
EUROGRAPHICS 2005 STAR – State of The Art Report

Physically Based Deformable Models in Computer Graphics

Andrew Nealen1, Matthias Müller2,3, Richard Keiser3, Eddy Boxerman4 and Mark Carlson5

1 Discrete Geometric Modeling Group, TU Darmstadt
2 NovodeX / AGEIA

3 Computer Graphics Lab, ETH Zürich
4 Department of Computer Science, University of British Columbia

5 DNA Productions, Inc.

Abstract
Physically based deformable models have been widely embraced by the Computer Graphics community. Many
problems outlined in a previous survey by Gibson and Mirtich [GM97] have been addressed, thereby making
these models interesting and useful for both offline and real-time applications, such as motion pictures and video
games. In this paper, we present the most significant contributions of the past decade, which produce such impres-
sive and perceivably realistic animations and simulations: finite element/difference/volume methods, mass-spring
systems, meshfree methods, coupled particle systems and reduced deformable models based on modal analysis.
For completeness, we also make a connection to the simulation of other continua, such as fluids, gases and melting
objects. Since time integration is inherent to all simulated phenomena, the general notion of time discretization
is treated separately, while specifics are left to the respective models. Finally, we discuss areas of application,
such as elastoplastic deformation and fracture, cloth and hair animation, virtual surgery simulation, interactive
entertainment and fluid/smoke animation, and also suggest areas for future research.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically Based Model-
ing I.3.7 [Computer Graphics]: Animation and Virtual Reality

1. Introduction

Physically based deformable models have two decades of
history in Computer Graphics: since Lasseter’s discussion
of squash and stretch [Las87] and, concurrently, Terzopou-
los et. al’s seminal paper on elastically deformable mod-
els [TPBF87], numerous researchers have partaken in the
quest for the visually and physically plausible animation of
deformable objects and fluids. This inherently interdiscipli-
nary field elegantly combines newtonian dynamics, contin-
uum mechanics, numerical computation, differential geom-
etry, vector calculus, approximation theory and Computer
Graphics (to name a few) into a vast and powerful toolkit,
which is being further explored and extended. The field is in
constant flux and, thus, active and fruitful, with many visu-
ally stunning achievements to account for.

Since Gibson and Mirtich’s survey paper [GM97], the
field of physically based deformable models in Computer
Graphics has expanded tremendously. Significant contribu-
tions were made in many key areas, e.g. object model-

Figure 1:Hooke’s Law, fromDe Potentia Restitutiva [1678].

ing, fracture, plasticity, cloth animation, stable fluid simu-
lation, time integration strategies, discretization and numer-

c© The Eurographics Association 2005.



Nealen, Müller, Keiser, Boxerman and Carlson / Physically Based Deformable Models in Computer Graphics

ical solution of PDEs, modal analysis, space-time adaptiv-
ity, multiresolution modeling and real-time simulation. Non-
physical models, such as parametric curves and surfaces
and free-form deformations, are not discussed in this report.
The inclined reader is therefore encouraged to browse more
recent literature on t-splines [SZBN03] [SCF∗04], space-
warping [MJBF02] [LKG∗03] [BK05] and methods based
on differential surface properties [SLCO∗04] [YZX∗04]
[BK04] [LSLCO05] [NSACO05] [IMH05]. For advances in
character skinning see e.g. [WP02] [KJP02] [JT05]. Since
we are not able to cover basic elasticity theory and contin-
uum mechanics in this report, we would like to point out
that a nice review of the history of elasticity theory, start-
ing with the discovery of Hooke’s Law in 1660 (Fig. 1) and
leading up to the general equations of Navier in 1821, is
given in [Lov27]. Furthermore, great introductions to con-
tinuum mechanics and dynamics can be found in [WB97]
and in general textbooks, such as [Chu96] [Coo95] [BW97]
[Gdo93] [BLM00]. For application specific presentations,
we refer the reader to a number of recent works. For cloth
simulation, there is the text by House and Breen [HB00],
as well as the recent, extensive tutorial by Thalmann et
al. [MTCK∗04]. For hair simulation, there is the (already
slightly dated) overview by Thalmann et al. [MTHK00];
the paper by Volino and Thalmann [VMT04] gives a good,
more recent overview. Collision detection and haptic force-
feedback rendering for deformable objects are other chal-
lenging and active areas of research. For a summary of re-
cent work in these fields, we refer the reader to the report by
Teschner et al. [TKH∗05] and the course notes of Lin and
Otaduy [LO05].

In this report we take a model based point of view, moti-
vated by the fact that there are many readily available physi-
cal models for very similar applications, i.e. we can animate
an elastically or plastically deforming solid with many dif-
ferent underlying models, such as mass-spring systems, fi-
nite elements or meshfree methods. We furthermore make a
distinction between Lagrangian methods, where the model
consists of a set of points with varying locations and prop-
erties, and Eulerian methods, where model properties are
computed for a set of stationary points. To give a coarse
overview, we describe recent developments for
• Lagrangian Mesh Based Methods

– Continuum Mechanics Based Methods
– Mass-Spring Systems

• Lagrangian Mesh Free Methods

– Loosely Coupled Particle Systems
– Smoothed Particle Hydrodynamics (SPH)
– Mesh Free Methods for the solution of PDEs

• Reduced Deformation Models and Modal Analysis
• Eulerian and Semi-Lagrangian Methods

– Fluids and Gases
– Melting Objects

In each section we present the basic model formulation,
recent contributions, benefits and drawbacks, and various ar-
eas of application. The section on fluids, gases and melting
objects contains an overview of recent work and establishes
the connection to the field of physically based deformable
models. A complete survey on the animation of fluids and
gases would easily fill its own report and is therefore beyond
our scope.

Our goal is to provide an up-to-date report to the Com-
puter Graphics community, as an entry point for researchers
and developers who are new to the field, thereby comple-
menting the existing survey paper [GM97].

2. Background

2.1. Continuum Elasticity

A deformable object is typically defined by its undeformed
shape (also called equilibrium configuration, rest or initial
shape) and by a set of material parameters that define how it
deforms under applied forces. If we think of the rest shape
as a continuous connected subset M of R3, then the coor-
dinates m ∈ M of a point in the object are called material
coordinates of that point. In the discrete case M is a discrete
set of points that sample the rest shape of the object.

When forces are applied, the object deforms and a point
originally at location m (i.e. with material coordinates m)
moves to a new location x(m), the spatial or world coordi-
nates of that point. Since new locations are defined for all
material coordinates m, x is a vector field defined on M. Al-
ternatively, the deformation can also be specified by the dis-
placement vector field u(m) = x(m)−m defined on M (see
Fig. 2). From u(m) the elastic strain ε is computed (ε is a di-
mensionless quantity which, in the (linear) 1D case, is sim-
ply Δl/l). A spatially constant displacement field represents
a translation of the object with no strain. Therefore, it be-
comes clear that strain must be measured in terms of spatial
variations of the displacement field u = u(m) = (u,v,w)T .
Popular choices in Computer Graphics are

εG =
1
2 (∇u+[∇u]T +[∇u]T∇u) (1)

εC =
1
2 (∇u+[∇u]T ), (2)

where the symmetric tensor εG ∈ R3x3 is Green’s nonlinear
strain tensor and εC ∈ R3x3 its linearization, Cauchy’s linear
strain tensor. The gradient of the displacement field is a 3 by
3 matrix

∇u=




u,x u,y u,z
v,x v,y v,z
w,x w,y w,z



 , (3)

where the index after the comma represents a spatial deriva-
tive.

The material law (or constitutive law) is used for the com-
putation of the symmetric internal stress tensor σ ∈ R3x3 for

c© The Eurographics Association 2005.



Nealen, Müller, Keiser, Boxerman and Carlson / Physically Based Deformable Models in Computer Graphics

each material pointm based on the strain ε at that point (σ is
measured as force per unit area, where 1Pascal = 1Pa =
1N/m2). Most Computer Graphics papers use Hooke’s lin-
ear material law

σ= E · ε, (4)

where E is a rank four tensor which relates the coefficients
of the stress tensor linearly to the coefficients of the strain
tensor. For isotropic materials, the coefficients of E only de-
pend on Young’s modulus and Poisson’s ratio.

2.2. Time Integration

In order to simulate dynamic deformable solids, we need to
know the time dependent world coordinates x(m, t) of all
points in M. Given x(m, t), we can subsequently display the
configurations x(0),x(Δt),x(2Δt), .. resulting in an anima-
tion of the object. Here Δt is a fixed time step of the simula-
tion and x(t) represents the entire vector field at time t.

The unknown vector fields x(t) are not given directly but
implicitly as the solution of a differential equation, namely
Newton’s second law of motion of the form

ẍ= F(ẋ,x, t), (5)

where ẍ and ẋ are the second and first time derivatives of x,
respectively and F() a general function given by the physical
model of the deformable object. In order to find the solution
x(t), this second order differential equation is often rewritten
as a coupled set of two first order equations

ẋ = v (6)
v̇ = F(v,x, t), (7)

where the new quantity v represents ẋ. A discrete set of
values x(0),x(Δt),x(2Δt), .. of the unknown vector field
x which is needed for the animation can now be ob-
tained by numerically solving (i.e. integrating) this sys-
tem of equations. Numerical integration of ordinary dif-
ferential equations is the subject of many textbooks
(e.g. [PTVF92, AP98]). See [HES02] for an excellent
overview in the context of deformable modeling in computer
graphics. We give a few examples here which appear in sub-
sequent sections.

The simplest scheme is explicit (or forward) Euler inte-
gration, where the time derivatives are replaced by finite
differences v̇(t) = [v(t + Δt)− v(t)]/Δt and ẋ(t) = [x(t +
Δt)− x(t)]/Δt. Substituting these into the above equations
and solving for the quantities at the next time step t + Δt
yields

x(t+Δt) = x(t)+Δtv(t) (8)
v(t+Δt) = v(t)+ΔtF(v(t),x(t), t). (9)

Time integration schemes are evaluated by two main criteria,
their stability and their accuracy. Their accuracy is measured
by their convergence with respect to the time step size Δt, i.e.

first order O(Δt), second order O(Δt2), etc. In the field of
physically based animation in Computer Graphics, stability
is often much more important than accuracy.

The integration scheme presented above is called explicit
because it provides explicit formulas for the quantities at the
next time step. Explicit methods are easy to implement but
they are only conditionally stable, i.e. stable only if Δt is
smaller than a stability threshold (see [MHTG05] for a for-
malization). For stiff objects this threshold can be very small.
The instability is due to the fact that explicit methods extrap-
olate a constant right hand side blindly into the future as the
above equations show. For a simple spring and a large Δt, the
scheme can overshoot the equilibrium position arbitrarily. At
the next time step the restoring forces get even larger result-
ing in an exponential gain of energy and finally an explosion.
This problem can be solved by using an implicit scheme that
uses quantities at the next time step t +Δt on both sides of
the equation

x(t+Δt) = x(t)+Δtv(t+Δt) (10)
v(t+Δt) = v(t)+ΔtF(v(t+Δt),x(t+Δt), t). (11)

The scheme is now called implicit because the unknown
quantities are implicitly given as the solution of a system
of equations. Now, instead of extrapolating a constant right
hand side blindly into the future, the right hand side is part of
the solution process. Remarkably, the implicit (or backward)
Euler scheme is stable for arbitrarily large time steps Δt
(There is, however, a lower time step limit which, for prac-
tical purposes, poses no problem). This gain comes with the
price of having to solve an algebraic system of equations at
each time step (linear if F() is linear, non-linear otherwise).

A simple improvement to the forward Euler scheme is to
swap the order of the equations and use a forward-backward
scheme

v(t+Δt) = v(t)+ΔtF(v(t),x(t), t) (12)
x(t+Δt) = x(t)+Δtv(t+Δt). (13)

The update to v uses forward Euler, while the update to x
uses backward Euler. Note that the method is still explicit;
v(t +Δt) is simply evaluated first. For non-dissipative sys-
tems (ie. when forces are independent of velocities), this re-
duces to the second order accurate Stoermer-Verlet scheme.
The forward-backward Euler scheme is more stable than
standard forward Euler integration, without any additional
computational overhead.

3. Lagrangian Mesh Based Methods

3.1. The Finite Element Method

The Finite Element Method (FEM) is one of the most popu-
lar methods in Computational Sciences to solve Partial Dif-
ferential Equations (PDE’s) on irregular grids. In order to
use the method for the simulation of deformable objects,
the object is viewed as a continuous connected volume as

c© The Eurographics Association 2005.



Nealen, Müller, Keiser, Boxerman and Carlson / Physically Based Deformable Models in Computer Graphics

u(m)

(a)

m

x(m)

m

(b)

)(~ mu

)(~ mx

i
m

i
x

Figure 2: In the Finite Element method, a continuous defor-
mation (a) is approximated by a sum of (linear) basis func-
tions defined inside a set of finite elements (b).

in Section 2.1 which is discretized using an irregular mesh.
Continuum mechanics, then, provides the PDE to be solved.

The PDE governing dynamic elastic materials is given by

ρẍ= ∇·σ+ f, (14)

where ρ is the density of the material and f externally applied
forces such as gravity or collision forces. The divergence op-
erator turns the 3 by 3 stress tensor back into a 3 vector

∇·σ=




σxx,x +σxy,y+σxz,z
σyx,x +σyy,y+σyz,z
σzx,x+σzy,y+σzz,z



 , (15)

representing the internal force resulting from a deformed in-
finitesimal volume. Eq. 14 shows the equation of motion in
differential form in contrast to the integral form which is
used in the Finite Volume method.

The Finite Element Method is used to turn a PDE into a
set of algebraic equations which are then solved numerically.
To this end, the domain M is discretized into a finite number
of disjoint elements (i.e. a mesh). Instead of solving for the
spatially continuous function x(m, t), one only solves for the
discrete set of unknown positions xi(t) of the nodes of the
mesh. First, the function x(m, t) is approximated using the
nodal values by

x̃(m, t) =∑
i
xi(t)bi(m), (16)

where bi() are fixed nodal basis functions which are 1 at
node i and zero at all other nodes, also known as the Kro-
necker Delta property (see Fig. 2). In the most general case
of the Finite Element Method, the basis functions do not
have this property. In that case, the unknowns are general pa-
rameters which can not be interpreted as nodal values. Sub-
stituting x̃(m, t) into Eq. 14 results in algebraic equations
for the xi(t). In the Galerkin approach [Hun05], finding the
unknowns xi(t) is viewed as an optimization process. When
substituting x(m, t) by the approximation x̃(m, t), the infi-
nitely dimensional search space of possible solutions is re-
duced to a finite dimensional subspace. In general, no func-
tion in that subspace can solve the original PDE. The approx-
imation will generate a deviation or residue when substituted

into the PDE. In the Galerkin method, the approximation
which minimizes the residue is sought. In other words, we
look for an approximation whose residue is perpendicular to
the subspace of functions defined by Eq. 16.

Many papers in Computer Graphics use a simple form
of the Finite Element method for the simulation of de-
formable objects, sometimes called the explicit Finite Ele-
ment Method, which is quite easy to understand and to im-
plement (e.g. [OH99], [DDCB01], [MDM∗02]). The explicit
Finite Element Method is not to be confused with the stan-
dard Finite Element Method being integrated explicitly. The
explicit Finite Element Method can be integrated either ex-
plicitly or implicitly.

In the explicit Finite Element approach, both, the masses
and the internal and external forces are lumped to the ver-
tices. The nodes in the mesh are treated like mass points in a
mass-spring system while each element acts like a general-
ized spring connecting all adjacent mass points. The forces
acting on the nodes of an element due to its deformation
are computed as follows (see for instance [OH99]): given
the positions of the vertices of an element and the fixed ba-
sis functions, the continuous deformation field u(m) inside
the element can be computed using Eq. 16. From u(m), the
strain field ε(m) and stress field σ(m) are computed. The
deformation energy of the element is then given by

E =
V
ε(m) ·σ(m)dm, (17)

where the dot represents the componentwise scalar prod-
uct of the two tensors. The forces can then be computed as
the derivatives of the energy with respect to the nodal posi-
tions. In general, the relationship between nodal forces and
nodal positions is nonlinear. When linearized, the relation-
ship for an element e connecting ne nodes can simply be
expressed as

fe =Ke ue, (18)

where fe ∈ R3ne contains the ne nodal forces and ue ∈ R3ne
the ne nodal displacements of an element. The matrix Ke ∈
R3nex3ne is called the stiffness matrix of the element. Because
elastic forces coming from adjacent elements add up at a
node, a stiffness matrix K ∈ R3nx3n for an enire mesh with
n nodes can be formed by assembling the element’s stiffness
matrices

K=∑
e
Ke. (19)

In this sum, the element’s stiffness matrices are expanded to
the dimension of K by filling in zeros at positions related
to nodes not adjacent to the element. Using the linearized
elastic forces, the linear algebraic equation of motion for an
entire mesh becomes (u= x− x0)

Mü+Du̇+Ku= fext , (20)

whereM ∈ Rnxn is the mass matrix, D ∈ Rnxn the damping

c© The Eurographics Association 2005.



Nealen, Müller, Keiser, Boxerman and Carlson / Physically Based Deformable Models in Computer Graphics

matrix and fext ∈ Rn externally applied forces. Often, diago-
nal matrices are used forM and D, a technique called mass
lumping. In this case, M just contains the point masses of
the nodes of the mesh on its diagonal. The vectors x and x0
contain, respectively, the actual and the rest positions of the
nodes.

The Finite Element method only produces a linear sys-
tem of algebraic equations if applied to a linear PDE. If a
linear strain measure is used and Hooke’s law for isotropic
materials is substituted into 14, Lamé’s linear PDE results:

ρẍ= µΔu+(λ+µ)∇(∇·u), (21)

where the material constants λ and µ can be computed di-
rectly from Young’s modulus and Poisson’s ratio. This equa-
tion is solved in [DDBC99] in a multiresolution fashion.
Using discretized versions of the Laplacian (Δ = ∇2) and
gradient-of-divergence (∇(∇·)) operators, they solve the
Lamé equation on an irregular, multiresolution grid. The
system is optimized for limited deformations (linearized
strain) and does not support topological changes. Based on
Gauss’ Divergence Theorem, the discrete operators are fur-
ther evolved in [DDCB00], which leads to greater accuracy
through defined error bounds. Furthermore, the cubic octree
hierarchy employed in [DDBC99] is succeeded by a non-
nested hierarchy of meshes, in conformance with the rede-
fined operators, which leads to improved shape sampling.
In [DDCB01] the previous linearized physical model is re-
placed by local explicit finite elements and Green’s nonlin-
ear strain tensor. To increase stability the simulation is inte-
grated semi-implicitly in time [DSB99].

O’Brien et al. [OH99] and [OBH02] present a FEM based
technique for simulating brittle and ductile fracture in con-
nection with elastoplastic materials. They use tetrahedral
meshes in connection with linear basis functions bi() and
Green’s strain tensor. The resulting nonlinear equations are
solved explicitly and integrated explicitly. The method pro-
duces realistic and visually convincing results, but it is not
designed for interactive or real-time use. In addition to the
strain tensor, they use the so-called strain rate tensor (the
time derivative of the strain tensor), to compute damping
forces. Other studies on the visual simulation of brittle frac-
ture are [SWB00] and [MMDJ01].

Bro-Nielsen and Cotin [BNC96] use linearized finite el-
ements for surgery simulation. They achieve significant
speedup by simulating only the visible surface nodes (con-
densation), similar to the BEM. Many other studies suc-
cessfully apply the FEM to surgery simulation, such as
(but surely not limited to) [GTT89], [CEO∗93], [SBMH94],
[KGC∗96], [CDA99], [CDA00], [PDA00] and [PDA01].

As long as the equation of motion is integrated explic-
itly in time, nonlinear elastic forces resulting from Green’s
strain tensor pose no computational problems. The nonlin-
ear formulas for the forces are simply evaluated and used di-
rectly to integrate velocities and positions as in [OH99]. As

Figure 3: The pitbull with its inflated head (left) shows the
artifact of linear FEM under large rotational deformations.
The correct deformation is shown on the right.

mentioned earlier (Section 2.2), explicit integration schemes
are stable only for small time steps while implicit integra-
tion schemes allow arbitrarily large time steps. However, in
the latter case, a system of algebraic equations needs to be
solved at every time step. Linear PDE’s yield linear alge-
braic systems which can be solved more efficiently and more
stably than nonlinear ones. Unfortunately, linearized elastic
forces are only valid for small deformations. Large rotational
deformations yield highly inaccurate restoring forces (see
Fig. 3).

To eliminate these artifacts, Müller et al. extract the ro-
tational part of the deformation for each finite element and
compute the forces with respect to the non-rotated reference
frame [MG04]. The linear equation 18 for the elastic forces
of an element (in this case a tetrahedron) is replaced by

f= RK (RT x− x0), (22)

where R ∈ R12x12 is a matrix that contains four 3 by 3 iden-
tical rotation matrices along its diagonal. The vector x con-
tains the actual positions of the four adjacent nodes of the
tetrahedron while x0 contains their rest positions. The rota-
tion of the element used in R is computed by performing a
polar decomposition of the matrix that describes the trans-
formation of the tetrahedron from the configuration x0 to the
configuration x. This yields stable, fast and visually pleas-
ing results. In an earlier approach, they extract the rotational
part not per element but per node [MDM∗02]. In this case,
the global stiffness matrix does not need to be reassembled
at each time step but ghost forces are introduced.

Another solution to this problem is proposed
in [CGC∗02]: each region of the finite element mesh
is associated with the bone of a simple skeleton and then
locally linearized. The regions are blended in each time
step, leading to results which are visually indistinguishable
from the nonlinear solution, yet much faster.

An adaptive nonlinear FEM simulation is described by
Wu et al. [WDGT01]. Distance, surface and volume preser-
vation for triangular and tetrahedral meshes is outlined
in [THMG04]. Grinspun et al. introduce conforming, hierar-
chical, adaptive refinement methods (CHARMS) for general
finite elements [GKS02], refining basis functions instead of
elements. Irving et al. [ITF04] present a method which ro-
bustly handles large deformation and element inversion by

c© The Eurographics Association 2005.


