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Summary. This article introduces an observable model equivalent to Hidden
Markov Models. The model does not contain hidden part and has same major
properties as respective HMM. OMMs also direct to the noncritical and obvious
improvements in the major algorithms.

1 Introduction

We will use following notions.

Definition 1. Oriented graph G is the pair (EG, V G), where EG ⊂ V G×V G.
V G is called set of vertices and EG is called set of edges. For any edge x = (µ, ν)
denote µ = dom (x), ν = cod (x).

Definition 2. I = [0, 1].

Definition 3. Probability space is the triple (Ω, F, P), where F ⊆ 2Ω is σ -
algebra of subsets of Ω and P : F → R is probability measure on F ([2]).

Definition 4. If Ω either R or countable then P is called probability distribution
on Ω ([3]). If Ω = R then F is Borel algebra on R, which is unique, if Ω is
countable then F = 2Ω and therefore definition of Ω in these cases uniquely
determines F and we will say that P is probability distribution on Ω.

Definition 5. Let A be graph called primary graph and B be set of letters
called alphabet or observables and ∀µ ∈ V A there are probability distributions
bµ on B and aµ on {(µ, ν) ∈ EA}. bµ is called distribution of observable for the
vertex µ and aµ is called transition distribution from the vertex µ. These two
sets of distributions could be interpreted as functions b : V A × B → I and a :
V A×EA → I respectively. Function ι : V A → R- probability distribution on V A

called initial state distribution. Following [1] under HMM we will understand
λ = (a, b, ι).

In voice recognition systems it’s usually assumed that for the primary graph
V A = {ν0, ν1, ν2, ν3, ν4} and
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EA = {(ν0, ν1) , (ν1, ν1) , (ν1, ν2) , (ν2, ν2) , (ν2, ν3) , (ν3, ν3) , (ν3, ν4)} ,

i.e. A is ”chain” with loops on internal vertices and ι (ν) =
{

1, ν = ν0

0, ν 6= ν0
.

1.1 Hidden Markov Models (HMM), basic algorithms

There are 3 problems of HMM, but we will be interested in #1 and #3 only.
Let T = {0, ..., T − 1} and T − 1 = {0, ..., T − 2}, OT =

{
ot ∈ B|t ∈ T

}
- ob-

servation sequence of letters of alphabet B, QT =
{
qt ∈ V A|t ∈ T

}
- sequence

of the states.

Problem #1. Compute P (OT |λ), the probability that given model λ gener-
ates given sequence OT .

Problem #3. Adjust model λ to maximize P (OT |λ) for the given OT .

Algorithms. For the solution of the problem #1 forward and backward algo-
rithms could be used, each requires O

(
|V A|2 · T

)
operations.

Forward algorithm. Denote forward variable αt (µ) =
P (o0, ..., ot|qt = µ, λ), i.e. the probability of observation of the sequence
{o0, ..., ot} and at the moment t state is µ.

Solution. 1) ∀µ ∈ V A : α0 (µ) = ι (µ) · bµ (o0)
2) ∀t ∈ T − 1, ∀µ ∈ V A :

αt+1 (µ) =


 ∑

ν∈V A∧(ν,µ)∈EA

αt (ν) · a (ν, µ)


 · bµ (ot+1)

3) P (OT |λ) =
∑

µ∈V A

αT−1 (µ)

Backward algorithm. Denote backward variable βt (µ) =

P (ot+1, ..., oT−1|qt = µ, λ), i.e. the probability of observation of the se-
quence {ot+1, ..., oT−1} and at the moment t state is µ.

Solution. 1) ∀µ ∈ V A : βT−1 (µ) = 1
2) ∀t ∈ T − 1, ∀µ ∈ V A :

βt (µ) =
∑

ν∈V A∧(µ,ν)∈EA

βt+1 (ν) · a (µ, ν) · bν (ot+1)

3) P (OT |λ) =
∑

µ∈V A

ι (µ) · bν (o0) · β0 (µ)
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Solution of the problem #3, Baum-Welsh algorithm. Let ∀t ∈

T − 1, ∀ (µ, ν) ∈ EA :

ξt (µ, ν) = P ((qt, qt+1) = (µ, ν) |OT , λ)

=
αt (µ) · a (µ, ν) · bν (ot+1) · βt+1 (ν)

P (OT |λ)

=
αt (µ) · a (µ, ν) · bν (ot+1) · βt+1 (ν)∑

(ρ,σ)∈EA

αt (ρ) · a (ρ, σ) · bσ (ot+1) · βt+1 (σ)

Let γt (µ) ≡ P (qt = µ|OT , λ) =
∑

ν∈V A∧(µ,ν)∈EA

ξt (µ, ν)
∑

t∈T−1

γt (µ) - expected number of transitions from the vertex µ,
∑

t∈T−1

ξt (x) - expected number of transitions over the edge x.

Most difficult part of the solution is minimization problem based on the
parameters:

πµ = γ0 (µ)

a (µ, ν) =

P
t∈T−1

ξt(µ,ν)

P
t∈T−1

γt(µ)

bµ (c) =

P
t∈T−1∧ot=c

γt(µ)

P
t∈T−1

γt(µ) .

It could be done in many ways, but exact algorithms are not important for
us now.

2 Observable Markov Models (OMM)

Definition 6. For given HMM λ = (a, b, ι) define model OMM (λ) = (ã, ι̃)
with the graph Ã and functions ι̃ and πB. Ã consists of vertices V Ã = V A×B,
called states, and edges

EÃ = {(f, c, d) |f ∈ EA ∧ c, d ∈ B} = EA×B ×B,

ã : EÃ → I is defined as ã (f, c, d) = bcod(f) (d) · a (f), ι̃ : V Ã → I is defined as
ι̃ (µ, c) = ι (µ) · bµ (c) and πB : V Ã → B is projection.

Obviously graph Ã is more complex then primary graph A, but general model
simplifies, because it consists of single probability distribution now instead of
two ones and single set of vertices instead of two different sets of vertices and
observables.
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Forward algorithm for OMM . Denote forward variable αt (µ, ot) =

P (o0, ..., ot| (qt, ot) = (µ, ot) , OMM (λ)), i.e. the probability of observation
{o0, ..., ot} and at the moment t state is (µ, ot).

Solution. 1) ∀ (µ, o0) ∈ V Ã : α0 (µ, o0) = ι̃ (µ, o0)
2) ∀t ∈ T − 1, ∀ (µ, ot) ∈ V Ã :

αt+1 (µ, ot+1) =
∑

ν∈V A∧(ν,µ)∈EA

αt (ν, ot) · a (ν, µ) · bµ (ot+1)

=
∑

ν∈V A∧((ν,µ),ot−1,ot)∈E eA
αt (ν, ot) · ã ((ν, µ) , ot, ot+1)

Consider ((µ, ν) , ot, ot+1) = (x, y) ∈ EÃ it could be rewritten as:

αt+1 (x) =
∑

y∈V eA∧(y,x)∈E eA
αt (y) · ã (y, x)

3) P (OT |OMM (λ)) =
∑

µ∈V A

αT−1 (µ, oT−1) ≡
∑

(µ,oT−1)∈V eA
αT−1 (µ, oT−1)

Backward algorithm for OMM . Denote backward variable βt (µ, ot) =

P (ot+1, ..., oT−1| (qt, ot) = (µ, ot) , OMM (λ)), i.e. the probability of observa-
tion {ot+1, ..., oT−1} and at the moment t state is (µ, ot).

Solution. 1) ∀ (µ, oT−1) ∈ V Ã : βT−1 (µ, oT−1) = 1
2) ∀t ∈ T − 1, ∀ (µ, ot) ∈ V Ã :

βt (µ, ot) =
∑

ν∈V A∧(µ,ν)∈EA

βt+1 (ν, ot) · a (µ, ν) · bν (ot+1)

=
∑

ν∈V A∧((µ,ν),ot,ot+1)∈E eA
βt+1 (ν, ot+1) · ã ((µ, ν) , ot, ot+1)

Consider ((µ, ν) , ot, ot+1) = (x, y) ∈ EM1 it could be rewritten as:

βt (x) =
∑

y∈V eA∧(x,y)∈E eA
βt+1 (y) · ã (x, y)

3) P (OT |OMM (λ)) =
∑

µ∈V A

ι̃ (µ, o0) · β0 (µ) ≡ ∑
(µ,o0)∈V eA

ι̃ (µ, o0) · β0 (µ, o0)
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Solution of the problem #3, Baum-Welsh algorithm for OMM .

Let ∀t ∈ T − 1, ∀ ((µ, ν) , ot, ot−1) ∈ EÃ :

ξt ((µ, ν) , ot, ot+1) = P ((qt, qt+1) = (µ, ν) |OT , λ)

=
αt (µ, ot) · a (µ, ν) · bν (ot+1) · βt+1 (ν, ot+1)∑

(ρ,σ)∈EA

αt (ρ, ot) · a (ρ, σ) · bσ (ot+1) · βt+1 (σ, ot+1)

=
αt (µ, ot) · ã ((µ, ν) , ot, ot+1) · βt+1 (ν, ot+1)∑

(y, z) ∈ EÃ
∧πB (y) = ot ∧ πB (z) = ot+1

αt (y) · ã (y, z) · βt+1 (z)

Consider ((µ, ν) , ot, ot+1) = (x, y) ∈ EÃ and in the sum in the denominator:
πB (y) = ot and πB (z) = ot+1, it could be rewritten as:

ξt (x, y) =
αt (x) · ã (x, y) · βt (y)∑

(y,z)∈E eA
αt−1 (y) · ã (y, z) · βt (z)

Construction of OMM proves the following statement.

Statement 1. For each HMM λ there is exists OMM (λ) such that P (OT |λ) =
P (OT |OMM (λ)).

This means that HMM does not contain any additional features and it hidden
part could be taken into account by construction of respective OMM wich is
completely observable.

Conclusion. We have defined the model that is equivalent to the HMM, but
contains no hidden part and single probability distribution instead of two inde-
pendent ones appeared in HMM. This allows to redefine HMM in more consis-
tent mathematical way and to improve major HMM algorithms, though these
improvements are so trivial that likely has been taken into account in all imple-
mentations anyway. At the same time proposed model by itself has become less
intuitive and has lost it direct connection to the problems that have derived it.
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