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Abstract 

An interestmg property of connectiomst systems is their ability to 
learn from examples. Although most recent work in the field concentrates 
on reducing learning times, the most important feature of a learning ma
chine is its generalization performance. It is usually accepted that good 
generalization performance on real-world problems cannot be achieved 

unless some a pnon knowledge about the task is butlt Into the system. 
Back-propagation networks provide a way of specifymg such knowledge 
by imposing constraints both on the architecture of the network and on 

its weights. In general, such constramts can be considered as particular 
transformations of the parameter space 

Building a constramed network for image recogmtton appears to be a 
feasible task. We descnbe a small handwritten digit recogmtion problem 
and show that, even though the problem is linearly separable, single layer 
networks exhibit poor generalizatton performance. Multtlayer constrained 
networks perform very well on this task when orgamzed in a hierarchical 
structure with shift invariant feature detectors. 

These results confirm the idea that minimizing the number of free 

parameters in the network enhances generalization. 

1 Introduction 

Connect10mst architectures have drawn considerable attention m recent years 
because of the1r interestmg learnmg abihtles Among the numerous learn
mg algorithms that have been proposed for complex connectiomst networks, 

• Present address: Room 4G-332, AT&T Bell Laboratories, Crawfords Corner Rd, Holmdel, 
NJ 07733. 
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Back-Propagatwn (BP) 1s probably the most widespread. BP was proposed in 
(Rumelhart et al, 1986), but had been developed before by several independent 
groups m d1fferent contexts and for d1fferent purposes (Bryson and Ho, 1969, 
Werbos, 1974, le Cun, 1985; Parker, 1985; le Cun, 1986) Reference (Bryson and 
Ho, 1969) was m the framework of optimal control and system identification, 
and one could argue that the bas1c 1dea behind BP had been used m optimal 

control long before 1ts apphcatwn to machme learning was considered (le Cun, 

1988) 
Two performance measures should be considered when testing a learning 

algonthm learning speed and generahzatwn performance Generalization is the 
mam property that should be sought, 1t determmes the amount of data needed 
to tram the system such that a correct response 1s produced when presented 
a patterns outside of the trammg set. We will see that learnmg speed and 
generahzation are closely related . 

Although various successful applications of BP have been described in the 
literature, the conditions m which good generalization performance can be ob
tamed are not understood. Cons1dermg BP as a general learning rule that can 
be used as a black box for a wide vanety of problems 1s, of course, Wishful thmk
mg Although some moderate sized problems can be solved using unstructured 
networks, we cannot expect an unstructured network to generalize correctly on 
every problem. The main pomt of th1s paper 1s to show that good generahzat10n 
performance can be obtamed 1f some a przorz knowledge about the task 1s bu1lt 
mto the network. Although in the general case specifymg such knowledge may 
be difficult , 1t appears feas1ble on some h1ghly regular tasks such as image and 
speech recogm tion. 

Tallonng the network architecture to the task can be thought of as a way 
of reducmg the s1ze of the space of poss1ble functwns that the network can 
generate, without overly reducmg 1ts computatwnal power Theoretical studies 
(Denker et al , 1987) (Patarnello and Carnevah, 1987) have shown that the 
likehhood of correct generahzat10n dep ends on the size of the hypothesis space 
(total number of networks bemg considered), the s1ze of the solutiOn space (set of 
networks that g1ve good generalizatiOn) , and the number of trauung examples 
If the hypothesis space IS too large and/ or the number of tranmg examples IS too 
small , then there will be a vast number of networks wh1ch are consistent w1th the 
trauung data, only a small proportwn of wluch will hem the true solutwn space, 
so poor generalization IS to be expected Conversely, 1f good generalizatiOn IS 
reqmred, when the generality of the architecture 1s mcreased, the number of 
trammg examples must also be mcreased. Specifically, the reqmred number of 
examples scales like the loganthm of the number of functiOns that the network 
architecture can Implement 
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An Illuminating analogy can be drawn between BP learning and curve fitting. 

When usmg a curve model (say a polynomial) with lots of parameters compared 
to the number of points, the fitted curve w1ll closely model the training data 

but will not be hkely to accurately represent new data. On the other hand, 1f 
the number of parameters in the model is small, the model will not necessanly 
represent the trainmg data but w1ll be more likely to capture the regularity of 
the data and extrapolate (or interpolate) correctly. When the data is not too 
noisy, the optimal choice is the mimmum size model that represents the data. 

A common-sense rule msp1red by this analogy tells us to minimize the num
ber of free parameters m the network to increase the likelihood of correct gen
erahzatwn But th1s must be done without reducing the size of the network to 
the pomt where it can no longer compute the desired function. A good com
promise becomes poss1ble when some knowledge about the task is available, but 
the pnce to pay 1s an mcreased effort in the design of the architecture. 

2 Weight Space Transformation 

Reducmg the number of free parameters m a network does not necessarily Imply 
reducmg the s1ze of the network Such techmques as weight sharing, descnbed in 
(Rumelhart et al , 1986) for the so-called T-C problem, can be used to reduce 
the number of free parameters while preservmg the s1ze of the network and 
spec1fymg some symmetnes that the problem may have. 

In fact, three mam techmques can be used to build a reduced s1ze network. 
The first techmque 1s problem-mdependent and cons1sts m dynamically delet

mg "useless" connectiOns dunng trammg Th1s can be done by addmg a term m 
the cost functiOn that penalizes b1g networks w1th many parameters Several au
thors have descnbed such schemes, usually Implemented as a non-proportional 
we1ght decay (Rumelhart, personnal communication 1988), (Chauvm, 1989, 
Hanson and Pratt, 1989), or usmg "gatmg coefficients" (Mozer and Smolensky, 
1989) GeneralizatiOn performance has been reported to increase s1gmficantly 
on small problems Two drawbacks of this techmque are that It requires a fine 
tumng of the "prumng" coefficient to avo1d catastrophic effects, and also that 
the convergence 1s s1gmficantly slowed down 

2.1 Weight Sharing 

The second techmque IS we1ght shanng Weight sharmg consists m havmg sev
eral connectwns (Imks) be controlled by a smgle parameter (weight) We1ght 
sharmg can be mterpreted as 1mposmg equality constramts among the con
nectiOn strengths. An mterestmg feature of weight sharmg IS that 1t can be 
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Figure 1. We1ght Space Transformation. 

implemented with very httle computat10nal overhead. Weight sharmg is a very 
general paradigm that can be used to descnbe so-called Time Delay Neural 

Networks used for speech recogmtion (Wa1bel et al. , 1988, Bottou, 1988), time
unfolded recurrent networks, or sh1ft-mvanant feature extractors. The expen
mental results presented m this paper make extensive use of weight sharing. 

2.2 General Weight Space Transformations 

The third techmque, which really IS a generahzat10n of weight shanng, 1s called 
weight-space transformation (WST) (le Cun, 1988) WST is based on the fact 
that the search performed by the learnmg procedure need not be done in the 
space of connection strengths, but can be done m any parameter space that 
JS SUitable for the task Th1s can be ach1eved prov1ded that the connect10ns 
strengths can be computed from the parameters through a given transformat10n, 
and provided that the Jacobian matnx of th1s transformatiOn IS known, so that 
we are able to compute the partials of the cost funct10n with respect to the 
parameters The gradient of the cost functwn With respect to the parameters 
IS then Just the product of the Jacobian matnx of the transformation by the 
gradient w1th respect to the connect10n strengths. The situatiOn 1s depicted on 
figure 1 

2.2.1 WST to improve learning speed 

Several types of WST can be defined, not only for reducmg the s1ze of the 
parameter space, but also for speedmg up the learnmg 
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Although the followmg example IS quite difficult to Implement in practice, It 
gives an Idea about how WST can accelerate learning. Let us assume that the 
cost functwn C mmimized by the learnmg procedure is purely quadratic w r. t 

the connectwn strengths W In other words, C is of the form 

where W IS the vector of connection strengths, H the Hessian matrix (the matnx 
of second derivatives) which will be assumed positive definite Then the sur
faces of equal cost are hyperparaboloids centered around the optimal solutwn 
Performing steepest descent m this space will be ineffi.etent If the eigenvalues 
of H have wide vanatwns In this case the paraboloids of equal cost are very 

elongated formmg a steep ravine The learning time is known to depend heavily 
on the ratio of the largest to the smallest eigenvalue. The larger this ratio, the 
more elongated the paraboloids, and the slower the convergence. Let us denote 
A the diagonalized verswn of H, and Q the unitary matnx formed by the (or
thonormal) eigenvectors of H, we have H = QT AQ. Now, let :E be the diagonal 
matnx whose elements are the square root of the elements of A, then H can be 
rewntten asH= QTr.r.Q We can now rewrite the expression for C(W) in the 
followmg way 

Usmg the notatwn U = EQW we obtain 

In the space of U, the steepest descent search will be tnvial smce the Hessian 
matnx Is equal to the Identity and the surfaces of equal cost are hyper-spheres 
The steepest descent direction points m the direction of the solution and lS the 
shortest path to the solutwn Perfect learning can be achieved in one smgle 
Iteratwn If Q and :E are known accurately. The transformation for obtammg 
the connectwn strengths W from the parameters U is simply 

Durmg learnmg, the path followed by U in U space is a straight line, as well 
as the path followed by W m W space This algonthm is known as Newton's 
algonthm, but IS usually expressed directly m W space. Performmg steepest 
descent m U space IS equivalent to usmg Newton's algonthm m W space. 

Of course m practice tlus kmd of WST IS unrealistic since the size of the 
Hessian matnx IS huge (number of connectwns squared), and smce It IS qUite 
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expensive to estimate and diagonahze Moreover , the cost function IS usually 
not quadratic m connectiOn space, which may cause the Hessian matnx to be 
non positive, non defimte, and may cause 1t to vary w1th W Nevertheless, some 
approximatiOns can be made wluch make these Ideas 1mplementable (le Cun, 
1987, Becker and le Cun, 1988) 

2.2.2 WST and generalization 

The WST just described IS an example of problem-zndependent WST, Other 
kinds of WST which are problem-dependent can be devised . Building such trans
formation requires a fair amount of knowledge about the problem as well as a 
reasonable guess about what an optimal network solutiOn for th1s problem could 
be Fmdmg WST that Improve generahzatwn usually amounts to reducing the 
s1ze of the parameter space. In the followmg sectwns we describe an example 
where simple WST such as weight sharmg have been used to Improve general
Ization 

3 An example: A Small Digit Recognition Prob
lem 

The following experimental results are presented to Illustrate the strategies that 
can be used to design a network for a particular problem The problem descnbed 
here IS m no way a real world application but 1s sufficient for our purpose The 
mtermed1ate size of the database makes the problem non-tnvial, but also allows 
for extensive tests of learnmg speed and generalizatiOn performance 

3.1 Description of the Problem 

The database IS composed of 480 examples of numerals represented as 16 pixels 
by 16 pixels binary Images 12 example of each of the 10 digits were hand
drawn by a single person on a 16 by 13 bitmap usmg a mouse Each Image was 
then used to generate 4 examples by puttmg the origmal1mage m 4 consecutlVe 
honzontal positions on a 16 by 16 b1tmap The trammg set was then formed 
by choosmg 32 examples of each class at random among the complete set of 480 
Images the remammg 16 examples of each class were used as the test set Thus, 
the trammg set contamed 320 Images. and the test set contamed 160 Images 
On figure 2 are represented some of the trammg examples 
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Figure 2. Some examples of input patterns. 

3.2 Experimental Setup 

All simulations were performed usmg the BP simulator SN (Bottou and le Cun, 
1988) 

Each umt m the network computes a dot product between 1ts input vector 
and 1ts weight vector This weighted sum, denoted a, for unit i, is then passed 
through a sigmoid squashmg functiOn to produce the state of unit i, denoted by 
x, 

x, = f(a,) 

The squashmg functiOn IS a scaled hyperbolic tangent: 

J (a) = A tanh Sa 

where A IS the amplitude of the function and S determmes its slope at the 
ongm, and f IS an odd functiOn, with horizontal asymptotes +A and -A 

Symmetnc functions are believed to yield faster convergence, although the 
learmng can become extremely slow If the weights are too small The cause of 
tlus problem IS that the ongm of weight space is a stable point for the learn
mg dynamics , and , although it is a saddle pomt, it is attractive m almost all 
duectwns For our simulatiOns, we use A= 1. 7159 and S = ~· with this choice 
of pa1ameters, the equaht1es /(1) = 1 and f( -1) = -1 are satisfied The ra
twnale behind th1s IS that the overall gam of the squashmg transformatiOn Is 
around 1 m normal operatmg conditions, and the interpretation of the state of 
the network IS Simplified Moreover, the absolute value of the second derivative 
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off IS a maximum at +1 and -1, which Improves the convergence at the end 

of the learnmg session. 
Before trainmg, the weights are mitiahzed with random values usmg a Uni

form distribution between -2.4/ F, and 2.4/ F, where F, is the number of inputs 
(fan-m) of the unit which the connectiOn belongs to 1 . The reason for dividing 
by the fan-m IS that we would like the initial standard deviation of the wetghted 
sums to be m the same range for each unit, and to fall within the normal op
eratmg regwn of the s1gmo1d If the Initial weights are too small, the gradients 
are very small and the learnmg Is slow, 1f they are too large, the sigm01ds are 
saturated and the gradient is also very small The standard deviation of the 

weighted sum scales hke the square root of the number of inputs when the in

puts are mdependent, and it scales hnearly with the number of mputs 1f the 

mputs are highly correlated. We chose to assume the second hypothesis smce 

some units receive highly correlated signals 
The output cost functiOn IS the usual mean squared error-

where P IS the number of patterns, Dop IS the desired state for output unit o 

when pattern p IS presented on the input. Xop IS the state of output Unit o 

when pattern p IS presented. It is worth pomtmg out that the target values for 
the output units are well w1thm the range of the sigmoid This prevents the 
weights from growmg mdefinitely and prevents the output units from operatmg 
m the flat spot of the sigmOid. AdditiOnally, smce the second derivative of the 
sigmOid IS maximum near the target values, the curvature of the error functiOn 
around the solutiOn IS maximized and the convergence speed during the final 
phase of the learnmg process is Improved 

Durmg each learning experiment, the patterns were presented in a constant 
order, and the training set was repeated 30 times. The weights were updated 

after each presentation of a smgle pattern according to the so-called stochastic 
gradtent or "on-line" procedure Each learnmg experiment was performed 10 
times with different initial conditiOns All experiments were done both usmg 
standard gradient descent and a special verswn of Newton's algonthm that uses 
a positive, diagonal approximation of the Hessian matrix (le Cun, 1987, Becker 
and le Cun, 1988) 

All experiments were done usmg a special verswn of Newton's algonthm that 
uses a positive, diagonal approximatiOn of the Hessian matnx (le Cun, 1987, 
Becker and le Cun, 1988) Tlus algorithm IS not believed to brmg a tremendous 

1 smce several connectwns share a we1ght th1s rule could be difficult to apply, but m our 
case, all connections sharing a same weight belong to umts w1th 1dentical fan-ms 
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mcrease m learnmg speed but it converges reliably w1thout requiring extens1ve 
adJustments of the learnmg parameters 

At each learning 1terat10n a particular weight Uk (that can control several 
connect10n strengths) 1s updated according to the followmg rule 

fJC 
Uk +- Uk + fk L -~

UWs; 
(s,;)EVk 

where C 1s the cost function, w,1 is the connection strength from unit j to unit 
i , Vk IS the set of unit mdex pairs (i,J) such that the connection strength w,1 IS 

controlled by the we1ght Uk. The step s1ze fk is not constant but 1s funct10n of 
the curvature of the cost functwn along the axis Uk. The expressiOn for fk is· 

where .A and J.l are constant and hkk is a running estimate of the second denvatlve 
of the cost functwn C with respect to Uk. The terms hkk are the diagonal terms 
of the Hess1an matnx of C w1th respect to the parameters Uk. The larger hkkl 

the smaller the we1ght update The parameter J.l prevents the step size from 
becommg too large when the second derivat1ve is small, very much like the 
"model-trust" methods used in non-linear optlm1zation. Special actions must 
taken when the second derivat1ve is negative to prevent the weight vector from 
gomg uphill Each hkk 1s updated according to the following rule: 

where 1 IS a small constant wh1ch controls the length of the window on which 
the average 1s taken The term 82C jaw;

1 
is given by: 

fJ2C fJ2C 
--- --x2 
ow?. - oa 2 J 

'1 ' 

where x 1 1s the state of umt J and 82C faa; is the second derivative of the cost 
functwn w1th respect to the total input to umt i (denoted a,) These second 
deuvatlves are computed by a back-propagatiOn procedure sim1lar to the one 
used for the first denvat1ves (le Cun, 1987)· 

8
2
C !'( )2 "'"" 2 8

2
C "( ) fJC "'ii""2 = a, ~ w ks "'ii""2 - f a, ~ 

ua, k uak ux, 

The first term on the nght hand s1de of the equation is always posit1ve, while 
the second term, mvolvmg the second denvat1ve of the squashmg functiOn J, 
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can be negative. For the simulatwns, we used an approximation to the above 

expression that gives positive estimates by simply neglectmg the second term: 

fJ2C I 2 ~ 2 fJ2C 
7f2 = f (a,) ~ wkl{j2 

a, k ak 

This corresponds to the well-known Levenberg-Marquardt approximatwn used 
for non-hnear regresswn (see for example (Press et al., 1988)). 

This procedure has several interestmg advantages over standard non-linear 
optimizatwn techniques such as BFGS or conjugate gradient. First, it can be 
used m conjunction With the stochastic update (after each pattern presentatwn) 
smce a line search IS not reqmred. Second, It makes use of the analytzcal ex

presswn of the diagonal Hessian, standard quasi-Newton methods estzmate the 
second order properties of the error surface Third, the scaling laws are much 
better than With the BFGS method that reqmres to store an estimate of the full 
Hessian matnx 2 

In this paper, we only report the results obtamed through this pseudo
Newton algonthm smce they were consistently better than the one obtamed 
through standard gradient descent The mput layer of all networks were 16 
by 16 binary images, and their output layer was composed of 10 units, one per 
class. An output configuratwn was considered correct If the most-activated unit 
corresponded to the correct class. 

In the followmg, when talking about layered networks, we Will refer to the 
number of layers of modifiable weights. Thus, a network With one hidden layer 
IS referred to as a two-layer network 

3.3 Net-1: A Single Layer Network 

The simplest network that can be tested on this problem IS a smgle layer, fully 
connected network with 10 sigmoid output units (2570 weights mcludmg the 

biases) Such a network has successfully learned the trammg set, which means 
that the problem is hnearly separable But, even though the trammg set can be 
learned perfectly, the generalizatwn performance IS disappomtmg. between 80% 
and 72% dependmg on when the learnmg IS stopped (see curve 1 on figure 3). 
Interestmgly, the performance on the test set reaches a maximum qmte early 
durmg trammg and goes down afterwards This over-trammg phenomenon has 
been reported by many authors The analys1s of this phenomenon IS outside 
the scope of this paper. When observmg the weight vectors of the output 
umts , 1t becomes obvwus that the network can do nothmg but develop a set of 
matched filters tuned to match an "average pattern" formed by superimposmg 

2 Recent developments such as Nocedal's "lmuted storage BFGS" may alleviate this problem 
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Figure 3 GeneralizatiOn performance vs traming time for 5 network architec
tures Net-1 smgle layer, Net-2: 12 hidden units fully connected, Net-3. 2 
hidden layers locally connected, N et-4· 2 hidden layers, locally connected With 
constramts, N et-5· 2 hidden layers, local connections, two levels of constraints 

all the trammg examples Despite its relatJVely large number of parameters, such 
a system cannot possibly generalize correctly except in trivial situations, and 
certamly not when the input patterns are slightly translated. The classification 
IS essentially based on the computatiOn of a weighted overlap between the input 
pattern and the "average prototype" 

3.4 Net-2: A Two-Layer, Fully Connected Network 

The second step IS to insert a hidden layer between the input and the output. 
The network has 12 hidden units , fully connected both to the mput and the 
output There IS a total of 3240 weights mcluding the biases. Predictably, this 
network can also learn perfectly the trammg set m a few epochs 3 (between 
7 and 15) The generalizatiOn performance IS better than with the previOus 

3 The word epoch IS used to designate an enhre pass through the tram1ng set, wruch m our 
case Is equivalent to 320 pattern presentatiOns 
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Figure 4: three network architectures Net-1, Net-2 and Net-3 

network and reaches 87% after only 6 epochs (see figure 3). A very slight over
learnmg effect is also observed, but Its amplitude IS much smaller than with 
the prevwus network. It IS mteresting to note that the standard devmtion on 
the generalization performance IS s1gmficantly larger than with the first network. 
This an mdication that the network IS largely underdetermined, and the number 
of solutions that are consistent with the trammg set is large. Unfortunately, 
these vanous solutions do not give eqmvalent results on the test set, thereby 
explaming the large variations m generalizatiOn performance. 

From this result, it is qmte clear that this network IS too big (or has too 
many degrees of freedom) 

3.5 Net-3: A Locally Connected, 3-Layer Network 

Since reducmg the size of the network will also reduce Its generality, some knowl
edge about the task Will be necessary m order to preserve the network's abihty 
to solve the problem A simple solutiOn to our over-parameterization problem 
can be found if we remember that the network should recogmze Images. Clas
sical work m visual pattern recogmtion have demonstrated the advantage of 
extractmg local features and combmmg them to form higher order features We 
can easily bmld this knowledge mto the network by forcmg the hidden units 
to only combine local sources of mformatwn. The architecture comprises two 
hidden layers named H1 and H2. The first hidden layer, H1, IS a 2-dimenswnal 
array of Size 8 by 8. Each unit in H1 takes Its mputs from 9 umts on the mput 
plane situated in a 3 by 3 square neighborhood. For umts in layer H1 that are 
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one umt apart, their receptrve fields (in the input layer) are two prxels apart 
Thus, the receptive fields of two nerghbouring hidden units overlap by one row 
or one column. Because of this two-to-one undersampling in each directwn, the 
mformatwn IS compacted by a factor of 4 going from the mput to Hl. 

Layer H2 is a 4 by 4 plane, thus, a similar two-to-one undersampling occurs 
gomg from layer H1 to H2, but the receptive fields are now 5 by 5. H2 is fully 
connected to the 10 output units . The network has 1226 connections (see figure 
4) 

The performance is slightly better than with Net-2: 88.5%, but is obtained 
at a consrderably lower computational cost since Net-3 is almost 3 times smaller 
than N et-2. Also note that the standard deviation on the performance of N et-3 
is smaller than for Net-2. This is thought to mean that the hypothesrs space for 
N et-3 (the space of possible functwns rt can implement) is much smaller than 
for Net-2 

3.6 Net-4: A Constrained Network 

One of the major problems of Image recogmtion, even as simple as the one we 
consider m thrs work, rs that distmctrve features of an object can appear at 
vanous locatiOns on the input Image. Therefore it seems useful to have a set 
feature detectors that can detect a particular mstance of a feature anywhere on 
the mput plane. Since the preczse location of a feature is not relevant to the 
classrficatwn, we can afford to loose some positiOn information in the process. 
Nevertheless, an approxzmate posrtion information must be preserved in order 
to allow for the next levels to detect higher order features. 

DetectiOn of feature at any location on the input can be easrly done usmg 
werght sharmg. The first hrdden layer can be composed of several planes that we 
wrll call feature maps All umts m a plane share the same set of werghts, thereby 
detectmg the same feature at different locations. Since the exact posrtion of the 
feature IS not Important, the feature maps need not be as large as the input 
An mterestmg srde effect of this techmque rs that rt reduces the number of free 
werghts m the network by a large amount. 

The arclutecture of Net-4 rs very srmrlar to Net-3 and also has two hrdden 
layers The first hidden layer rs composed of two 8 by 8 feature maps. Each 
umt m a feature map takes mput on a 3 by 3 neighborhood on the mput plane 
For umts Ill a feature map that are one unit apart, therr receptrve fields in 
the mput layer are two prxels apart. Thus, as with Net-3 the input Image rs 
undersampled The mam difference with Net-3 is that all umts in a feature 
map share the same set of 9 werghts (but each of them has an mdependent 
bras) The undersamplmg techmque serves two purposes The first is to keep 
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the s1ze of the network w1thin reasonable hm1ts The second 1s to ensure that 
some locat10n information 1s discarded durmg the feature detectwn 

Even though the feature detectors are sh1ft mvariant , the operatwn they 
collectlvely perform is not. When the input 1mage 1s shifted, the output of the 
feature maps lS also shifted, but is otherwise left almost unchanged. Because of 
the two-to-one undersampling, when the shift of the input is small, the output 
of the feature maps is not shifted, but merely slightly distorted . 

As m the previous network, the second hidden layer is a 4 by 4 plane w1th 5 
by 5 local receptive fields and no we1ght sharmg. The output is fully connected 
to the second hidden layer and has, of course, 10 umts. The network has 2266 
connectwns but only 1132 (free) we1ghts (see figure 5) 

The generalizatwn performance of th1s network JUmps to 94%, mdicating 
that bmlt-m shift mvanant features are qmte useful for this task . This result 
also md1cates that, desp1te the very small number of mdependent we1ghts, the 
computational power of the network lS mcreased. 

3.7 Net-5: A Network with Hierarchical Feature Extrac
tors 

The same 1dea can be pushed further , leadmg to a hierarch1cal structure Wlth 
several levels of constramed feature maps 

The architecture of N et-5 is very similar to the one of N et-4, except that the 
second Iudden layer H2 has been replaced by four feature maps each of which 
1s a 4 by 4 plane. Umts m these feature maps have 5 by 5 receptive fields in the 
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first hidden layer. Agam, all units m a feature map share the same set of 25 
weights and have mdependent biases. And again, the two-to-one undersampling 
occurs between the first and the second hidden layer. 

The network has 5194 connectwn but only 1060 free parameters, the smallest 
number of all networks described m this paper (see figure 5). 

The generalization performance is 98.4% (100% generalization was obtained 
durmg two of the ten runs) and increases extremely quickly at the beginning of 
learnmg. This suggests that usmg several levels of constrained feature maps is 
a big help for shift invariance. 

4 Discussion 

The results are summanzed on table 1. 

As expected, the generahzation performance goes up as the number of free 
parameters in the network goes down and as the amount of built-in knowledge 
goes up. A noticeable exception to this rule is the result given by the single
layer network and the two-layer, fully connected network. Even though the two 
layer net has more parameters, the generalization performance is significantly 
better One explanation could be that the one-layer network cannot classify the 
whole set (trammg plus testing) correctly, but experiments show that It can. 
We see two other possible explanatwns. The first one is that some knowledge is 
ImphCitly put by msertmg a hidden layer: we tell the system that the problem 
IS not first order. the second one IS that the efficiency of the learning procedure 
(as defined m (Denker et al., 1987)) IS better with a two layer net than with a 
one layer net, meanmg that more information is extracted from each example 
With the former . This is highly speculative and should be investigated further. 

4.1 Tradeoff Between Speed, Generality and Generaliza
tion 

Computer scientists know that storage space, computation time and generahty 
of the code can be exchanged when designing a program to solve a particular 
problem For example, a program that computes a trigonometric function can 
use a senes expanswn, or a lookup table. the latter uses more memory than the 
former but IS faster. Usmg properties of trigonometric functions, the same code 
(or table) can be used to compute several functions, but usually results in some 
loss m efficiency. 

The same kind of exchange exists for learning machines. It 1s tnvial to 
des1gn a machme that learns very qmckly, does not generalize, and requires 
an enormous amount of hardware In fact this learnmg machine has already 
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network architecture lmks we1ghts performance 

smgle layer network 2570 2570 80% 
two layer network 3240 3240 87% 

locally connected 1226 1226 88.5% 

constrained network 2266 1132 94% 

constrained network 2 5194 1060 98.4% 

Table 1 GeneralizatiOn performance for 5 network architectures. N et-1. smgle 
layer; Net-2: 12 hidden units fully connected; Net-3 2 hidden layers locally 
connected; N et-4: 2 hidden layers, locally connected with constramts; N et-5· 
2 h1dden layers, local connections, two levels of constramts. Performance on 
training set is 100% for all networks 

been built and is called a Random Access Memory On the other hand, a 
back-propagation network 4 takes longer to train but is expected to generalize. 
Unfortunately, as shown m (Denker et al., 1987), generalization can be obtamed 
only at the pnce of generahty 

4.2 On-Line Update vs Batch Update 

All s1mulatwns descnbed in this paper were performed using the so-called "on
line" or "stochastic" version of back-propagatiOn where the we1ghts are updated 
after each pattern, as opposed to the "batch" verswn where the weights are up
dated after the gradients have been accumulated over the whole trammg set. 
Expenment show that stochastic update is far supenor to batch update when 
there IS some redundancy m the data. In fact stochastic update must be better 
when a certain level of generahzatwn is expected. Let us take an example where 
the trammg database is composed of two cop1es of the same subset. Then accu
mulatmg the gradient over the whole set would cause redundant computations 
to be performed Stochastic gradient does not have this problem. This 1dea 
can be generalized to traming sets where there exist no prec1se repet1t10n of the 
same pattern but where some redundancy 1s present. 

4.3 Conclusion 

vVe showed an example where constrammg the network architecture Improves 
both learnmg speed and generahzatwn performance dramatically Tins 1s re-

4 unless It IS designed to emulate a RAM 
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ally not surpnsmg but it Is more easily said than done. However, we have 
demonstrated that It can be done in at least one case, image recogmtion, using 
a hierarchy of shift mvariant local feature detectors. These techniques can be 
easily extended (and have been) to other domams such as speech recogm tion. 

Complex software tools with advanced user mterfaces for network description 
and simulatiOn control are required in order to solve a real application. Several 
network structures must be tried before an acceptable one is found and a quick 

feedback on the peformance is critical. 
We are just beginmng to collect the tools and understand the principles 

which can help us to deszgn a network for a particular task. Designing a net
work for a real problem Will require a Sigmficant amount of engineering, which 
the availability of powerful learnmg algorithms will hopefully keep to a bare 
mimmum 
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