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Abstract—In this paper, we propose and implement a novel
method for recognizing hand gestures using rgb and depth data
from Microsoft’s Kinect sensor. Our approach involves looking at
specific hand motions, in addition to full body motions, to assist
in the recognition of more refined gestures. With this approach,
we are able to recognize ‘grasp’ and ‘drop’ gestures with over
90% accuracy.
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I. INTRODUCTION1

The advent of relatively cheap image and depth sensors has
spurred research in the field of object tracking and gesture
recognition. One of the more popular devices used to do this
type of research is Microsoft’s Kinect, which has sensors
that capture both rgb and depth data. Using similar data,
researchers have developed algorithms that not only identify
humans in a scene, but perform full body tracking; they can
infer a person’s skeletal structure in realtime, allowing for the
recognition and classification of a set of full body actions (e.g.
[2], [3]).

In this paper, we use data collected from a Kinect sensor
to explore the feasibility of gesture recognition on a smaller
scale. Instead of attempting to recognize full body actions (e.g.
waving, jumping), we attempt to identify simple gestures that
a person might perform with his or her hand (e.g. grasping,
pointing). To do this, we use a full body tracker developed by
Hendrik Dahlkamp2 and Christian Plagemann3 to first identify
the location of a person’s hand (which should be positioned at
the end of an arm in the inferred skeletal structure), and from
there, recognize patterns in the hand’s movement over time.

Pattern recognition consists of 1) identifying the pixels in
the image that constitute the hand we’re interested in, 2)
extracting features from those identified pixels in order to
classify the hand into one of a set of predefined poses, and
3) recognizing the occurrence of specific pose sequences as
gestures. In the following sections we detail our approach in
each of these areas, along with prior related work.

II. IDENTIFICATION OF ‘HAND PIXELS’4

A. Prior work
While a full body tracker will give us a rough estimate of

the hand’s location, it remains for us to differentiate between
1The first two paragraphs in this section are taken directly from the

introduction in [1], a paper I wrote last quarter.
2Ph.D. Candidate in the Computer Science Department at Stanford

University
3Post Doctoral Scholar in the Computer Science Department at Stanford

University
4Subsections A, B, and E paraphrased from [1], a paper I wrote last

quarter.

pixels that are part of the hand (‘hand pixels’) and pixels that
are part of the background (‘background pixels’). One way to
do this is to threshold based on depth. This involves estimating
the depth value of the hand using our skeletal structure, and
labeling those pixels whose z-value (depth) deviates too far
from this estimated depth as background pixels. While this
works well for more expensive cameras with high spatial and
depth resolution (images with dimensions on the order of
100s to 1000s of pixels, and depth resolution on the order
of a few millimeters [4]), the Kinect camera contains lower
quality components. For a person standing approximately 3
meters away from the Kinect, the hand occupies a region of
no more than 64x64 pixels. Furthermore, the resulting depth
images suffer from IR occlusion and other effects; it is not
surprising, therefore, that depth thresholding often results in a
poor labeling (see Figure 1(a)).

Another approach is to label hand pixels using rgb data.
One way to do this is to have a person wear a single colored
glove, and label those pixels whose rgb values are close to that
color as hand pixels [5]. A less robust method that does not
require the use of a glove labels pixels based on their likeness
to common skin colors [6].

B. Identification based on rgb data

Because we don’t want to require the use of gloves, we use
a skin detector for a preliminary estimation of our hand pixel
locations. Jones, et al. [7] labeled the pixels in a set of 18,696
photographs (2 billion pixels) as skin or non-skin. They then
fitted a Mixture of Gaussians model to the empirical data,
resulting in an approximation for the quantities p(RGB|S =
1) and p(RGB|S = 0); RGB indicates a specific set of rgb
values, and S is a binary random variable indicating whether
or not a pixel is that of skin.

By looking at multiple samples of cropped images of our
estimated hand regions, and labeling the pixels in the image
as skin or non-skin, we can estimate P (S). Using these
probabilities, we can then calculate:

p(S|RGB) =
p(RGB|S)p(S)∑
S′ p(RGB|S′)p(S′)

(1)

This allows us to estimate, on a pixel-by-pixel basis, the
probability that a pixel is a skin pixel.

C. Color balancing

Most of the photographs used by Jones, et al. [7] to calculate
p(RGB|S) were taken in normal to bright lighting conditions,
so our estimate of p(S|RGB) is based on assumptions of
similar lighting. This assumption, however, may not always



2

(a) Depth Thresholding

(b) Skin Estimate

(c) Skin Estimate with Color Balancing

(d) Combined Estimate

Fig. 1. Hand pixel estimates for an open and closed hand.

hold, and we see that our estimation of skin pixels may be
inaccurate in poor lighting (see Figure 1(b)). To compensate,
we color balance our pixel rgb values before calculating
p(S|RGB).

We find that in general, color balancing algorithms such
as grayworld or scale-by-max do not work well because they
sometimes drastically alter pixel r:g:b ratios, which in turn
throws off our skin estimation. Instead, we propose a modified
version of the scale-by-max algorithm that works well in
practice.

For a pixel p with rgb values rp, gp, bp, the original scale-
by-max algorithm performs the following scaling:

rp =
rp

max(r)
; gp =

gp
max(g)

; bp =
bp

max(b)
(2)

where max(r) is the maximum value in the red channel, and
similarly for max(g) and max(b). In our modified algorithm,
we do the following:

rp =
rp

max(r, g, b)
; gp =

gp
max(r, g, b)

; bp =
bp

max(r, g, b)
(3)

where max(r, g, b) = max(max(r),max(g),max(b)). Here,
we don’t scale the channels separately, and thus preserve the
r:g:b ratios of all the pixels. Our assumption is that if at
least one channel contains a value of 255, our image is bright
enough for use with our skin detector. We see in Figure 1(c)
that simple color balancing can make a big difference in our
final skin estimate.

D. Exploiting spatial dependence
We notice in Figure 1(c) that there are multiple skin pixels

with a low assigned skin probability that happen to be sur-

rounded by skin pixels with a high assigned skin probability.
It is generally the case that a pixel that is near multiple other
skin pixels will have a higher probability of being skin, simply
because skin is contiguous. To exploit this spatial dependence,
we perform an image close operation (using a 3-pixel diameter
cross structuring element) following our final skin estimate.

E. Integrating depth data

The Kinect sensor provides us with valuable, if coarse, depth
data that we can use to further refine our hand pixel estimates.
In particular, if we do a rough labeling of hand pixels for
various sample images, we can estimate p(D|H) where D
represents a pixel’s depth value, and H is a binary random
variable indicating whether or not a pixel is that of a hand. We
can then compute the following, assuming (RGB,S ⊥⊥ D)|H:

p(H,RGB,D) =
∑
S

p(H)p(D|H)p(RGB|S)p(S|H) (4)

p(H|RGB,D) =
p(H,RGB,D)∑
H′ p(H ′, RGB,D)

(5)

For simplicity, we assume that p(S = H) = 1, and therefore
p(H) = p(S). This is reasonable, since most hand pixels will
be skin pixels, and vice versa.

Because it is extremely tedious to label hand pixels man-
ually, our estimates of p(H) and p(D|H) come from the
labelings obtained by p(H|RGB,D); and this, in turn is
calculated from p(H) and p(D|H). We therefore find p(H)
and p(D|H) by using the Expectation Maximization (EM)
algorithm, and this process, along with the resulting converged
values of p(H) and p(D|H), are detailed in work I did last
quarter [1].

We find that although our skin detector picks up non-hand
skin pixels in Figure 1(c) (e.g. the neck region, skin-colored
wallpaper), our final estimate that integrates depth data in
1(d) manages to eliminate such regions from our labeling. We
assume S = H in our calculations, but it is rarely the case that
skin pixels occur at the depth of the neck or the background
wall. So our depth information eliminates these false positives
while reinforcing our original estimates of skin pixels.

We also notice that because the depth information is some-
times unreliable near the edges of a hand’s fingertips, the
introduction of depth data may introduce inaccuracies. This is
an acceptable loss, because in instances where the rgb image
is noisy (e.g. bad lighting) or the resulting skin estimate is
inaccurate (e.g. skin-colored background), the integration of
depth information greatly improves the fidelity of our final
estimate.

III. FEATURE EXTRACTION

A. Prior work

Given a labeling of hand pixels, we now want to identify
it as one of a set of predefined poses. To do so, we extract
a set of features that will allow us to differentiate between
labelings.

Previous work was done to classify a hand into one of
a set of signed words (sign language) [5], [6]. To do this,
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blob descriptors (major/minor axis length ratio, eccentricity,
orientation), radial histograms, and raw shape data were used.
Such descriptors are also used in more general contexts [8].

Using these descriptors, a fixed background and orientation,
a wrist marker, and high resolution images, an accuracy of
99.1% was achieved on a dictionary of 46 words in [6]. Using
blob descriptors and lower resolution images, an accuracy of
86.5% was achieved on a dictionary of about 5 words in [8].
Our task is closer to the one found in [8] since we are using
low resolution images with varying backgrounds, no wrist
marker, and a small dictionary.

In the following sections, we will explore the use of some
of the features described above, as well as a set of SURF [9]
inspired features we developed ourselves.

B. Scale and Rotation Invariance

Before extracting our features, we want our images to be
both scale and rotation invariant. We assume that a person
is standing approximately 3 meters away from the Kinect
sensor, providing imperfect but acceptable scale invariance.
Traditional methods for rotation invariance (e.g. calculating the
dominant gradient direction), however, do not work as well.
This is because our images are low resolution and susceptible
to noise. Furthermore, given an image of an open hand, the
dominant gradient direction is often skewed by the relative
orientations of the fingers.

Using the full body tracker, we can project the forearm
corresponding to our hand of interest from the 3D model to our
image perspective. We can then calculate the angle at which
the arm is rotated, and rotate the image to some normalized
angle. Doing this drastically improves the performance of our
pose discrimination algorithms, and provides a more intuitive
and consistent rotation normalization than the results of typical
dominant gradient direction calculations.

C. Radial histogram

Because our cropped images are not perfectly centered, we
must find the center of mass in our hand pixel estimate before
we can compute the radial histogram described in [6]. Let
p(x, y) be the probability that the pixel at (x, y) is a hand
pixel. Then the center of mass (xc, yc) is simply calculated
from the following:

xc =
1

N

∑
(x,y)

xp(x, y); yc =
1

N

∑
(x,y)

yp(x, y) (6)

where N is the total number of pixels.
Then for each pixel, we calculate the angle offset from this

center. That is, for a pixel at (x, y), we calculate its angle
offset:

a(x, y) = tan−1(
x− xc

y − yc
) (7)

Afterwards, we generate a weighted histogram of these off-
sets, binning a(x, y) with weights p(x, y), and normalize the
resulting histogram so that the max binned value is 1. The
idea here is that for any hand image, the corresponding radial
histogram will have distinct spikes corresponding to extended
fingers.

(a) Open Hand (b) Closed Hand

Fig. 2. Radial histograms for an open and closed hand using 80 equally
spaced bins.

In Figure 2 we see histograms for an open and closed hand.
As expected, the open hand has a histogram with more spikes
and overall variation, whereas the closed hand has a more
uniform histogram. The problem with this approach, however,
is that because we are using low resolution images, the radial
histograms are extremely susceptible to noise. Even a slight
shift in our center of mass drastically alters these histograms,
and as we’ll see later, we are unable to reproduce the results
in [6].

D. Modified SURF

The features described in [9] (SURF descriptors) are usually
used for keypoint matching. Its use generally involves the
acquisition of multiple keypoints in an image, followed by the
computation of SURF descriptors for each of these keypoints.
Because our cropped images are so small, however, we can
treat the entire image as a keypoint.

We developed a set of features inspired by SURF. To
calculate these features, we divide up our 64x64 cropped
images into 64 8x8 subregions. Then for each region, we
calculate the following:∑

(x,y)

dx(x, y),
∑
(x,y)

|dx(x, y)|,
∑
(x,y)

dy(x, y),
∑
(x,y)

|dy(x, y)|

(8)
where

dx(x, y) =
p(x+ 1)− p(x− 1)

2
, dy(x, y) =

p(y + 1)− p(y − 1)

2
(9)

Our final feature vector is simply the concatenation of these
numbers, and therefore has a length of 256.

E. Performance

To test the performance of the features described above, we
capture a sequence of 2901 hand images in canonical open
and closed poses. We then train and test on these images and
their corresponding features using a Support Vector Machine
(SVM) with a 3rd order radial basis function. The results of
70-30 cross-validation are shown in table I.

For high resolution images, using a radial histogram will
generally give better performance than raw pixel estimates
[6]. But because the number of pixels we are dealing with
is relatively small (4096), the corresponding feature vectors
and the space they reside in are more compact. This leads to
a reasonable separation of open and closed hand images, and
better performance than obtainable by the radial histogram.
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Feature Set Correct Open Correct Closed Total Accuracy
Radial Histogram 178/399 (44.61%) 389/473 (82.24%) 567/872 (65.02%)
Raw Pixel Estimates 285/399 (71.43%) 448/473 (94.71%) 733/872 (84.06%)
Modified SURF 370/399 (92.73%) 468/473 (98.94%) 838/872 (96.10%)

TABLE I
RESULTS OF 70-30 CROSS VALIDATION ON A SET OF 2901 OPEN AND CLOSED HAND IMAGES (1327 OPEN, 1574 CLOSED).

We also see that using our SURF inspired features results
in a better classification than obtained by both the radial his-
togram and the raw pixel estimates. This is probably because
the original SURF descriptors were designed for small image
regions, and that is exactly what we are dealing with here.

IV. GESTURE RECOGNITION5

Our method of gesture recognition simply identifies a se-
quence of poses. For example, an open hand followed by a
closed hand can be labeled a ‘grasping’ gesture, while a closed
hand followed by an open hand can be labeled a ‘dropping’
gesture.

This seems simple enough, but we can do better by exploit-
ing the temporal dependence between poses. For example, if
at time t the hand is in an open state, at time t+1 it will have
a higher probability of also being in an open state rather than
transitioning to a closed state. Let Et be the estimated pose at
time t, and let St be the actual pose (or state) at time t. Then
using forward recursion on a simple Hidden Markov Model
[10] (described in greater detail in work I did last quarter [1]),
we can calculate:

p(St|Et) =
p(St|Et−1)p(Et|St)∑
S′
t
p(S′t|Et−1)p(Et|S′t)

(10)

p(St+1|Et) =
∑
St

p(St|Et)p(St+1|St) (11)

where Et = {E1, E2, . . . , Et}. We obtain p(Et|St) from the
probabilities output by the SVM (calculated by fitting the
decision value to a sigmoid curve). We estimate p(St+1|St)
and p(S0) manually, and use p(St|Et) as our final estimate of
the hand pose at time t.

To demonstrate this, we use the example of a ‘grasping’
and ‘dropping’ gestures described previously. We have two
states, ‘open’ and ‘closed’ which we’ll label with ‘1’ and ‘0’
respectively. We set p(S0 = 1) = p(S0 = 0) = 0.5. And we
set transition probabilities p(St+1 6= St) = 0.1. The results of
our initial SVM output (using our SURF inspired features),
and the corresponding output after forward recursion, are
shown in Figure 3.

We see that because we assume a low transition probability,
forward recursion manages to suppress the noisy transitions
we observe in the initial frame-by-frame estimates. Our initial
mean squared deviation from the human labeling is 0.0945,
and with forward recursion we succeed in reducing this to
0.0907.

5This section based on work done in [1], a paper I wrote last quarter.

Fig. 3. Estimation on a captured image sequence (30 fps) of ‘grasp’ and
‘drop’ gestures.

V. CONCLUSION

In this paper, we proposed a method to integrate the rgb and
depth information returned by the Kinect to provide a rough
labeling of the hand pixels in a scene. This involves cleaning
up the rgb image using standard image processing techniques
like color balancing and dilation/erosion, and incorporating the
depth data using a simple probabilistic model.

We then normalized the rotation on the resulting estimates,
and extracted three sets of features (a radial histogram, the
raw pixel estimates, and a modified version of the SURF
descriptors). We compared the performance of these features
on a set of 2901 open and closed hand images, and found
that our version of SURF descriptors was best suited to the
cropped hand images we were dealing with.

Finally, we demonstrated a simple method of gesture recog-
nition, using forward recursion to make our results more robust
to classification noise.

Using OpenCV, we wrote a program that does all of the
above, allowing a user to interact with a virtual environment,
grasping and dropping virtual objects simply be performing
gestures in front of a Kinect sensor. This was demonstated in
a presentation on June 6, 2011. Figure 4 shows a screenshot
of our demo.
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Fig. 4. Screenshot of the demonstrated program that allows you to drag and
drop virtual objects.
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class that taught me the image processing techniques I used
in this paper.

VII. APPENDIX

The Matlab files that were used to perform the relevant
image processing techniques, calculate features, train and test
on the cropped images, and generate the relevant plots are
attached and written by me. I also wrote the code for a .dll file
that contains definitions for two functions: 1) an init function
that loads probability parameters and the trained SVM model
(these files would be created and saved using the Matlab code),
and 2) an update function that takes an rgb and depth image
as its parameters, and outputs the probability that it is an open
hand using the algorithm we described in this paper. This code
has also been attached. The .dll was integrated into a program
developed by Hendrik Dahlkamp and Christian Plagemann,
and the result was demonstrated on June 6, 2011. A screenshot
of this program is shown in Figure 4.
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1 Introduction

The advent of relatively cheap image and depth sensors has spurred research in the field of
object tracking and gesture recognition. One of the more popular devices used to do this type
of research is the Microsoft Kinect, which has sensors that capture both rgb and depth data.
Using similar data, researchers have developed algorithms to not only identify humans in a
scene, but perform full body tracking; they can infer a person’s skeletal structure in realtime,
allowing for the recognition and classification of a set of actions (e.g. [1], [2]).

In this paper, we use data collected from a Microsoft Kinect to explore the feasibility of
gesture recognition on a micro scale. Instead of attempting to recognize full body actions,
we attempt to identify simple gestures that a person might perform with his or her hand (e.g.
grasping or pointing). To do this, we use the full body tracker developed by Hendrik Dahlkamp1

and Christian Plagemann2 to first identify the location of a person’s hand (which should be
positioned at the end of an arm in the inferred skeletal structure), and crop out an image of
where we think the hand should be. For a person standing 3 meters away from the sensor, the
result is a 64x64 rgbz image. We capture a sequence of such images, and our goal is to detect
the occurrences of gestures as a person performs them.

2 Traditional Methods

Before we can perform gesture recognition, we need to identify roughly where the hand is located
in our images. The most common way to do this is to threshold based on depth. This involves
inferring a rough depth using the skeletal structure, and cropping out those pixels whose z-value
(depth) deviates too far from this estimated depth. While this works well for more expensive
cameras with high spatial and depth resolution (images with dimensions on the order of 100s
to 1000s of pixels, resolution on the order of a few millimeters [3]), we are using a much cheaper
Kinect. The images we are dealing with have dimensions on the order of 10s of pixels, and
although our depth has a nominal accuracy of 3mm, the depth images provided by the sensors
succumb to IR occlusion and other effects (see Figure 1(b)). In our paper, we explore the use
of rgb data, in addition to depth data, to enhance our estimates of hand locations.

Once we have a basic outline of our image, a common approach to gesture recognition is to
perform fingertip detection (using curvature measures [3]) and tracking. We find, however, that
our images have too low a resolution for such curvature methods to work well. But because
our images have such a low resolution, we find that using an SVM with our estimated hand
location as a feature vector works better than it would for large images (where the pixel space

1Ph.D. Candidate in the Computer Science Department at Stanford University
2Post Doctoral Scholar in the Computer Science Department at Stanford University
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(a) RGB (b) Depth (c) Threshold

Figure 1: Sample data and results using only depth thresholding.

would be much larger). In addition to using SVMs, we extend this estimation scheme with a
Hidden Markov Model, to produce a fairly robust gesture recognition algorithm.

3 Our Implementation

Our task can be broken up into two parts, 1) locating the hand and 2) classifying gestures
based on temporal changes in hand location. We estimate the location of the hand by taking
the following steps:

1. Assign to every pixel a prior probability of it being part of a hand.

2. Aggregate these pixels into superpixels (SPs), each with its own prior.

3. Define a cluster graph with every two adjacent SPs corresponding to a pairwise clique,
and perform inference on this cluster graph.

4. Threshold on the resulting inferred probabilities.

After performing the above steps, we should have a hand location estimate that is better
than what we see in Figure 1(c). Now, we look at sequences of such estimates to identify gesture
sequences by doing the following3:

1. Identify a sequence of hand positions that comprise a gesture (e.g. an open hand followed
by a closed hand might comprise a grasping gesture).

2. Use a Support Vector Machine (SVM) to differentiate between these hand positions, using
our inferred hand location as a feature.

3. Estimate the result using a Hidden Markov Model and Forward Recursion.

We will now discuss each of these steps in detail.

3.1 Estimating Pixel Probabilities

We can only estimate pixel probabilities based on rgbz values. It is reasonable to assume that
color and depth information are independent given the knowledge of whether a pixel is part of
a hand, so we consider the rgb and z values separately (given H, a binary variable indicating
whether or not a pixel is part of a hand). Furthermore, the data and methods in [4] provide
a way for us to obtain rgb distributions on skin and non-skin objects. By sampling rgb values
from a vast sample of skin and non-skin images, we can construct two 256x256x256 probability
matrices p(RGB|S = 1) and p(RGB|S = 0), where S is a binary random variable indicating
whether or not a pixel is that of skin. This should be extremely helpful since there is a strong
correlation between the presence of a hand and the presence of skin. Finally, using our intuition

3Based partially on work I completed in CS 229 (Machine Learning), where a higher resolution camera was
used.
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about the relationship between our data, our available probability information, and our goal
of labeling pixels as belonging or not belonging to a hand, we decide to use the probabilistic
graphical model depicted in Figure 2 to describe each pixel.

Figure 2: Our Pixel-
Level Bayesian Network

We have a reasonable way to approximate p(RGB|S), but we
have yet to determine the parameter θH = p(H = 1), and similarly,
the parameters θD|h1 , θD|h0 , θS|h1 , and θS|h0 . So we start by assigning
reasonable initial values to these parameters. By eyeballing the image
in Figure 1(a) and other images obtained from our Kinect sensor, we
assign a rough estimate θH = 0.4. Given that our hand is estimated to
have a depth value of 127 (with depth values ranging from 0 to 255),
we assign θD|h1 to take on values from discretized normal distribution
centered at D = 127 with spikes in probability at D = 0 and D = 255
to account for the IR occlusion effects we see in Figure 1(b). The
result is a normalized vector of length 255. For simplicity, we let
θD|h0 ∼ Unif [0, 255]. We make the assumption that the hand will
almost always be made up of skin, so we set θS|h1 = 0.99.4 Finally, we set θS|h0 = 0.95,
accounting for the fact that there may be some non-hand skin pixels in our frame (e.g. if the
hand were held close to the face).

Using these parameters, we can now perform variable elimination on our Bayesian Network
given the evidence set {rgb, d}. More specifically, we compute the following:

p(H, rgb, d) =
∑
S

p(H)p(d|H)p(rgb|S)p(S|H) (1)

p(H|rgb, d) =
p(H, rgb, d)∑
H p(H, rgb, d)

(2)

For every pixel, we assign p(H|rgb, d) as the ‘prior probability’ that the pixel is part of a hand.
This allows us to proceed to steps 2-4 in our hand location method. Afterwards, we will have
an initial estimate of the location or our hand. And using this estimate, we can further refine
our parameters.

We now have the observations h[m], rgb[m], d[m], and missing data s[m]. We can imme-

diately set θH = M [h1]
M and θD|hi = M [D,hi]

M [hi]
, where M [x] represents a count of the number of

occurrences of x in our dataset and M is the total number of elements in our dataset. We
can also infer soft counts of M [S,H] =

∑
m p(S,H|h[m], rgb[m], θ) to estimate θS|hi = M [S,hi]

M [hi]
.

We then iterate, performing steps 1-4 again and updating our parameters in a similar fashion
to Expectation-Maximization (EM). Note that this is not guaranteed to converge, since our
dataset changes on every iteration. Ideally, we would obtain our dataset by labeling the images
by hand, but this is hard to do since our training set consists of a few thousand 64x64 images.

In practice, for an arbitrary initialization of parameters, our modified EM algorithm con-
verges to values that produce very inaccurate results. If our initial set of parameters results
in a poor estimate, this estimate will give us an innacurate ‘dataset’, culminating in subopti-
mal updates to our parameters. Such errors tend to propagate, so that for more iterations of
this algorithm, our estimates will become more unreliable (e.g. oftentimes it will result in an
estimator that never reports a pixel as being part of a hand).

To overcome this, we ran our algorithm with the initial set of parameters described above.
We then handpicked estimates that seemed to match up with the observed reality, making

4We avoid assigning probabilities of 0 or 1. Note that we can tweak this in the future to account for the
presence of gloves.
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(a) Depth Given Hand (b) Depth Given Not Hand

Figure 3: Estimated Parameters.

sure to include estimates from a diverse set of images (since we don’t want a biased sample).
We used these estimates as our dataset, and inferred new parameters based on these counts.
Finally, because the domain of D is large and our dataset may not have sufficiently saturated
it, we smoothed θD|h1 and θD|h0 using a moving average window. We repeat this process for a
few iterations, and we find that we are able to obtain marked improvements in our estimator.
This assessment is qualititative since we don’t have a ‘correct’ dataset to compare with.

We find that parameter values that produce good results are θD ≈ 0.22, θS|h1 ≈ θS|h0 >
0.99 (which suggests that the variable S may not be necessary for our usage patterns), and
θD|h1 , θD|h0 shown in Figure 3. Pixels that are part of the hand tend to have a depth near
127, with the occasional pixel having an extremely large or small depth due to IR occlusion.
Pixels that are not part of the hand tend to be in the background, with a somewhat noticeable
number of pixels with a depth near 127 due to the smearing of depth values between fingers
(see Figure 1(b)).

3.2 Superpixels and Inter-Pixel Factors

So far, we have only considered our images on a pixel by pixel basis. Now, we focus on improving
our estimates by exploiting the relationships between pixels. Before we do anything else, we
segment our image into superpixels. This provides two distinct benefits. First, by using SPs,
we reduce the complexity of any cluster graph that we might consider using to describe the
relationship between adjacent image elements. And second, SPs naturally hug object outlines,
allowing for a labeling that gives a tight estimate on our hand location that might otherwise
be hard to achieve.

We partition our image using the Normalized Cuts method described in [5], adapting the
code referenced in the paper. Our goal now is to infer the value of a binary variable H for
every SP, where H indicates whether or not that SP is part of a hand. We define a set
of factors as follows. There is a singleton factor for every SP. To compute the value of the
factor φX(HX) for some SP X, we average the ‘priors’ of every pixel a contained within X,
i.e. φX(HX) = 1

|X|
∑

a∈X pa(H|rgba, da) where |X| is the number of pixels in X. We also
define pairwise factors between every two adjacent SPs. For two adjacent SPs X and Y , the
corresponding factor takes on the value φXY (HX , HY ) = w1 if HX = HY , w0 otherwise. The
ratio w1

w0
can be seen to describe the affinity for adjacent superpixels to take on the same value.

When this ratio is 1, the pairwise factors are rendered inactive.
Finally, we construct a cluster graph from these factors, and perform approximate inference.

This yields our final estimate for our hand location. We threshold the resulting probabilities,
whereby an SP is declared part of the hand if its probability p(H = 1) post-inference is greater
than some threshold T . Normally, we would set T = 0.5, but we find that we get more visually
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(a) RGB (b) Depth

(c) Pixel Prior (d) Final Estimate

Figure 4: Our algorithm performed on an image sequence.

accurate results if we set this threshold to be around T = 0.4. Figure 4 shows the result
of running our algorithm on a sequence of images. We immediately see that our algorithm
produces cleaner results than that achieved simply by depth thresholding (e.g. Figure 1(c)).

We find that if we choose a lower ratio w1
w0

, our estimator performs better on open hands,
and if we choose a higher ratio, our estimator performs better on closed hands. This is because
for an open hand, many of the SPs that are part of the hand are adjacent to SPs that aren’t
part of the hand, especially along the fingers. For a closed hand, the SPs that define the hand
are generally clumped together and adjacent to other SPs that take on the same value. In the
next section, we use an SVM to classify a hand as being ‘open’ or ‘closed’, and we use a hidden
markov model to both estimate the current hand state, and predict the next hand state. Using
this prediction, we can dynamically adjust the ratio w1

w0
; the more confident we are that the

next state will be an open hand, the lower the ratio we choose to use.

3.3 Learning Hand Positions and Classifying Gesture Sequences

We now want to be able identify a sequence of images with a particular gesture. To demonstrate
the feasibility of doing this, we will focus on one specific gesture: the ‘grasping’ gesture (see
Figure 4(a)). For simplicity, we will define such a gesture as an ‘open’ hand, followed quickly
by a ‘closed hand’.

First, we want to be able to classify a single image as an ‘open’ or ‘closed’ hand. We do
this by labeling hand images in a training set as either ‘open’ or ‘closed’. We then take our
corresponding estimates of hand location (see Figure 4(d)) and feed this into an SVM using a
3rd order radial basis function5. Afterwards, we validate on a test set. In our case, we used
70-30 cross validation and were able to obtain an accuracy of ∼ 80%.

Figure 5: Our Tempo-
ral Bayesian Network

Next, we assume an underlying hidden state St for the hand at
every timestep t. This state is binary, taking the values of ‘open’ or
‘closed’; it influences the rgbz image we observe, and through it, our
location estimates and the output of our SVM. We define a variable Ot

to represent our observations, and we let p(Ot|St) be the confidence
with which the SVM classifies the current image as being in state St.
We also define a relationship between St and St+1, where p(St+1|St) is
the probability of the next state given the current state. Our intuition
tells us that the next state should be equal to the previous state with
high probability, so we set this parameter accordingly. Our resulting temporal model is shown
in Figure 5.

5Used the SVM library created by Chih-Chung Chang and Chih-Jen Lin, which is available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.
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Now, we can use simple message passing to determine p(St|Ot), whereOt = {O1, O2, . . . , Ot}.
For the temporal Bayesian Network we defined, this is also referred to as forward recursion [6].
In addition, we can predict the next state p(St+1|Ot), allowing us to dynamically adjust the
weights w1 and w0 in our SP cluster graph mentioned in the previous section.

Using the prior p(St) = 0.5 and setting p(St+1 = St) = 0.9, we perform forward recursion
on a test sequence of five grasping motions, and the result is shown in Figure 6. While forward
recursion doesn’t significantly improve our accuracy, it improves the robustness and confidence
of our estimates. We also note using this method, we are able to recognize a grasping gesture
with near 100% accuracy.

4 Conclusion

In this paper, we proposed a method for hand gesture recognition using Microsoft’s Kinect.
Our approach involved the use of a pixel-level Bayesian Network, superpixels, a cluster graph
created from these superpixels, an SVM, and a separate temporal Bayesian Network. We found
that the most important aspect of our algorithm was the pixel-level Bayesian Network. And the
key to getting this part of the algorithm to work was choosing the right parameters. Our initial
parameters yielded results that were noisy, and although they didn’t look bad they resulted in
unreliable singleton factors in the cluster graph portion of our algorithm. By carefully tuning
and updating the parameters, we were able to get our parameters to converge (see Figure 3),
and obtain ‘priors’ that matched up extremely well with reality (see Figure 4(c)). In fact, the
priors worked well enough so that inference on the SP cluster graph we defined earlier did
little to improve our results. In addition, the parameters we chose for this Bayesian Network
suggested that a differentiation between skin and hand may be unnecessary.

The SVM we used allowed us to quantify the improvements of our hand location algorithm.
Running the SVM on depth thresholded estimates yielded an accuracy of ∼ 74%, which we
were able to bump up to ∼ 80% with our hand location algorithm. This improvement can also
be seen qualitatively in Figure 4(d). Finally, we found that using a simple temporal model
can greatly improve the robustness of our system to chance misclassifications by the SVM (see
Figure 6).

Figure 6: Estimation on a captured image sequence.
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