
INTERCONNECT TESTING WITH BOUNDARY SCAN

Paul Wagner
Honeywell, Inc.

Solid State Electronics Division
12001 State Highway 55

Plymouth, Minnesota 55441

Abstract
Boundary scan is a structured design technique which
can be used to simplify the testing of digital circuits,
boards, and systems. With boundary scan, test patterns
can be generated which provide 100% stuck-at and
bridging fault coverage of board interconnections. The
paper describes the advantages and disadvantages of
boundary scan along with the application and
implementation of boundary scan circuitry. Algorithms
for generating interconnect test patterns for stuck-at and
bridging fault coverage are also presented

Introduction

Advances in VLSI technology have increased the density
and speed of integrated circuits. Thus, the complexity and
cost of testing digital integrated circuits, boards, and
systems have also increased. By providing a simple
means to access the periphery of digital circuits, boundary
scan can greatly simplify the task of testing and
maintaining systems which use these circuits. This
advantage allows boundary scan to reduce the costs of
wafer-level IC testing, board and system testing, and
system field maintenance.

Wafer-Level Testing

At the wafer level, boundary scan can be used to reduce
the need for complex probing fixtures and high-pin-count
testers1. By using boundary scan to access the primary
chip 1/O, a simple probe card consisting of power,
ground, and serial test interface signals can be used to test
chips with hundreds of 1/O pads2. The decrease in
fixturing complexity simplifies test setup, reduces test
fixturing costs, and reduces the possibility of damaging
the device-under-test during probing.

Besides simplifying testing fixturing, boundary scan also
reduces test equipment requirements. Since the boundary
scan path provides access to the primary I/O, the testing
process is reduced to serially shifting the test pattern into
place, executing one or more clock operations, and
serially shifting out the results as the next pattern is

shifted in. Thus a small, inexpensive testing computer can
be used to perform chip testing. This simple setup is
shown in Figure 1.

At the board level, boundary scan can be used to resolve
testing difficulties introduced by new packaging
technologies associated with surface mount devices and
mufti-chip packages. Traditional methods for digital
board testing include through-the-hole probing to gain
access to the primary component I/O with a
"bed-of-nails" testing fixture. Difficulties with the
"bed-of-nails" approach include degraded reliability due
to over-driving connections from other board
components, physical limitation of through-the-hole
accessibility, difficulty of reproducing tests, and expenses
involved with developing the "bed-of-nails" testing
fixture3,4. These problems, combined with the increasing
use of surface-mount technology5 and the need for high
speed and high pin count testers, have resulted in
extremely expensive board-level testing costs.

Boundary scan can reduce the problems associated with
board-level testing. As shown in Figure 2, boundary scan
provides serial access to the primary component I/O and
their interconnections. This allows any component to be
partitioned from the rest of the board during testing and
eliminates the need for a "bed-of-nails" testing fixture.
Also, boundary scan reduces the time and cost associated
with test pattern generation because test patterns used on
the component at wafer level can be modified and applied
through the boundary scan path. This can be useful when
components are purchased from outside vendors and

Paper 2.2 1987 International Test Conference CH2347-2/87/0000/0052$01.00 © 1987 IEEE

Figure 2. Board-Level Testing with Boundary Scan
knowledge of the internal circuitry is limited. Since board
interconnections are easily accessed, simple algorithms
can be used to generate test patterns which provide 100%
stuck-at and bridging fault coverage.

As was the case at wafer-level testing, boundary scan
greatly simplifies the setup required for board testing as
shown in Figure 2. This setup reduces testing costs
because the test patterns can be applied serially with an
inexpensive test computer through a simple test interface
consisting of the boundary scan-in signal, boundary
scan-out signal, and necessary control lines.

Field Testing

Boundary scan can also reduce the cost of system field
maintenance. Since boundary scan tests the input buffers,
the output buffers, and all component interconnect, it
provides excellent coverage of the most common field
failures. Furthermore, the procedure for testing with
boundary scan in the field is nearly identical to that
described for board-level testing. Thus field testing can be
performed using a simple testing computer accessing a
serial test interface. Since very few interconnect test
patterns are required, the testing computer can be as
simple as a lap-top personal computer, which is
ideally-suited for field maintenance.

Boundary scan can be used to test the system
interconnections and to partition the system into
separately-tested modules. In this case, testing will isolate
the fault to a single module or to a faulty
interconnections) if the individual modules can
themselves can be adequately tested. If boundary scan is
extended to the component level, the fault can be isolated
to the individual component. Thus, cost-effective repair of
the module is possible since the faulty component or
interconnection can be easily identified for replacement
or repair.

Figure 3. A Conceptual Diagram for Boundary Scan

Boundary scan can also be used as part of a system
self-test strategy. By allowing a system test processor to
access the boundary scan paths in the system, boundary
scan can be used to test the system interconnections and
to partition the system into smaller self-testable units. The
easy execution of self-test and improved fault isolation
provided by boundary scan reduce the
mean-time-to-repair; thereby increasing system
availability.

IMPLEMENTING BOUNDARY SCAN

Before actually implementing boundary scan, a number
of options must be considered which affect both the
design and capabilities of the boundary scan circuitry.
These options include: the use of application registers as
boundary scan registers, the control of output buffers, the
selection of a test interface, and the implementation of the
boundary registers. These options and others are
addressed in the following sections on implementing the
components of a boundary scan technique.

Dedicated Boundary Scan Registers

Boundary registers can either be dedicated for boundary
scan testing or they can be used in both functional and
test modes. When implementing boundary scan on
high-speed bipolar integrated circuits, we found that there
were a number of advantages to using some functional
registers for boundary scan testing. First, the high-speed
of the system mandates that most of the chip inputs and
outputs be registered directly at the I/O buffer. Since we
already incorporate serial scan6 in our chip designs, these
registers were easily added to the boundary scan path.
Dedicated boundary "shadow" registers are then added to
any I/O which are not directly registered. A 2:1
multiplexer is used to make the shadow registers visible
during the test mode and invisible during the functional
mode. This approach of exploiting existing registers
substantially reduces both the circuit and power overhead
associated with boundary scan and eliminates a 2:1
multiplexer delay from the path of critical signals.

If boundary scan is to be implemented on a gate array
product, associating dedicated shadow scan registers with
the I/O buffers at the periphery of the array has a number
of advantages. First, the user of the gate array can utilize
boundary scan with little or no design effort.
Furthermore, array cells are not consumed when
implementing boundary scan and numerous signal
routings are eliminated. Finally, implementing dedicated
boundary scan registers on a CMOS gate array product2
will not significantly increase the chip power (contrary to
bipolar designs).

The Boundary Scan Bit-slice
Paper 2.2 1987 International Test Conference CH2347-2/87/0000/0052$01.00 © 1987 IEEE

The boundary scan registers consist of bit-slices that are
attached to each application input and output. Our
implementation of this bit-slice is shown in Figure 4.
This consists of a 3:1 multiplexer which allows data to be
loaded in the functional mode, serial data to be shifted in
the test mode, and a reset operation to be performed. The
output of the multiplexer is then fed to the scan flip-flop
which in turn drives the scan out signal and the chip
output.

As data is shifted through the boundary scan path, the
chip outputs must be latched or disabled to prevent
unwanted and possibly damaging output conditions. For
example, the scan operation could damage output buffers
by forcing two separate output drivers on the same net to
different logic levels. Also, the shifting operation may
cause a large number of output buffers to change state at
the same time; resulting in excessive noise on power and
ground busses. For these reasons, a global output buffer
disable signal is included in our implementation of
boundary scan and can be controlled by the test interface
circuitry.

If the testing of asynchronous sequential logic is
necessary, a latch must be added to between the flip-flop
and output buffer to hold the output state during shifting
operations. A similar latch would also be required at the
input boundary register if the application logic array
contained asynchronous sequential logic to be tested with
the boundary scan circuitry. Typically, we do not include
this latch because we infrequently use asynchronous
sequential logic in our digital system designs.

Another implementation concern involves connecting the
boundary scan bit-slices as inverting serial shift registers
or as non-inverting serial shift registers. The advantages
of an inverting serial shift path include the easy
identification of faults in the shift path. To test the shift
path, the entire path is reset to either a logic 0 or a logic 1
and the contents are shifted out. The serial output pin is
then examined for an alternating pattern of ones and
zeros. If the data remains at a logic 1 or 0 after k clocks,
then we know that a fault exists k bits back from the
output pin. With this information, we can quickly isolate
the cause of the fault. Without the inverting boundary

scan path, finding the fault could be tedious and difficult
task. For this reason, we frequently make use of inverting
serial shift paths when implementing boundary scan.

The Test Interface

Selecting an appropriate test interface is a very important
part of the boundary scan implementation. A common
interface will allow the boundary scan paths of multiple
chips on a complex circuit board to be easily accessed.
Without this common interface, many of the advantages
of using boundary scan at the board level are diminished
due to the difficulty in using the technique.

To resolve this problem, we are using the VHSIC
standard Element Test and Maintenance Bus7 (ETM-Bus)
as our serial test interface for boundary scan and other
on-chip design-for-test techniques8. If the serial test bus is
to be connected solely to on-chip boundary scan, a
simplified version of this interface logic can be used

INTERCONNECT TEST PATTERN GENERATION

When testing interconnection nets on a digital module,
both stuck-at and bridging faults must be considered.
Since the boundary scan path provides direct access to
these nets, test patterns can be generated which provide
100% coverage of these faults. The following sections
discuss algorithms we use for the generation and
application of boundary scan test patterns which detect all
possible stuck-at and bridging faults.

Stuck-at Fault Test Pattern Generation

Because stuck-at faults occur on a variety of bus
configurations, different test pattern generation
algorithms are required for wired-AND, wired-OR, and
three-state interconnect nets.

Testing wired - AND interconnection nets . As the name
implies, the values forced on a wired-AND
interconnection net are logically ANDed to obtain the
resulting value. Thus, the wired-AND net can be treated
in the same way as an AND gate where 100% of all the
stuck-at faults can be detected with k + 1 test patterns
where k is the number of inputs. The test patterns can be
divided into k patterns which test for stuck-at '1' faults
and a single pattern which tests for all stuck-at '0' faults.
Figure 5 shows the steps we use for testing wired-AND
interconnection nets.

Paper 2.2 1987 International Test Conference CH2347-2/87/0000/0052$01.00 © 1987 IEEE

__

1) The driver to be tested is set to a logic '0'

2) All other drivers on the net are set to a logic ' 1'

3) The data is clocked into the receivers

4) All receivers on the net are examined for a logic '0'

5) Repeat steps 1-4 until each driver is tested

6) Every driver is set to a logic '1'

7) The data is clocked into the receivers

8) Every receiver is examined for a logic '1'

Figure 5: S-A Faults Testing Steps for Wired-AND Nets

Testing wired - OR interconnection nets . Generating test
patterns for a wired-OR interconnection net is nearly
identical to the wired-AND case. For a wired-OR net with
k drivers, 100% of all stuck-at faults can be detected with
k + 1 test patterns. In this case, the test patterns can be
divided into k patterns which test for stuck-at '0' faults
and a single pattern which tests for all stuck-at '1' faults.
Figure 6 shows the steps we use for testing wired-OR
interconnection nets.

1) The driver to be tested is set to a logic '1'

2) All other drivers on the net are set to a logic '0'

3) The data is clocked into the receivers

4) All receivers on the net are examined for a logic '1'

5) Repeat steps 1-4 until each driver is tested

6) Every driver is set to a logic '0'

7) The data is clocked into the receivers

8) Every receiver is examined for a logic '0'

__

Figure 6: S-A Faults Testing Steps for Wired-OR Nets

Testing three - state interconnection nets . When a
three-state interconnection net is used, multiple drivers
control one or more receivers as shown in Figure 7. Since
only a single driver can be enabled at any one time, a
special restriction is imposed on the generation of the
three-state interconnect test patterns. In order to achieve
100% stuck-at fault coverage, each driver on the net must
be individually for stuck-at '1' and stuck-at '0' faults while
the remaining drivers are disabled. Since this requires 2
test vectors per driver, 100% stuck-at fault coverage can
be achieved using 2 • k test vectors where k is the number
drivers on the net. The steps we use for testing three-state
interconnect nets are shown in Figure 8.

1) The driver to be tested is enabled and set to a logic '1'

2) All other drivers are set to a logic '0' and disabled

3) The data is clocked into the receivers

4) The receivers are examined for a logic '1'

6) Repeat steps 1-5 until all drivers have been tested

7) The driver to be tested is enabled and set to a logic '0'

8) All other drivers are set to a logic ' 1' and disabled

9) The data is clocked into the receivers

10) All receivers are examined for a logic '0'

11) Repeat steps 7-11 until all drivers have been tested

__

Figure 8: S-A Fault Testing Steps for Three-state Nets

Bridging Fault Test Pattern Generation

In addition to testing for stuck-at faults, we also test the
interconnects for bridging faults. A bridging fault occurs
when two nets are electrically connected as shown in
Figure 9. A procedure which detects this fault is
described in Figure 10.

Paper 2.2 1987 International Test Conference CH2347-2/87/0000/0052$01.00 © 1987 IEEE

1) Enable the drivers on each net

2) Apply a logic '1' to all drivers on the first net

3) Apply a logic '0' to all drivers on the second net

4) Clock the data into the receivers

5) Examine at least one receiver on each net

6) If the data at the receiver of either net does not
correspond with the data applied at the respective driver,
then a bridging fault exists between the nets

Figure 10: The Procedure for Detecting a Bridging Fault
The procedure described in Figure 10 operates on two
nets. Since a digital module may contain hundreds of
interconnection nets, this procedure must be applied to
every possible pair of nets to achieve 100% bridging fault
coverage. Since separate pairs of nets can be tested at the
same time, 100% bridging fault coverage can be achieved
with log2(n + 2) test vectors where n is the number of nets
on the board9.

Bridging fault test generation example. The algorithm we
use to generate the log2(n + 2) test patterns for bridging
fault detection is best illustrated through a simple
example. The example given below uses a board with 8
interconnect nets.

Step 1 - Determine the total number of nets on the board
In this example, n = 8 which requires log2(8 + 2) or 4 test
vectors.

Step 2 - Assign each interconnect net a unique number.
Assignments should begin with the number 1 and
continue in increments of 1. In this example, the first net
is given the number 1, the second net is given the number
2, and the last net is given the number 8.

Step 3 - Assign binary values to each net. Since 4 test
vectors are required, assign each net the 4-bit binary
equivalent of the net number assigned in the previous step
as shown in Figure 11.

interconnect net 1 - 0001
interconnect net 2 - 0010
interconnect net 3 - 0011
interconnect net 4 - 0100
interconnect net 5 - 0101

interconnect net 6 - 0110
interconnect net 7 - 0111
interconnect net 8 – 1000

Figure 11: The Binary Numbers Assigned to the 8 Nets

Step 4 - Determine the test vectors. The first test vector is
comprised of all the bits in the least significant position of
the binary numbers. The second test vector is comprised
of the bits in the second least significant position. This is
continued until all bit positions of the binary numbers
have been used. The resulting test vectors are shown in
Figure 12.

test vector 1 - 10101010
test vector 2 - 01100110
test vector 3 - 00011110
test vector 4 - 00000001

Figure 12: The Bridging Fault Test Vectors for the 8 Nets

Isolating the faulty interconnects. The bridging fault test
pattern generation scheme described in the previous
section provides a quick and easy method of bridging
fault detection. Although this scheme determines if any
bridging faults exist, it does not isolate every
interconnection net with a bridging fault. If repairing
interconnection nets with bridging faults is possible, all of
the faulty interconnects need to be identified. This can be
accomplished using the test patterns generated by the
algorithm described in the previous example along with
an additional log2(n + 2) test patterns. Thus, 2 • log2(n +
2) test patterns can be used to provide complete bridging
fault isolation of the interconnection nets.

test vector 5 - 01010101
test vector 6 - 10011001
test vector 7 - 11100001

 test vector 8 - 11111110

Figure 13: Additional Test Vectors for Isolating Faulty Nets

The additional log2 (n + 2) test patterns are generated by
simply inverting the binary values of the first log2(n + 2)
test vectors. For the previous example, these test vectors
are shown in Figure 13. To identify those interconnects
with bridging faults, a list of the faulty nets can be
maintained during testing. When a bridging fault is
detected, the corresponding interconnect net can be
identified and added to this list. After all the test patterns
have been applied, the list will contain all of the faulty
interconnection nets.

Paper 2.2 1987 International Test Conference CH2347-2/87/0000/0052$01.00 © 1987 IEEE

CONCLUSIONS

Boundary scan simplifies the testing of digital circuits,
boards, and systems. Since boundary scan provides easy
access to the periphery of digital circuits through a serial
shift path, the setup needed for testing is simplified to an
inexpensive computer and a simple test interface. This
reduces the complexity and costs of wafer-level testing,
board-level testing, and field maintenance.

Boundary scan allows easy partitioning of board
components and interconnects, thus wafer-level test
patterns can be modified and used to test the components
on the board. Also, the simple algorithms presented
generate test patterns which provide 100% stuck-at and
bridging fault coverage of board interconnects. These
advantages allow boundary scan to significantly reduce
test and maintenance costs while maintaining a high
percentage of fault coverage at the circuit, board, and
system level.

REFERENCES

[1] J. J. Zasio, "Shifting Away From Probes For
Wafer Test;" COMPCOM S'83, San
Francisco,-CA, pp. 317-320.

[2] R. Lake, "A Fast 20k Gate Array With On-chip
Test System;" VLSI Systems Design, June 1986,
pp. 47-55.

[3] F. P. M. Beenker, "Systematic and Structured
Methods for Digital Board Testing;" IEEE
International Test Conference 1985
Proceedings, pp. 380-385.

[4] H. Bleeker and D. van de Lagemaat, "Testing A
Board with Leaded and Surface Mounted
Components;' IEEE International Test
Conference 1986 Proceedings, pp. 317-320.

[5] W. Booth, "VLSI Era Packaging;" VLSI Design,
December 1986, pp. 22-35.

[6] H. W. Miller, "Design for Test Via Standardized
Design and Display Techniques;" Electronics
Test, October 1983, pp. 38-61.

Paper 2.2 1987 International Test Conference CH2347-2/87/0000/0052$01.00 © 1987 IEEE

