
Journal of Systems Architecture 50 (2004) 687–696

www.elsevier.com/locate/sysarc
A clocking technique for FPGA pipelined designs

Oswaldo Cadenas *, Graham Megson

University of Reading, School of Systems Engineering, P.O. Box 225, Whiteknights, Reading RG6 6AY, UK

Received 29 July 2003; received in revised form 12 March 2004; accepted 1 April 2004

Available online 2 July 2004

Abstract

This paper presents a clocking pipeline technique referred to as a single-pulse pipeline (PP-Pipeline) and applies it to

the problem of mapping pipelined circuits to a Field Programmable Gate Array (FPGA). A PP-pipeline replicates the

operation of asynchronous micropipelined control mechanisms using synchronous-orientated logic resources com-

monly found in FPGA devices. Consequently, circuits with an asynchronous-like pipeline operation can be efficiently

synthesized using a synchronous design methodology. The technique can be extended to include data-completion

circuitry to take advantage of variable data-completion processing time in synchronous pipelined designs. It is also

shown that the PP-pipeline reduces the clock tree power consumption of pipelined circuits. These potential applications

are demonstrated by post-synthesis simulation of FPGA circuits.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Pipelines; Micropipeline; FPGAs
1. Introduction

Pipelining is a key implementation technique

for achieving high throughput and parallelism [7].

Pipelined systems are composed of stages, typically

separated by storage elements. Each stage takes in

data processed by the previous stage, processes it,

and delivers new data to a subsequent stage. Based
on the control mechanisms for data interchange,

pipelining is classified as synchronous or asyn-
* Corresponding author. Tel.: +44-118-3786358; fax: +44-

118-3788583.

E-mail addresses: o.cadenas@reading.ac.uk (O. Cadenas),

g.m.megson@reading.ac.uk (G. Megson).

1383-7621/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.sysarc.2004.04.001
chronous [11]. Synchronous pipelining uses a

simple control based on a global clock signal,

where computation starts at all stages in the

pipeline after a clock signal arrives. The corre-

sponding results must be ready before a new clock

signal is issued. The clock period is thus con-

strained by the longest delay in the pipeline plus

timing specifications of the physical storage ele-
ments. This demands a careful balance of the

combinational delay of the pipeline stages when

building pipelined datapaths [12]. Usually a pipe-

line holds a fixed amount of data, that is, the input

rate and the output rate of data is equal or

inelastic and the output exhibits a delay known as

latency. The insertion of dummy data or bubbles

at some points in the pipeline, common in a RISC
ed.

mail to: o.cadenas@reading.ac.uk

688 O. Cadenas, G. Megson / Journal of Systems Architecture 50 (2004) 687–696
datapath control, is an example of a simple elastic

pipeline. Keeping the processing throughput in

elastic pipelines requires extra control in synchro-

nous pipelines, and is often application-specific.

For instance, designing a FIFO. Sutherland in his

classical work [16] inspires a persistent interest in
asynchronous pipelining motivated by its original

simplicity and regularity for implementing elastic

pipelining.

FPGAs do not have the key elements used by

today’s asynchronous designs since they are orien-

tated to implement circuits synchronously [6]. In-

deed, asynchronous elements are costly to

implement in FPGAs. For example, a Muller C-
element, the most frequently used element for

controlling micropipelining, takes 1 CLB (Xilinx

configurable logic block). Consequently, special

FPGA architectures for asynchronous design have

been proposed, see [5] for example.More pragmatic

efforts have concentrated on optimizing asynchro-

nous elements commonly at the CMOS level [15].

We introduce, in Section 3, a new clocking
technique referred to as PP-pipelining, that better

exploits commercial FPGA resources for asyn-

chronous-like computation. PP-pipelines use sim-

ple edge-triggered D-type flip-flops as registers and

so suitable for efficient FPGA implementation. A

PP-pipeline has a synchronous control mechanism

run by a global clock to generate local clock sig-

nals in the form of pulses and hence the registers
do not share a global clock. The basic control

mechanism is built on a simple state machine

accepting asynchronous status signals from

neighboring stages. The pipeline as a whole runs at

a cycle time which is a function of the global clock

period and the longest delay in the pipeline. With

PP-pipelines the portability from asynchronous to

synchronous pipeline operation is straightforward
at the design description level, thus facilitating

reduced design time and effort. A methodology to

convert existing pipelined designs to PP-pipelined

designs is illustrated in Section 3. Section 4 dis-

cusses two potential applications for the PP-pipe-

line clocking technique. Section 2 briefly outlines

two selected asynchronous pipeline schemes that

are feasible for FPGA implementation for com-
parative purposes. Some concluding remarks are

given in Section 5.
2. Asynchronous pipelining feasible on FPGAs

In asynchronous pipelining the storage elements

do not use a global clock. Instead a local hand-

shake protocol based on request and acknowledge
signals between neighboring stages is used for

coherent communication of the data. Asynchro-

nous systems separate signals into: control signals

and data signals. There are schemes to generate

and manage the control signals and ways to en-

code the data signals and relations between them

[3,13]. Commonly, data can be encoded as dual-

rail and as bundle-data. In dual-rail a pair of sig-
nals encode a bit of data and its own request. With

bundle-data, data is presented by the sender and

after it becomes valid then and only then a request

signal is asserted, called the bundling constraint.

The request/acknowledge handshake can follow a

two-phase or a four-phase signalling mechanism.

Micropipelining [16] is a very simple and modular

solution for asynchronous pipelining using bundle-
data and a two-phase protocol. Control in micro-

pipelining is based on Muller C-elements and the

storage on a special capture-pass latch design. In

[20] two-phase micropipelines are explored using

double edge-triggered D-type flip-flops instead of

capture-pass latches. A four-phase micropipeline

variation which uses edge-triggered D-type flip-

flops is presented in [13]. A related scheme using a
four-phase protocol communication with opera-

tion similar to synchronous pipelines is presented

in [10]. The scheme is described as a Double-Lat-

ched Asynchronous Pipeline (DLAP). FPGAs are

populated with edge-triggered flip-flops; double

edge-triggered flip-flops can be synthesized by

employing two edge-triggered flip-flops and mul-

tiplexers. Consequently all these schemes based on
micropipelining are feasible for FPGA implemen-

tation.

2.1. Two-phase micropipeline

Micropipelining is based on a very simple state

rule between adjacent stages consisting of two

conditions. At stage i new data is latched only
after it is available from stage i� 1 (condition I)

and data processed at stage i has been consumed

by the stage iþ 1 (condition II). The basic control

C

Delay

C

Delay

C

Delay

C

Ri+1

i

i-1 i+1

Ri
Ri-1

D
E

T
-R

E
G

D
E

T
-R

E
G

D
E

T
-R

E
G

Micropipeline control

Fig. 1. Left: Micropipeline control circuit. Right: A micropipeline controlling double edge-triggered registers (Det-Reg) with no

processing logic by a two-phase mechanism.

O. Cadenas, G. Megson / Journal of Systems Architecture 50 (2004) 687–696 689
circuit for micropipelining is shown on the left of

Fig. 1. When control Riþ1 activates (after delayi)
stage i indicates data ready to be consumed by the

stage iþ 1. Assuming that stage iþ 2 has accepted

the previous data, then after a Muller’s C-element

propagation delay the control signal to latch the

new value by stage iþ 1 is asserted. This signal

events back to stage i indicating that the data has

been taken. The mechanism repeats for signal Ri

after delayi�1 for stage i to latch the data delivered
by stage i� 1. A two-phase micropipeline as pro-

posed in [20] is shown on the right of Fig. 1. It uses

pipeline registers based on double edge-triggered

D-type flip-flops clocked by the local pulses gen-

erated at all the Rk nodes of the micropipeline

circuit on the left of Fig. 1.

2.2. Four-phase micropipeline and edge-triggered

DLAP

A four-phase bundle-data pipeline is shown in

Fig. 2 [13]. The larger Muller C-elements in the

figure generate the local clocking signals when

both a request signal from a previous stage (data

ready) and the acknowledge from the next stage

(data taken) are valid. The delay elements ensure
that a request to the next stage is asserted only

when data is valid. The smaller Muller C-elements

hold the return-to-zero transitions since the four-

phase protocol acts on positive-going transitions

allowing the use of edge-triggered storage ele-

ments. Before any request can be asserted, the

bubble input of the Muller C-elements have to be

zero which is accomplished with a master reset.
The delays can be implemented by an inverter

chain, to model a matched delay for the worst case
in the associated logic of each pipeline stage. This

is the simplest completion detection circuit for
asynchronous designs with bundle-data protocol

[2].

In [10] a dual latch asynchronous pipeline

(DLAP) is proposed. Each stage is composed of a

pair of storage elements; a master and a slave. New

values can be put into masters while slaves retain

previous values. The idea is shown on the right of

Fig. 2. The controller circuit for each stage is
composed of two Muller C-elements. Each master

register is activated by the rising edge of Lm when a

new value is ready (Ri is set), and the previous

value has been moved to the slave. The rising edge

of Ls activates the slave register when a new value

is ready at the master and the previous value has

been consumed by the following pipeline stage.
3. A single-pulse pipeline clocking technique: PP-

pipelining

A PP-pipeline operation is analogous to the

behavior of micropipelining. However, control

signals are not based on Muller C-elements, but on

simple synchronous state machines. Neighboring
state machines cooperate to generate local clock

signals to clock registers based on edge-triggered

D-type flip-flops. Each state machine reacts to

signals associated with neighboring stages, which

could be asynchronous in nature, in order to

generate the corresponding local clock control

signals. The state machines are modelled on a

common circuit for handling asynchronous events
in synchronous designs known as a single pulser

[18].

C

C

Delay

C

C

R
eg

is
te

r

R
eg

is
te

r
Logic Logic

Request

Acknowledge

Request

Acknowledge

Data In Data Out

Delay

Delay

M
-r

eg Logic

S
-r

eg

MS-CTRL

Data In

Delay

M
-r

eg Logic

S
-r

eg

MS-CTRL

Data out

R1 R2

A1
A2

Lm Ls LsLm

Fig. 2. Left: A two-stages four-phase micropipeline. Right: DLAP pipelining for two-stages.

690 O. Cadenas, G. Megson / Journal of Systems Architecture 50 (2004) 687–696
3.1. General scheme of PP-pipeline

The PP-pipeline is basically a representation of

the micropipelinig state rule specified as a state

machine. Fig. 3 shows a PP-pipeline control for

three stages, where the Ui (or PP-modules) corre-

spond to state machines controlled by a global

clock signal clk. The processing time associated

with pipeline stages is modelled by delay lines;

these are shown on top of each PP-module. Reg-
isters of a pipelined datapath are clocked by local
Delay Delay

goi-1 go i goi+1

donei+1Ui-1 Ui Ui+1
done idone i-1

p
i-1

pi p
i+1

logic
i-1 logici

clk

Fig. 3. PP-pipeline control for three stages pipeline.

D Q

D Q

done

go

clk

done.sy

go.sync

i

i

FF0

FF1

reset
R

R

 capt

p

 capt

FIND

WAIT

0

1

F

T

F

T

Fig. 4. An individual PP-module. Left: ASM chart
pulses pi, generated by individual PP-modules. At

stage i, module Ui generates synchronously pi only
if both goi and donei are asserted. After processing

at stage i� 1 (modelled by delayi�1) donei will be
active (asynchronously) indicating that data is

ready to be delivered to stage i. Similarly goi when
asserted means that stage iþ 1 has accepted the

data from stage i. Ui synchronizes these two

events, at the first clock-edge after both signals are

asserted Ui will generate a clock pulse on pi. All the
stages operate in parallel, accordingly the organi-

zation of interconnected PP-modules is referred to

as a PP-controller. In synchronizing signals done
and go, the PP-controller can be susceptible to

metastable behavior [17]. We address this shortly

but first consider the circuit operation.

Circuit operation: An Algorithmic State Ma-

chine Chart (ASM chart) description and a circuit
for an individual PP-module is shown in Fig. 4.

External events done and go are synchronized into

done:sync and go � sync, respectively. The state

machine has two states: FIND and WAIT. FIND

checks the condition capt ¼ donei � sync AND
D Q

go

nc

p

i-1

i

FF2

R

specification. Right: A circuit implementation.

O. Cadenas, G. Megson / Journal of Systems Architecture 50 (2004) 687–696 691
NOT(goi � sync). The WAIT state loops until capt
is false and a single pulse (of a clock period

duration) is generated at pi. A PP-controller of

any number of stages requires initial conditions to

the leftmost done and the rightmost go signals.

These initial states are set to high and low,
respectively.

As an illustration, consider the case in Fig. 3

when donei�1 and goiþ1 are forced high and low,

respectively. From analysis of the circuit in Fig. 4,

after a master reset, all the go signals go low and

after the first clock edge a single pulse is generated

only at pi�1. The low-asserted level for go signals

was chosen to make this operation simpler after a
master reset. After the processing time at stage

Ui�1 (delayi�1), donei goes high and it is synchro-

nized by Ui (one clock edge). At the next clock

edge (second one), a single pulse pi is generated

(for stage i to capture data from stage i� 1). After

goi�1 is synchronized and returns to low, stage Ui�1

could capture new data. Taking go signals from

capt instead of from p is like predicting the next-
stage capturing and goi�1 occurs simultaneously

with pi thus saving one clock cycle in the PP-con-

troller operation. A pi event, in turn, triggers the

delay element to generate doneiþ1 and the opera-

tion is repeated. Different timing behaviors can

result based on the relatives values of delayi�1 and

delayi. The worst case is when delayi�1 > delayi,
and the pipelining runs at a period Tpipe ¼
ðbdelayi�1=Tclkc þ 3ÞTclk where Tclk is the clock
reset

clk

10 ns

23 ns

7 ns

p

p

p

done

done

i

i-1

i+1

i

i+1

Fig. 5. Simulation waveforms with no associated processing logic w

interconnected PP-modules.
period of the frequency f at which the state ma-

chine runs. This is illustrated in Fig. 5 for the case

of three interconnected PP-modules. The wave-

forms are generated when delayi�1 ¼ 23 ns and

delayi ¼ 7 ns, respectively. It is observed that the

pipeline runs at a period of Tpipe ¼ 5Tclk as pre-
dicted by the formula given above.

Returning to possible metastable problems

might arise when synchronizing done and go sig-

nals, observe that these can be avoided by elimi-

nating the flip-flop to synchronize go (flip-flop FF1

in Fig. 4) and driving goi directly from goi�1 of the

subsequent PP-module. In fact, the risk of syn-

chronizing go is essentially the risk of synchro-
nizing done since goi�1 is a function of done:sync.
The risk associated to done synchronization can be

closely studied based on design and technology

parameters of reliable synchronizer designs [17].

For practical cases, the delay lines can be safely

replaced with a synchronous counter. This is

suitable for one of the applications described in

Section 4.

3.2. PP-pipeline with no delay lines

PP-modules can be further simplified by

removing the delay lines shown in Fig. 3. This

simplified version also eliminates the flip-flop to

synchronize go. Essentially donei is directly taken

from pi�1 and the PP-controller is acting as a gated
clock [1]. The global clock is distributed to pipeline
50 ns

hen delayi�1 ¼ 23 ns and delayi ¼ 7 ns for the case of three

692 O. Cadenas, G. Megson / Journal of Systems Architecture 50 (2004) 687–696
stages only when there is new input data available.

Additionally, the global clock load of gated clocks

is distributed to the local PP-units and conse-

quently the global clock to the PP-controller re-

duces the clock buffer demand.

Circuit operation: With this simplification, the
generation of pi�1 will occur on the following edge

of the clock after pi will be generated, for all suc-

cessive stages. Hence, the PP-controller operation

replicates a totally synchronous pipelined design.

The period for the pipeline frequency is

Tpipe ¼ 2Tclk.
Timing analysis: From timing analysis on the

interconnection of PP-module circuits, it is easily
shown that the clock period at which the controller

can be clocked is Tclk > 2tpd þ tco þ tsu where tpd is

the propagation delay of the AND gates while tco
and tsu is the clock-to-output delay and setup times

of the flip-flops, respectively. This constraint as-

sumes clock skew d ¼ 0 and neglects the delays

associated with the local interconnection wires in

the figure. Very high clock frequencies can be ob-
tained in FPGA technology and the time con-

straint does not appear to limit practical

applications of pipelining when stage processing

time is greater than 2tpd .
c

c

p

p

skew

clk

clk

i

i+1

p
i

p
i+1

Region 1 Region 2

Fig. 6. Skew for two consecutive pulses generation

P(

PP-Mo

CLK

'1'

GO

DONE

DQ
QD

GO
i-1

Pulse

DONE

GO

CLK

PP-Module

i

i

Fig. 7. Left: An individual PP-module. Right: A PP-contr
Clock skew effect: Clock skew may affect the

relative generation of the clocking pulses for

pipelining operation. Consider the two cases in

Fig. 6 as an illustration. For the case of negative

skew, shown on the left of Fig. 6, Regions 1 and 2

are identified for the relative generation of con-
secutive pulses pi�1 and pi. Region 1 can vary from

2tpd when d > tpd to 3tpd � d when d < tpd . Region 2

stretches from tpd when d > tpd to 2tpd � d when

d < tpd .
For positive skew, shown on the right of Fig. 6,

Region 1 is fixed at 2tpd while Region 2 can be

extended by d for d < tco þ 2tpd . When d ¼ 0 both

regions are fixed at 2tpd . In both cases it is observed
that clock skew will always generate a pi event

followed by a piþ1 event as required.

3.3. The PP-pipeline methodology

Next, a methodology for converting existing

pipelined designs into equivalent PP-pipelined de-

signs based on the PP-pipeline clocking technique
is proposed. Assume a pipeline of n individual PP-

modules (left of Fig. 7) are interconnected as

shown on the right of Fig. 7 to form a PP-con-

troller and all the n PP-modules are clocked from a
skew

lk

lk

i

i+1

i

i+1

Region 1 Region 2

. Left: Negative skew. Right: Positive skew.

P(3)

PP-Module

P(2)

PP-Module

P(1)

PP-Module

0)

dule

PP-controller

'0'
GO GO GO GO

DONE DONE DONE

oller. For simplicity a reset signal has been omitted.

Logic Logic Logic
Inputs Outputs

f(clock)

Logic Logic Logic
Inputs Outputs

2f(clock)

PP-controller

Classic pipeline

PP- pipeline

(Preserve datapath
Connect a PP-controller)

Proposed method

Fig. 8. A methodology to convert classic synchronous pipelined designs to a PP-pipelined design.

O. Cadenas, G. Megson / Journal of Systems Architecture 50 (2004) 687–696 693
global clock fclk. The PP-controller generates n
local pulses which can be used to clock a n-stage
pipeline. No modification is needed to the main

existing pipelined datapath at the description level.

Simply replace the feed into the global clock con-

nection. The clocking mechanism being replaced

can be either an asynchronous micropipelined such

as the one shown on the right of Fig. 1 or a global

clocked synchronous pipeline. For the latter case
PP-controller pulses can be either directly clock

pipeline registers based on edge-triggered flip-flops

or be used as register enable signals. For an

existing global clocked pipeline the frequency to

the PP-controller is doubled to preserve the same

data rate. As shown in Fig. 8 the conversion

methodology is straightforward. For a micro-

pipelined design the bundle constraint is 2Tclk and
therefore fclk can be adjusted accordingly to pre-

serve the same pipeline data rate.
4. Potential applications

Since the proposed PP-pipeline technique and

methodology is general it can be used to replace
existing pipelined datapath either from an asyn-
chronous nature such as a micropipeline or a

globally synchronous one. All the registers in the

PP-technique are synthesized with edge-triggered

flip-flops common in FPGA devices. To illustrate

the method consider the following applications.

The first from a synchronous nature that can be

further exploited in VLSI design. The second that

can be used for asynchronous-like computation in
FPGAs.

4.1. Clock-tree power reduction

Recent studies indicate that power consumption

in the clock distribution tree of digital computers

may account for up to 45% of the total integrated

circuit power [9]. Consequently, the reduction of
clock tree power is becoming crucial both in VLSI

and FPGAs designs [14]. We have investigated the

power consumption of the main clock tree of a

Cordic Core pipelined design in a Xilinx Virtex2

FPGA using the PP-pipeline technique. A

description of the study is as follows.

The Cordic Core: A 15-stage global clocked

pipelined Cordic Core obtained from [8] computing

694 O. Cadenas, G. Megson / Journal of Systems Architecture 50 (2004) 687–696
Sine and Cosine functions for input angles with 16

bit of precision.

Obtaining a PP-pipelined Cordic Core: The

methodology presented in Section 3.3 was applied

to translate the 15-stage global clocked pipelined

Cordic Core. First, VHDL code was written for
the PP-modules, and then captured as a parame-

terized structural object to act as a PP-controller.

An equivalent PP-pipelined VHDL specification is

straightforward after interconnecting the PP-con-

troller to the original global clocked Cordic Core

specification.

Power estimation process: The Xilinx XPower

tool [19] was used to measure power for the global
clocked and the PP-pipelined Cordic Core. Xpo-

wer computes power based on information of node

switching rate activity of circuits. Switching rate

activity was obtained from post place-and-route

timing simulation data obtained from the simula-

tor ModelSim XE 5.5b. Previously, both circuits

were placed and routed with Xilinx ISE 5.1. Syn-

thesis for the designs was obtained using the
product Synplify Pro 7.2 targeting Virtex II de-

vices. All the design entry specification was written

in VHDL code.

Area and time results: The global clocked

pipelined Cordic Core runs at 205 MHz taking 475

slices in a Virtex2 XC2V250. An equivalent PP-

pipelined Cordic Core runs at 155 MHz and takes

488 slices in the same device. The area overhead of
the PP-technique (mainly the PP-controller) for

this simple design is less than 5%. For reference,

post place-and-route timing simulations showed

that a PP-controller of 16 outputs can run up to

324 MHz in a Virtex2 XC2V250 device taking 20

slices. This means the PP-technique allows a

micropipelined design mapped into a FPGA

synchronous design that would runs at over
160 MHz.

Clock tree power: A Cordic Core global clocked

circuit running at 10 MHz reported a clock tree

power consumption of 2.24 mW. An equivalent

PP-pipelined Cordic Core circuit showed a global

clock tree power consumption of 0.66 mW. This

represents an overall reduction in dynamic power

consumption of around 30% for the whole design.
However, due to the limited number of dedicated

clock lines of FPGAs it is expected that the power
reduction capabilities of the PP-technique would

be immediately better suited for VLSI designs.

Discussion: For the case when all delays are

known as in the synthesis of global clocked pipe-

line designs it seems that the PP-pipeline technique

has a potential for reducing clock tree power
which would be beneficial in VLSI designs. For

PP-pipelined designs converted from global

clocked designs, the pulse signals can be used as

register enable signals simplifying the exploitation

of clock gating at the level of language description

of existing designs.

4.2. Data-driven frequency modulation

A PP-controller generates a pulse signal at a

stage piþ1 only after processing at stage i has

completed (condition I) and no further pi is gen-

erated until a pulse signal piþ1 has been generated

(condition II). This ensures the correct forward

operation of a pipeline flow. A PP-module circuit

can accept as an input a signal indicating the
completion of processing at a particular stage.

This is modelled by means of a delay line. This

delay line is placed between the connection from

pi�1 to donei. For this case, the pipeline runs at a

period of Tpipe ¼ maxðddelayi=TclkeÞ; Tclk, where

delayi is the completion time associated to any

stage i and Tclk is the period of the global clock to

the PP-controller. In circuit realization a syn-
chronous reset counter can be incorporated to

each pipeline stage that can be triggered by each

pulse p to count processing time in integer inter-

vals of Tclk. More elaborate data completion cir-

cuitry are available such as variable processing

time computation driven by data values as in [4].

In either case, a PP-controller can manage

instantaneous periods for moving data across the
pipeline stages in discrete steps from 2Tclk to

ddelayi=Tclke. Consequently computation will be

performed at a variable instantaneous frequency

modulated by variable processing time of data at

time of execution. A simulation to illustrate this

behavior was carried out for a three stage pipeline.

Stages two and three were stripped of processing

logic while stage one was simulated to have a
variable processing completion time using the

Verilog construct:

p[2]

p[1]

p[0]

clk

delay 17 16 6 5 142

Fig. 9. Simulated waveforms of the PP-technique operation showing data completion at stage one and no processing at stages two and

three. The local clocks are p½0�, p½1� and p½2�, respectively while processing time delay of stage one is related to p½0�.

O. Cadenas, G. Megson / Journal of Systems Architecture 50 (2004) 687–696 695
always @ (posedge p[0])

begin

delay¼ $dist_normal (seed,normal,sd);

t¼10b0; #(delay) t¼10b1;

end

Completion detection for stage one, t, is acti-
vated according to a delay time with normal dis-

tribution delay with standard deviation sd. The

activation occurs after the rising edge of the clock

pulse to stage one. Simulated waveforms are

shown in Fig. 9 for Tclk ¼ 4 ns. Note that when

delay ¼ 25 ns ð> 2Tclk), p½0� is generated with a

period of 7Tclk complying with the given formula.

It is also seen that the minimum period for p½0� is
2Tclk. If data completion circuitry with average-

completion times implemented in FPGA hardware

running around 50 MHz, frequency modulation

can be obtained in discrete steps of less than 10%.

The realization of these implementations is cur-

rently being investigated.
5. Conclusion

The PP-pipeline is introduced as a versatile

pipeline clocking mechanism suitable for FPGA

implementation. PP-pipeline can be used as a

technique to migrate asynchronous pipelined de-

signs such as micropipelining into FPGAs, and

also as an alternative clocking mechanism to
existing global synchronous pipelines. No redesign

is needed to existing pipelined datapaths. PP-

pipelined designs result in equivalent micropipe-

lined designs with a fixed bundle constraint but

using a synchronous methodology. A PP-pipeline

synthesizes with circuit resources commonly

available in commercial FPGAs. As alternatives to
global clocked pipelined designs, equivalent PP-

pipelined designs show lower power dissipation of

the main clock tree and hence are also suitable for

VLSI implementation. The technique can be ex-

tended to incorporate data-completion circuitry

into a pipelined design using a synchronous ap-

proach. Simulations show that it is possible to
handle variable data-completion times to modu-

late the instantaneous frequency in discrete time

steps across the pipeline stages. The time of the

discrete steps is in practice small compared to

coarse-grain combinational logic of typical pipe-

line stages. These advantages are due to a regular

PP-controller based on simple cooperating state

machines.
References

[1] L. Benini, P. Siegel, G. DeMicheli, Designing for low

power circuits: practical recipes, IEEE Circuits and Sys-

tems magazine 1 (1) (2001) 6–25.

[2] F.C. Cheng, Practical design and performance evaluation

of completion detection circuits, in: Int. Conf. on Com-

puter Design, ICCD, October 1998.

[3] A. Davis, S. Nowick, An introduction to asynchronous

system design, University of Utah, Report N. UUCS-97-

013, Salt Lake City, 1997.

[4] A.D. Gloria, M. Olivieri, Completion-detection carry select

addition, IEE Proceedings––Computer Digital Techniques

147 (2) (2000) 93–100.

[5] S. Hauck, S. Burns, G. Borriello, C. Ebeling, Montage: an

FPGA for synchronous and asynchronus circuits, in: 2nd

Int. Workshop on Field-Programmable Gate Arrays,

August 1992.

[6] S. Hauck, S. Burns, G. Borriello, C. Ebeling, An FPGA for

implementing asynchronus systems, IEEE Design & Test

of Computers 11 (3) (1994) 60–69.

[7] J.L. Hennessy, D.A. Patterson, Computer Architecture: A

Quantitative Approach, Morgan Kaufmann, San Fran-

cisco, 1995.

696 O. Cadenas, G. Megson / Journal of Systems Architecture 50 (2004) 687–696
[8] R. Herveille, Cordic core specification, rev. 04, www.open-

cores.com, December 2001.

[9] T.A. Johnson, I.S. Kourtev, A single latch, high speed

double-edge triggered flip-flop (DETFF), in: Proc. of 8th

IEEE International Conference on Electronics, Circuits

and Systems, ICECS, June 2001.

[10] R. Kol, R. Ginosar, A doubly-latched asynchronous

pipeline, in: Proc. of the Int. Conf. on Computer Design,

ICCD’97, 1997.

[11] C.L. Seitz, System timing, in: C.A. Mead, L.A. Conway

(Eds.), Introduction to VLSI Systems, Addison-Wesley,

Reading, Mass., 1980, Chapter 7.

[12] D.A. Patterson, J.L. Hennessy, Computer Organization

and Design: The Hardware/Software Interface, McGraw-

Hill, New York, 1995.

[13] R. Payne, Self-timed FPGA systems, in: Proc. of the 5th

Int. Workshop on Field Programmable Logic and Appli-

cations, LNCS 975, September 1995.

[14] M.P. Qing, X. Wu, A new design for double edge triggered

flip-flops, in: Proc. of the Asia and South Pacific Design

Automation Conference, Febuary 1998, pp. 417–421.

[15] M. Shams, J.C. Ebergen, Optimizing CMOS implementa-

tions of the C-element, in: Proc. of the Int. Conf. on

Computer Design, ICCD’97, 1997.

[16] I.E. Sutherland, Micropipelines, Communications of the

ACM 32 (6) (1989) 720–738.

[17] J.F. Wakerly, Digital Design: Principles and Practices,

Prentice-Hall, New Jersey, USA, 2000.

[18] D. Winkel, F. Prosser, The Art of Digital Design: An

Introduction to Top–Down Design, Prentice-Hall, Engle-

wood Cliffs, 1980.
[19] Xilinx, XPower Tutorial, FPGA Design, Xilinx, Inc, San

Jose, California, 2002.

[20] K.Y. Yun, P.A. Beerel, J. Arceo, High-performance

asynchronous pipeline circuits, in: Proc. of the Int. Symp.

on Advanced Research in Asynchronous Circuits and

Systems, March 1996, pp. 17–28.

Oswaldo Cadenas is a lecturer in the
University of Reading’s Electronic
Engineering Department and Com-
puter Science Department. His re-
search interests include reconfigurable
logic, hardware compilation and com-
puter architecture. Cadenas received a
PhD in Computer Science from the
University of Reading.
Graham Megson is a professor in the
Department of Computer Science in
the University of Reading. Professor
Megson has published over 160 papers
at international conferences, in jour-
nals, including five books on algo-
rithms/architectures and related topics.

http://www.opencores.com
http://www.opencores.com

	A clocking technique for FPGA pipelined designs
	Introduction
	Asynchronous pipelining feasible on FPGAs
	Two-phase micropipeline
	Four-phase micropipeline and edge-triggered DLAP

	A single-pulse pipeline clocking technique: PP-pipelining
	General scheme of PP-pipeline
	PP-pipeline with no delay lines
	The PP-pipeline methodology

	Potential applications
	Clock-tree power reduction
	Data-driven frequency modulation

	Conclusion
	References

