method,
along with a variety of scenes demonstrating the versatility of the
system.

2 Related Work

Formulating a unified solver for various solid material types has
been an active topic in computer graphics in recent years. As a uni-
fied model, [Stam 2009] represents solids with simplices of various
dimensions. [O’Brien et al. 1997], [Jansson and Vergeest 2003] and
[Lenoir and Fonteneau 2004] describe ways to couple deformable
and rigid bodies. [Sifakis et al. 2007] use soft and hard binding
to transmit forces between different representations. Point-based
approaches lend themselves especially well to unified solid simu-
lation. One such method based on continuum mechanics was pro-
posed by [Müller et al. 2004] and extended later by [Pauly et al.
2005; Gerszewski et al. 2009]. These approaches use moving least
squares (MLS) to derive a deformation field from particle posi-
tions. MLS is only stable if local particle neighborhoods are in
non-degenerate configurations. This problem was fixed by Martin
et al. [2010] who introduced the concept of elastons. In addition to
the deformation field, the elaston approach also stores derivatives.
This way, particles in zero, one, two and three-dimensional configu-
rations can be simulated robustly using generalized MLS (GMLS).
Their approach was not designed for real-time use.

Our goal was to apply a similar idea to the geometric approach of
shape matching [Müller et al. 2005]. In an analogous way, basic
shape matching fails when particles are arranged in singular pat-
terns. We fix this by storing orientation information on the particles.
The link to the elaston idea and GMLS is that orientations can be
viewed as derivative information of a normalized deformation field.
An oriented particle is basically the simplest piece of information
to fix the singularity problem. Due to its simplicity, the oriented
particle approach is significantly faster then using elastons.

[Becker et al. 2009] use particles in connection with SPH-based
forces to simulate various solids. They solve the singularity prob-
lem of degenerate cases by stabilizing the polar decomposition as
in [Schmedding and Teschner 2008]. The missing rotation informa-
tion is completed statically and not simulated as in our case. In the
extreme case of a single particle, for instance, stabilized polar de-
composition always returns the identity matrix for the particle’s ori-
entation, while in our case the angular quantities evolve physically
in time. Another problem arises when exactly two Eigenvalues of
the moment matrix are zero. This happens permanently for one-
dimensional structures with stretched rest state. While one missing
Eigenvector can be determined uniquely using the cross product of
the other two, the directions of two missing Eigenvectors are not
unique. To avoid jittering, they need to be chosen consistently over
time which is only possible with a state variable. This is exactly
what our orientation information on the particles provides.

The problems of simulating one, two and three-dimensional solids
have been studied independently as well. To mention only a few pa-
pers, [Pai 2002] simulates elastic rods such as hair, wire and threads
using the Cosserat theory by formulating a Boundary Value Prob-
lem (BVP) which does not have a guaranteed running time bound
in general. [Bertails et al. 2006] and [Spillmann and Teschner
2007; Bertails 2009] reduced the complexity of the approach to
be quadratic and linear in time, respectively. An approach based
on discrete differential geometry was proposed by [Bergou et al.

2010] to allow for simulating thin viscous liquid threads like drip-
ping honey.

The simulation of thin deformable bodies has been an active re-
search field as well. [Provot 1995] were among the first to use mass-
spring networks for simulating cloth. Later [Baraff and Witkin
1998] and [Bridson et al. 2003] proposed to use semi-implicit inte-
gration to increase stability and allow for larger time steps. [Volino
et al. 2009] used non-linear springs to capture cloth behavior more
faithfully. Various authors have addressed the problem of cloth
stretchiness using the idea of strain limiting such as [Goldenthal
et al. 2007]. Beside cloth simulation [Grinspun et al. 2003] and
many others investigated the more general problem of thin shell
simulation.

In computer graphics one of the most popular approach to simu-
lating volumetric solids is the Finite Element Method (FEM) with
linear tetrahedral elements. This technique was used in [O’Brien
and Hodgins 1999] to simulate fracture and by [O’Brien et al. 2002;
Bargteil et al. 2007; Wojtan and Turk 2008] to model plastic mate-
rials. The co-rotational formulation was introduced by [Müller and
Gross 2004] to reduce visual artifacts in connection with linear el-
ements and large deformations. To reduce the number of elements
required for simulation Martin et al. [2008] generalized the tradi-
tional method to include general polyhedral elements.

The idea of attaching orientation information to particles and the
term ”oriented particle” was introduced by [Szeliski and Tonnesen
1992]. They used the additional information to define special en-
ergy potentials that let non-connected particles form surfaces rather
then volumetric objects. Their approach is quite different from ours
since they do not use a mesh, their particles are isotropic, they do
not handle collision detection nor use the particles for skinning a
visual mesh.

3 Generalized Shape Matching

As mentioned previously, the main idea behind our approach is to
use particles that have both position and orientation. We will first
show how the shape matching approach [Müller et al. 2005] benefits
from this additional piece of information because shape matching
lies at the core of our method.

Given n particles with rest position x̄i, current position xi and mass
mi we are looking for a global translation t and rotation R of the rest
state that matches the current positions optimally in a least squares
sense. For this the moment matrix A has to be computed as

A = ∑
i

mi(xi − c)(x̄i − c̄)T ∈ R3×3, (1)

where the mass centers are defined as

c = ∑
i

mixi/∑
i

mi and (2)

c̄ = ∑
i

mix̄i/∑
i

mi. (3)

The polar decomposition A = RS yields the least squares optimal
rotation R of the original shape into the actual configuration while
for the translation we have t = c− c̄. Using this transformation, the
goal position of each particle becomes

gi = R(x̄i − c̄)+ c. (4)

If the particles are close to co-planar or co-linear, A becomes ill-
conditioned or even singular. In this case, the optimal rotation R
is not well defined, causing the simulation to be unstable. This

problem can be fixed by using the orientation information of the
particles.

Let us assume we have two groups of particles with their respective
moment matrices A1 and A2. To compute the total moment matrix
A of the union of the particles, the two matrices cannot simply be
added because each one is computed w.r.t. its own center of mass.
Fortunately there is an easy way to fix this problem. In their paper,
[Rivers and James 2007] reformulated Eq. (1) for fast summation
into the following form:

A = ∑
i

mixix̄T
i −Mcc̄T , (5)

where M = ∑i mi. Now let us assume we could define a moment
matrix Ai for a single particle w.r.t. its center of mass xi. Using
Eq. (5) we shift the center of mass of each Ai to the global one as

A = ∑
i

�
Ai +mixix̄T

i −micc̄T
�

(6)

and Eq. (1) generalizes to

A = ∑
i

�
Ai +mixix̄T

i

�
−Mcc̄T (7)

To compute the moment matrix of a particle with orthonormal ori-
entation matrix R we integrate Eq. (1) over the particle’s volume
yielding

Asphere =
�

Vr

ρ(Rx)xT dV = ρR
�

Vr

xxT dV (8)

=
4

15
πr5ρR =

4
15

πr5 m
Vr

R

=
1
5

mr2R

for a sphere, where Vr is the volume of a sphere of radius r. For an
ellipsoid with radii a,b and c we get

Aellipsoid =
1
5

m

a2 0 0
0 b2 0
0 0 c2

R (9)

With this extension we always get a full rank moment matrix A even
for a single particle! Eq. (7) can be viewed as a specialized version
of GMLS [Martin et al. 2010] for the case that the deformation
derivatives only contain rotations. However, in contrast to GMLS,
Eq. (7) takes into consideration particles of finite size through the
integral in Eq. (8) instead of single points only.

4 Generalized Position Based Dynamics

Before describing our overall simulation model, we explain how
to evolve oriented particles in time. As an integration scheme we
use PBD because shape matching is designed to work with this ap-
proach. To handle the rotational quantities we had to generalize
PBD.

We will briefly recap basic position based dynamics and then ex-
plain our generalization. PBD evolves a set of particles with po-
sitions x and velocities v in three stages per time step. In the pre-
diction stage a predicted position xp is computed for each particle
using explicit Euler integration so xp ← x + v∆t. In the second
stage, the solver corrects the predicted positions (not the velocities,

thus the name of the method) such that they satisfy a set of con-
straints by iterating through all constraints multiple times. Finally
the particles’ state variables are updated in the integration step as
v ← (xp − x)/∆t and x ← xp. Note that the solver’s modifications
on the predicted positions influence the velocities of the particles.
Only this way does the resulting system become second order in
time. PBD is straight forward to implement yet unconditionally
stable because positional corrections never overshoot.

As in regular PBD, we define stiffness, friction and damping coef-
ficients to be scalars s ∈ [0 . . .1]. Since we use constant time steps,
this definition is intuitive and works as expected. However, if the
time steps are not constant, the coefficients should be defined as
s = s�∆t to reduce time step size dependence.

4.1 Integration

In addition to position x and velocity v, our particles carry an orien-
tation unit quaternion q and the angular velocity ω . The prediction
step using explicit forward Euler integration then becomes

xp ← x+v∆t (10)

qp ←
�

ω
|ω| sin(

|ω|∆t
2

),cos(
|ω|∆t

2
)

�
q, (11)

For stability reasons, qp should directly be set to q if |ω| < ε . Af-
ter the solver has modified the predicted state (xp,qp), as we shall
describe in Section 5.1, the current state is updated using the inte-
gration scheme

v ← (xp −x)/∆t (12)
x ← xp (13)

ω ← axis(qpq−1) · angle(qpq−1)/∆t (14)
q ← qp, (15)

where axis() returns the normalized direction of a quaternion and
angle() its angle. Again, for stability reasons, ω should be set
to zero directly if |angle(qpq−1)| < ε . There are two rotations,
r = qpq−1 and −r transforming q into qp. It is important to always
choose the shorter one, i.e. if r.w < 0 use −r. As in traditional PBD
for translation, changing the rotational quantity qp in the solver also
affects its time derivate ω through the integration step creating the
required second order effect. Note that this formulation is a simpli-
fication of the true rigid body dynamics since it omits precession.
The error introduced is zero for spherical particles and grows with
the aspect ratio of the particle shape. Also, correct precession of
bodies composed of multiple particles emerges automatically so the
error shows only for bodies composed of a small number of parti-
cles.

4.2 Friction

In PBD, friction is handled by scaling down the linear velocity by a
constant factor s after the update step. If a particle has collided with
a solid object, we modify both, linear and angular velocities as

v ← v+(vs −v)⊥n · slin (16)

ω ← ω +
r
|r|2

× (vs −v−ω × r) · srot , (17)

where vs and n are the velocity and the normal of the solid at the
impact point, r = r n and r is the particle radius. The two scalars
slin ∈ [0 . . .1] and srot ∈ [0 . . .1] control the amount of linear and
angular friction.

The equations for handling friction in case of two particles colliding
with each other look similar

v1 ← v1 +(
v1 +v2

2
−v1)⊥n · slin (18)

v2 ← v2 +(
v1 +v2

2
−v2)⊥n · slin (19)

and

ω1 ← ω1 +
r1
|r1|2

× (vavg −v1 −ω1 × r1) · srot (20)

ω2 ← ω2 +
r2
|r2|2

× (vavg −v2 −ω2 × r2) · srot (21)

where in this case n = (x2 −x1)/|x2 −x1|, r1 = rn, r2 = −rn and
vavg = (v1 +ω1 × r1 +v2 +ω2 × r2)/2.

5 Simulation Model

We represent objects as a set of oriented particles and a set of edges
connecting them. The resulting mesh does not need to have the
topology of a triangle or tetrahedral mesh. It might look similar to
a tetrahedral mesh locally in places where the model is volumetric.
In other locations, where thin structures are present, it can take the
form of a particle chain as in Fig. 3(d).

5.1 Implicit Shape Matching

This data structure is simulated by defining one shape matching
group per particle. A group contains the corresponding particle and
all the particles connected to it via a single edge. In sparse regions
of the mesh, regular shape matching would become immediately
unstable in this setting while in our case there are no limitations to
the connectivity structure.

After the prediction step, the solver iterates multiple times through
all shape match constraints in a Gauss-Seidel type fashion. For
each constraint the goal positions are computed using Eq. (4). All
the particles of the group are then moved towards their goal position
by the same fraction sstiffness which mimics stiffness as in [Müller
et al. 2006]. This stiffness can be specified per particle as Fig. 3(c)
shows.

In terms of orientation, we only update the orientation of the center
particle by replacing it with the optimal rotation provided by shape
matching. Generalized shape matching, as we formulated it in Sec-
tion 3, has a nice property: it only influences the orientation of the
particle along the directions contained in the moment matrix A. Let
us have a look at two extreme cases. If there is only one particle
in the group, generalized shape matching will return the orientation
of that particle (see Eq. (7)) so the solver does not change it as ex-
pected. If the number of particles in the group and their positions
are such that they robustly span a 3D space, the new orientation of
the particle is dominated by the orientation of the entire group. All
situations in between smoothly interpolate these two cases. In case
of a chain of particles, for instance, the orientations of the particles
along the direction of the chain are determined by shape matching,
while they can freely rotate about the axis along the chain.

5.2 Stretching vs. Bending

Shape matching per node models both stretching and bending resis-
tance at the same time. This is sufficient in many cases. If the artist
wishes to specify them separately, we support regular PBD distance
constraints on the edges as well. So in order to reduce bending
resistance only, the shape match stiffness can be made small and

the distance constraints activated. However, if the shape matching
stiffness is set to zero, shape matching still has to be performed to
update the orientations of the particles for collisions and skinning
since the distance constraints only act on the positions.

5.3 Explicit Shape Matching

We also support additional explicit shape matching groups defined
by the user which can cover arbitrary subsets of the particles in the
mesh. The implicit shape matching as described above is not per-
formed for particles in explicit groups. Their positions and orien-
tations are controlled by the explicit group only. In contrast to im-
plicit shape matching, all participating particles get the shape match
rotation. This results in rigid components, as shown in several ex-
amples in Section 9. There is one exception: particles belonging
to more than one explicit shape matching group are treated as non-
oriented (i.e. the matrix Ai in Eq. (7) is set to zero for particle i).
This allows us to model various joints as in the monster truck sam-
ple. Without this exception rotation information would propagate
from one group to the other and prevent the wheels from rotating
freely.

5.4 Plastic Deformation

We allow the explicit shape matching groups to deform plastically
as well. Plastic deformation starts whenever one of the group par-
ticles is involved in a collision with relative velocity higher than a
user defined threshold. When this happens, we simply deactivate
the shape matching group for a fixed number of simulation frames
(5 in our case) and let implicit shape matching take over. After the
deformation phase, we reactivate the explicit group and absorb the
deformation into the rest state.

Special care has to be taken when updating the rest state. It is cru-
cial that explicit shape matching groups do not store individual rest
positions of particles. The rest configuration of the model needs to
be consistent over all shape matching groups otherwise ghost forces
appear. Also, when distorting the rest poses, the original poses are
still needed. We call these original poses the bind poses.

Let bi,ri and di be rigid transformations of the form f (x) = Rx+ t,
where R is a rotation matrix. The bind pose transformations bi map
a zero centered and axis aligned particle to its original position and
orientation defined by the user and the algorithm we will describe
in Section 6.2. Before plastic deformation occurs, the rest poses ri
correspond to the bind poses so ∀i : ri = bi. The transformations di
map the particles from the rest pose to the current pose and, thus,
describe the deformation of the object. These are the transforma-
tions that shape matching gives us. Without plastic deformation,
they can directly be used for mesh skinning (see Section 7). How-
ever, as soon as the rest poses do not correspond to the bind poses
anymore, the transformations to be used for skinning are di◦ri◦b−1

i
(application from right to left). In contrast, the poses of the particles
for collision detection are di ◦ ri.

After the deformation phase, particle i deviates from the rest pose
ri. This deviation is stored in the transformation di. We want to
absorb this transformation by changing the rest pose ri. However,
since the object in world space is not aligned with the rest state
during the simulation, the world space deformation di needs to be
transformed back into the rest state space before being absorbed.
Since the transformation from rest to world space varies over the
object, we have to pick a specific one and choose the transformation
s returned by the shape matching group at the first frame after re-
activation. At this point in time we let ri ← s−1 ◦di ◦ ri.

5.5 Torsion Resistance

To control torsion resistance we iterate through all the edges and
update the rotations of the adjacent particles similar to friction han-
dling as

q1 ←slerp
�

q1,q2,
1
2

storsion

�
(22)

q2 ←slerp
�

q2,q1,
1
2

storsion

�
. (23)

The function slerp(q1,q2,s) returns q1 if s = 0, q2 if s = 1 and the
spherical interpolation of q1 and q2 for values in between.

6 Collision Handling

In traditional PBD particles are represented by spheres. Using these
spheres as collision primitives results in bumpy collision represen-
tations of objects. This is problematic because bumpy surfaces in-
troduce unnatural friction and other visual artifacts. The fact that
our particles have orientation information lets us represent them by
ellipsoids which can more accurately approximate flat surfaces, as
demonstrated in [Yu and Turk 2010] in the case of fluid simulations
(see Fig. 3(c)). Two questions arise. First, how to handle ellipsoids
correctly in the collision detection step and, second, how to find
their principal radii prior to the simulation.

6.1 Ellipsoid Collision

When using spheres, a collision with a plane occurs when the par-
ticle gets closer to the plane than its radius r. In this case, PBD
shifts the particle up along the plane normal n such that it touches
the plane as shown in Fig. 2(a). For an ellipsoid the situation gets
a bit more complicated. A simple approximate way to resolve the
collision is to use the ellipse’s radius in the direction of n for col-
lision handling. As Fig. 2(b) shows, the collision is only resolved
correctly if n is aligned with the principal axes of the ellipsoid.
In Appendix A.1 we show how to compute the correct distance d
shown in Fig. 2(c). This is slightly more expensive. The situation is
similar in the case of particle-particle collisions shown in Fig. 2(d)-
(f) for which we derive the necessary equations in Appendix A.2.

6.2 Ellipsoid Representation of Objects

Let us assume the user has already placed the particles to simulate
a given graphical mesh and specified radii for each of them. We
use the same radius for all particles depending on the spacing of
the particles to be able to use spatial hashing [Teschner et al. 2003]
effectively for finding overlapping particles.

We now wish to automatically compute the principal axis direc-
tions and radii for each particle. Our algorithm to do this is sim-
ilar to the method proposed in [Yu and Turk 2010] for creating
smooth surfaces of particle fluids. For a certain particle we collect
all graphical vertices within the particle’s radius. We then compute
the co-variance matrix of this vertex cloud relative to the particle’s
center and use polar decomposition to determine the orientation of
the ellipsoid. In contrast to [Yu and Turk 2010] we do not use the
eigenvalues of the co-variance matrix to determine the radii of the
ellipsoid because the eigenvalues are related to the sum of squared
distances and not the distances themselves. Instead, we use the ex-
tents of the oriented bounding box (OBB) of the mesh vertices as
principal radii. For stability reasons we clamp the radii to the range
[1

σ r . . .r], where σ is a limit on the aspect radio. In our examples
we use σ = 2.

n n n

r

R dRn

rn

n n n

r drn

(a) (b) (c)

(d) (e) (f)

Figure 2: Rows: particle-plane collision, particle-particle colli-
sion. Left to right: sphere collision, approximate and correct ellip-
soid collision

This approach can be extended in a useful way. Instead of adjusting
only the orientations of particles, one can also move them to the
center of mass of the surrounding vertices. By iterating these two
steps multiple times, particles placed on the surface of the graphical
mesh typically drift towards the center of a feature such as an arm.
We used this property to create the skeleton shown in Fig. 3(c).

7 Visual Mesh Skinning

A common method to animate an arbitrary graphical mesh is to
embed it in a tetrahedral simulation mesh as in [Müller and Gross
2004]. While the tetrahedral mesh deforms, each graphical vertex
is transformed along with it, using barycentric weighting of the ver-
tex positions of the closest tetrahedron. The method is only robust
if each graphical vertex is surrounded by a tetrahedron because only
in that case all the barycentric coordinates are positive, as noticed
by [Twigg and Kacic-Alesic 2010]. Many tetrahedra are typically
required to get an accurate approximation of the graphical mesh’s
surface, particularly if the graphical mesh has a complex structure
with many branches that need to be resolved in order to move inde-
pendently.

The fact that, in our case, each particle stores a full transformation
composed of translation and rotation from the rest state to the cur-
rent state lets us use a more robust approach for binding the graph-
ical to the simulation particles. For each graphical vertex we pre-
compute links and weights to nearby particles (at most 4 in our
case) and use linear blend skinning to compute its transformation.
This yields plausible deformations even if the visual geometry is
far away from the simulated particles and for very sparse simula-
tion meshes. Skinning remains well defined for the case even of a
single simulation particle. We found that simple linear blend skin-
ning was sufficient. However, to further improve the results, dual
quaternion blending [Kavan et al. 2008] could be used as well.

8 Simulation Framework

We built a design and simulation framework to create various demo
scenes. The design tool is used to create a physical representa-
tion of an object. After loading a graphical mesh, the user places

