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Abstract
Boundary scan  is  a  structured design  technique which
can  be  used  to  simplify  the  testing  of  digital  circuits,
boards, and systems. With boundary scan, test patterns
can  be  generated  which  provide  100%  stuck-at  and
bridging fault  coverage of  board interconnections.  The
paper  describes  the  advantages  and  disadvantages  of
boundary  scan  along  with  the  application  and
implementation  of  boundary scan  circuitry.  Algorithms
for generating interconnect test patterns for stuck-at and
bridging fault coverage are also presented

Introduction

Advances in VLSI technology have increased the density
and speed of integrated circuits. Thus, the complexity and
cost  of  testing  digital  integrated  circuits,  boards,  and
systems  have  also  increased.  By  providing  a  simple
means to access the periphery of digital circuits, boundary
scan  can  greatly  simplify  the  task  of  testing  and
maintaining  systems  which  use  these  circuits.  This
advantage  allows  boundary  scan  to  reduce  the  costs  of
wafer-level  IC  testing,  board  and  system  testing,  and
system field maintenance.

Wafer-Level Testing

At the wafer level, boundary scan can be used to reduce
the need for complex probing fixtures and high-pin-count
testers1.  By  using  boundary  scan to  access  the  primary
chip  1/O,  a  simple  probe  card  consisting  of  power,
ground, and serial test interface signals can be used to test
chips  with  hundreds  of  1/O  pads2.  The  decrease  in
fixturing  complexity  simplifies  test  setup,  reduces  test
fixturing costs,  and reduces the possibility  of damaging
the device-under-test during probing.

Besides simplifying testing fixturing, boundary scan also
reduces test equipment requirements. Since the boundary
scan path provides access to the primary I/O, the testing
process is reduced to serially shifting the test pattern into
place,  executing  one  or  more  clock  operations,  and
serially  shifting  out  the  results  as  the  next  pattern  is

shifted in. Thus a small, inexpensive testing computer can
be  used  to  perform  chip  testing.  This  simple  setup  is
shown in Figure 1.

At the board level, boundary scan can be used to resolve
testing  difficulties  introduced  by  new  packaging
technologies  associated with surface mount devices  and
mufti-chip  packages.  Traditional  methods  for  digital
board  testing  include  through-the-hole  probing  to  gain
access  to  the  primary  component  I/O  with  a
"bed-of-nails"  testing  fixture.   Difficulties  with  the
"bed-of-nails" approach include degraded reliability due
to  over-driving  connections  from  other  board
components,  physical  limitation  of  through-the-hole
accessibility, difficulty of reproducing tests, and expenses
involved  with  developing  the  "bed-of-nails"  testing
fixture3,4. These problems, combined with the increasing
use of surface-mount technology5 and the need for high
speed  and  high  pin  count  testers,  have  resulted  in
extremely expensive board-level testing costs.

Boundary scan can reduce the problems associated with
board-level testing. As shown in Figure 2, boundary scan
provides serial access to the primary component I/O and
their interconnections. This allows any component to be
partitioned from the rest of the board during testing and
eliminates  the  need  for  a  "bed-of-nails"  testing  fixture.
Also, boundary scan reduces the time and cost associated
with test pattern generation because test patterns used on
the component at wafer level can be modified and applied
through the boundary scan path. This can be useful when
components are purchased from outside vendors and 
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Figure 2. Board-Level Testing with Boundary Scan
knowledge of the internal circuitry is limited. Since board
interconnections  are  easily  accessed,  simple  algorithms
can be used to generate test patterns which provide 100%
stuck-at and bridging fault coverage.

As  was  the  case  at  wafer-level  testing,  boundary  scan
greatly simplifies the setup required for board testing as
shown  in  Figure  2.  This  setup  reduces  testing  costs
because the test patterns can be applied serially with an
inexpensive test computer through a simple test interface
consisting  of  the  boundary  scan-in  signal,  boundary
scan-out signal, and necessary control lines.

Field Testing

Boundary scan can also reduce the cost  of system field
maintenance. Since boundary scan tests the input buffers,
the  output  buffers,  and  all  component  interconnect,  it
provides  excellent  coverage  of  the  most  common  field
failures.  Furthermore,  the  procedure  for  testing  with
boundary  scan  in  the  field  is  nearly  identical  to  that
described for board-level testing. Thus field testing can be
performed using  a  simple  testing  computer  accessing  a
serial  test  interface.  Since  very  few  interconnect  test
patterns  are  required,  the  testing  computer  can  be  as
simple  as  a  lap-top  personal  computer,  which  is
ideally-suited for field maintenance.

Boundary  scan  can  be  used  to  test  the  system
interconnections  and  to  partition  the  system  into
separately-tested modules. In this case, testing will isolate
the  fault  to  a  single  module  or  to  a  faulty
interconnections)  if  the  individual  modules  can
themselves can be adequately tested. If boundary scan is
extended to the component level, the fault can be isolated
to the individual component. Thus, cost-effective repair of
the  module  is  possible  since  the  faulty  component  or
interconnection can be easily  identified for replacement
or repair.

Figure 3. A Conceptual Diagram for Boundary Scan

Boundary  scan  can  also  be  used  as  part  of  a  system
self-test strategy. By allowing a system test processor to
access the boundary scan paths in the system, boundary
scan can be used to test the system interconnections and
to partition the system into smaller self-testable units. The
easy  execution  of  self-test  and  improved  fault  isolation
provided  by  boundary  scan  reduce  the
mean-time-to-repair;  thereby  increasing  system
availability.

IMPLEMENTING BOUNDARY SCAN

Before  actually  implementing  boundary  scan,  a  number
of  options  must  be  considered  which  affect  both  the
design  and  capabilities  of  the  boundary  scan  circuitry.
These options include: the use of application registers as
boundary scan registers, the control of output buffers, the
selection of a test interface, and the implementation of the
boundary  registers.  These  options  and  others  are
addressed in the following sections on implementing the
components of a boundary scan technique.

Dedicated Boundary Scan Registers

Boundary registers can either be dedicated for boundary
scan testing or they can be used in both functional  and
test  modes.  When  implementing  boundary  scan  on
high-speed bipolar integrated circuits, we found that there
were  a number  of  advantages  to using some functional
registers for boundary scan testing. First, the high-speed
of the system mandates that most of the chip inputs and
outputs be registered directly at the I/O buffer. Since we
already incorporate serial scan6 in our chip designs, these
registers  were  easily  added  to  the  boundary  scan  path.
Dedicated boundary "shadow" registers are then added to
any  I/O  which  are  not  directly  registered.  A  2:1
multiplexer is used to make the shadow registers visible
during the test mode and invisible during the functional
mode.  This  approach  of  exploiting  existing  registers
substantially reduces both the circuit and power overhead
associated  with  boundary  scan  and  eliminates  a  2:1
multiplexer delay from the path of critical signals.

If  boundary  scan is  to be implemented on a gate  array
product, associating dedicated shadow scan registers with
the I/O buffers at the periphery of the array has a number
of advantages. First, the user of the gate array can utilize
boundary  scan  with  little  or  no  design  effort.
Furthermore,  array  cells  are  not  consumed  when
implementing  boundary  scan  and  numerous  signal
routings are eliminated. Finally, implementing dedicated
boundary scan registers on a CMOS gate array product2
will not significantly increase the chip power (contrary to
bipolar designs).

The Boundary Scan Bit-slice
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The boundary scan registers consist of bit-slices that are
attached  to  each  application  input  and  output.  Our
implementation  of  this  bit-slice  is  shown  in  Figure  4.
This consists of a 3:1 multiplexer which allows data to be
loaded in the functional mode, serial data to be shifted in
the test mode, and a reset operation to be performed. The
output of the multiplexer is then fed to the scan flip-flop
which  in  turn  drives  the  scan  out  signal  and  the  chip
output.

As  data  is  shifted  through the  boundary  scan  path,  the
chip  outputs  must  be  latched  or  disabled  to  prevent
unwanted and possibly damaging output conditions.  For
example, the scan operation could damage output buffers
by forcing two separate output drivers on the same net to
different  logic  levels.  Also,  the  shifting  operation  may
cause a large number of output buffers to change state at
the same time; resulting in excessive noise on power and
ground busses. For these reasons, a global output buffer
disable  signal  is  included  in  our  implementation  of
boundary scan and can be controlled by the test interface
circuitry.

If  the  testing  of  asynchronous  sequential  logic  is
necessary, a latch must be added to between the flip-flop
and output buffer to hold the output state during shifting
operations. A similar latch would also be required at the
input  boundary  register  if  the  application  logic  array
contained asynchronous sequential logic to be tested with
the boundary scan circuitry. Typically, we do not include
this  latch  because  we  infrequently  use  asynchronous
sequential logic in our digital system designs.

Another implementation concern involves connecting the
boundary scan bit-slices as inverting serial shift registers
or as non-inverting serial shift registers. The advantages
of  an  inverting  serial  shift  path  include  the  easy
identification of faults in the shift path. To test the shift
path, the entire path is reset to either a logic 0 or a logic 1
and the contents are shifted out. The serial output pin is
then  examined  for  an  alternating  pattern  of  ones  and
zeros. If the data remains at a logic 1 or 0 after k clocks,
then  we  know that  a  fault  exists  k  bits  back  from the
output pin. With this information, we can quickly isolate
the  cause  of  the  fault.  Without  the  inverting  boundary

scan path, finding the fault could be tedious and difficult
task. For this reason, we frequently make use of inverting
serial shift paths when implementing boundary scan.

The Test Interface

Selecting an appropriate test interface is a very important
part  of  the  boundary  scan  implementation.  A  common
interface will allow the boundary scan paths of multiple
chips on a complex circuit  board to be easily accessed.
Without this common interface, many of the advantages
of using boundary scan at the board level are diminished
due to the difficulty in using the technique.

To  resolve  this  problem,  we  are  using  the  VHSIC
standard Element Test and Maintenance Bus7 (ETM-Bus)
as our  serial  test  interface  for  boundary  scan and other
on-chip design-for-test techniques8. If the serial test bus is
to  be  connected  solely  to  on-chip  boundary  scan,  a
simplified version of this interface logic can be used

INTERCONNECT TEST PATTERN GENERATION

When  testing  interconnection  nets  on a digital  module,
both  stuck-at  and  bridging  faults  must  be  considered.
Since  the  boundary  scan  path  provides  direct  access  to
these nets, test patterns can be generated which provide
100%  coverage  of  these  faults.  The  following  sections
discuss  algorithms  we  use  for  the  generation  and
application of boundary scan test patterns which detect all
possible stuck-at and bridging faults.

Stuck-at Fault Test Pattern Generation

Because  stuck-at  faults  occur  on  a  variety  of  bus
configurations,  different  test  pattern  generation
algorithms are required for  wired-AND,  wired-OR, and
three-state interconnect nets.

Testing  wired  -  AND  interconnection  nets  .  As  the  name
implies,  the  values  forced  on  a  wired-AND
interconnection  net  are  logically  ANDed  to  obtain  the
resulting value. Thus, the wired-AND net can be treated
in the same way as an AND gate where 100% of all the
stuck-at  faults  can be detected with k + 1 test  patterns
where k is the number of inputs. The test patterns can be
divided into k patterns  which test for stuck-at  '1'  faults
and a single pattern which tests for all stuck-at '0' faults.
Figure 5 shows the steps we use for testing wired-AND
interconnection  nets.
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____________________________________________

1) The driver to be tested is set to a logic '0'

2) All other drivers on the net are set to a logic ' 1'

3) The data is clocked into the receivers

4) All receivers on the net are examined for a logic '0'

5) Repeat steps 1-4 until each driver is tested

6) Every driver is set to a logic '1'

7) The data is clocked into the receivers

8) Every receiver is examined for a logic '1'

Figure 5: S-A Faults Testing Steps for Wired-AND Nets

Testing  wired  -  OR interconnection  nets  .  Generating  test
patterns  for  a  wired-OR  interconnection  net  is  nearly
identical to the wired-AND case. For a wired-OR net with
k drivers, 100% of all stuck-at faults can be detected with
k + 1 test patterns. In this case, the test patterns can be
divided into k patterns which test  for  stuck-at '0'  faults
and a single pattern which tests for all stuck-at '1' faults.
Figure  6  shows  the  steps  we  use  for  testing  wired-OR
interconnection nets.

1) The driver to be tested is set to a logic '1'

2) All other drivers on the net are set to a logic '0'

3) The data is clocked into the receivers

4) All receivers on the net are examined for a logic '1'

5) Repeat steps 1-4 until each driver is tested

6) Every driver is set to a logic '0'

7) The data is clocked into the receivers

8) Every receiver is examined for a logic '0'

______________________________________________

Figure 6: S-A Faults Testing Steps for Wired-OR Nets

Testing  three  -  state  interconnection  nets  .  When  a
three-state  interconnection  net  is  used,  multiple  drivers
control one or more receivers as shown in Figure 7. Since
only a single driver  can be enabled at  any one time,  a
special  restriction  is  imposed  on  the  generation  of  the
three-state interconnect test patterns. In order to achieve
100% stuck-at fault coverage, each driver on the net must
be individually for stuck-at '1' and stuck-at '0' faults while
the remaining drivers are disabled. Since this requires  2
test vectors per driver, 100% stuck-at fault coverage can
be achieved using 2 • k test vectors where k is the number
drivers on the net. The steps we use for testing three-state
interconnect nets are shown in Figure 8.

_____________________________________________

1) The driver to be tested is enabled and set to a logic '1'

2) All other drivers are set to a logic '0' and disabled

3) The data is clocked into the receivers

4) The receivers are examined for a logic '1'

6) Repeat steps 1-5 until all drivers have been tested

7) The driver to be tested is enabled and set to a logic '0'

8) All other drivers are set to a logic ' 1' and disabled

9) The data is clocked into the receivers

10) All receivers are examined for a logic '0'

11) Repeat steps 7-11 until all drivers have been tested

____________________________________________

Figure 8:  S-A Fault Testing Steps for Three-state Nets

Bridging Fault Test Pattern Generation

In addition to testing for stuck-at faults, we also test the
interconnects for bridging faults. A bridging fault occurs
when  two  nets  are  electrically  connected  as  shown  in
Figure  9.  A  procedure  which  detects  this  fault  is
described in Figure 10.
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1) Enable the drivers on each net

2) Apply a logic '1' to all drivers on the first net

3) Apply a logic '0' to all drivers on the second net

4) Clock the data into the receivers

5) Examine at least one receiver on each net

6)  If  the  data  at  the  receiver  of  either  net  does  not
correspond with the data applied at the respective driver,
then a bridging fault exists between the nets

Figure 10: The Procedure for Detecting a Bridging Fault
The  procedure  described  in  Figure  10  operates  on  two
nets.  Since  a  digital  module  may  contain  hundreds  of
interconnection  nets,  this  procedure  must  be  applied  to
every possible pair of nets to achieve 100% bridging fault
coverage. Since separate pairs of nets can be tested at the
same time, 100% bridging fault coverage can be achieved
with log2(n + 2) test vectors where n is the number of nets
on the board9.

Bridging fault test generation example. The algorithm we
use to generate the log2(n + 2) test patterns for bridging
fault  detection  is  best  illustrated  through  a  simple
example. The example given below uses a board with 8
interconnect nets.

Step 1 - Determine the total number of nets on the board
In this example, n = 8 which requires log2(8 + 2) or 4 test
vectors.

Step 2  - Assign each interconnect net a unique number.
Assignments  should  begin  with  the  number  1  and
continue in increments of 1. In this example, the first net
is given the number 1, the second net is given the number
2, and the last net is given the number 8.

Step 3  - Assign binary values  to  each net.  Since  4 test
vectors  are  required,  assign  each  net  the  4-bit  binary
equivalent of the net number assigned in the previous step
as shown in Figure 11.

interconnect net 1 - 0001
interconnect net 2 - 0010
interconnect net 3 - 0011
interconnect net 4 - 0100
interconnect net 5 - 0101

interconnect net 6 - 0110
interconnect net 7 - 0111
interconnect net 8 – 1000

Figure 11: The Binary Numbers Assigned to the 8 Nets

Step 4 - Determine the test vectors. The first test vector is
comprised of all the bits in the least significant position of
the binary numbers. The second test vector is comprised
of the bits in the second least significant position. This is
continued  until  all  bit  positions  of  the  binary  numbers
have been used. The resulting test vectors are shown in
Figure 12.

test vector 1 - 10101010
test vector 2 - 01100110
test vector 3 - 00011110
test vector 4 - 00000001

Figure 12: The Bridging Fault Test Vectors for the 8 Nets

Isolating the faulty interconnects. The bridging fault test
pattern  generation  scheme  described  in  the  previous
section  provides  a  quick  and  easy  method  of  bridging
fault  detection.  Although this scheme determines if any
bridging  faults  exist,  it  does  not  isolate  every
interconnection  net  with  a  bridging  fault.  If  repairing
interconnection nets with bridging faults is possible, all of
the faulty interconnects need to be identified. This can be
accomplished  using  the  test  patterns  generated  by  the
algorithm described in the previous example along with
an additional log2(n + 2) test patterns. Thus, 2 • log2(n +
2) test patterns can be used to provide complete bridging
fault isolation of the interconnection nets.

test vector 5 - 01010101 
test vector 6 - 10011001 
test vector 7 - 11100001 

       test vector 8 - 11111110

Figure 13: Additional Test Vectors for Isolating Faulty Nets

The additional log2  (n + 2) test patterns are generated by
simply inverting the binary values of the first log2(n + 2)
test vectors. For the previous example, these test vectors
are shown in Figure 13. To identify those interconnects
with  bridging  faults,  a  list  of  the  faulty  nets  can  be
maintained  during  testing.  When  a  bridging  fault  is
detected,  the  corresponding  interconnect  net  can  be
identified and added to this list. After all the test patterns
have been applied,  the list will contain all of the faulty
interconnection nets.
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CONCLUSIONS

Boundary  scan  simplifies  the  testing  of  digital  circuits,
boards, and systems. Since boundary scan provides easy
access to the periphery of digital circuits through a serial
shift path, the setup needed for testing is simplified to an
inexpensive  computer  and  a  simple  test  interface.  This
reduces the complexity and costs of wafer-level testing,
board-level testing, and field maintenance.

Boundary  scan  allows  easy  partitioning  of  board
components  and  interconnects,  thus  wafer-level  test
patterns can be modified and used to test the components
on  the  board.  Also,  the  simple  algorithms  presented
generate test  patterns which provide 100% stuck-at and
bridging  fault  coverage  of  board  interconnects.  These
advantages  allow boundary  scan to  significantly  reduce
test  and  maintenance  costs  while  maintaining  a  high
percentage  of  fault  coverage  at  the  circuit,  board,  and
system level.
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