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Abstract— A new VLSI architecture for real-time
pipeline FFT processor is proposed. A hardware oriented
radix-22 algorithm is derived by integrating a twiddle
factor decomposition technique in the divide and con-
quer approach. Radix-22 algorithm has the same multi-
plicative complexity as radix-4 algorithm, but retains the
butterfly structure of radix-2 algorithm. The single-path
delay-feedback architecture is used to exploit the spa-
tial regularity in signal flow graph of the algorithm. For
length-N DFT computation, the hardware requirement of
the proposed architecture is minimal on both dominant
components: log4 N � 1 complex multipliers and N � 1
complex data memory. The validity and efficiency of the
architecture have been verified by simulation in hardware
description language VHDL.

I. INTRODUCTION

Pipeline FFT processor is a specified class of processors for
DFT computation utilizing fast algorithms. It is characterized
with real-time, non-stopping processing as the data sequence
passing the processor. It is an AT 2 non-optimal approach
with AT 2 = O(N 3), since the area lower bound is O(N).
However, as it has been speculated [1] that for real-time pro-
cessing whether a new metric should be introduced since it is
necessarily non-optimal given the time complexity of O(N).
Although asymptotically almost all the feasible architectures
have reached the area lower bound [2], the class of pipeline
FFT processors has probably the smallest “constant factor”
among the approaches that meet the time requirement, due
to its least number, O(logN), of Arithmetic Elements (AE).
The difference comes from the fact that an AE, especially the
multiplier, takes much larger area than a register in digital
VLSI implementation.

It is also interesting to note the at least Ω(logN) AEs are
necessary to meet the real-time processing requirement due
to the computational complexity of Ω(N logN) for FFT al-
gorithm. Thus it has the nature of “lower bound” for AE
requirement. Any “optimal” architecture for real-time pro-
cessing will likely have Ω(logN) AEs.

Another major area/energy consumption of the FFT pro-
cessor comes from the memory requirement to buffer the in-
put data and the intermediate result for the computation. For
large size transform, this turns out to be dominating [3, 4].
Although there is no formal proof, the area lower bound indi-
cates that the the “lower bound” for the number of registers is
likely to be Ω(N). This is obviously true for any architecture
implementing FFT based algorithm, since the butterfly at first
stage has to take data elements separatedN=r distance away
from the input sequence, where r is a small constant integer,
or the “radix”.

Putting above arguments together, a pipeline FFT proces-
sor has necessarily Ω(logrN) AEs and Ω(N) complex word
registers. The optimal architecture has to be the one that
reduces the “constant factor”, or the absolute number of AEs
(multipliers and adders) and memory size, to the minimum.

In this paper a new approach for real-time pipeline FFT pro-
cessor, the Radix-22 Single-path Delay Feedback, or R22SDF
architecture will be presented. We will begin with a brief re-
view of previous approaches. A hardware oriented radix-22

algorithm is then developed by integrating a twiddle factor
decomposition technique in divide and conquer approach to
form a spatially regular signal flow graph (SFG). Mapping
the algorithm to the cascading delay feedback structure leads
to the the proposed architecture. Finally we conclude with a
comparison of hardware requirement of R22SDF and several
other popular pipeline architectures.

II. PIPELINE FFT PROCESSOR ARCHITECTURES

Before going into details of the new approach, it is beneficial
to have a brief review of the various architectures for pipeline
FFT processors. To avoid being influenced by the sequence
order, we assume that the real-time processing task only re-
quires the input sequence to be in normal order, and the output
is allowed to be in digit-reversed (radix-2 or radix-4) order,
which is permissible in such applications such as DFT based
communication system [5]. We also stick to the Decimation-
In-Frequency (DIF) type of decomposition throughout the
discussion.

The architecture design for pipeline FFT processor had
been the subject of intensive research as early as in 70’s when
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real-time processing was demanded in such application as
radar signal processing [6], well before the VLSI technology
had advanced to the level of system integration. Several
architectures have been proposed over the last 2 decades since
then, along with the increasing interest and the leap forward
of the technology. Here different approaches will be put
into functional blocks with unified terminology, where the
additive butterfly has been separated from multiplier to show
the hardware requirement distinctively, as in Fig. 1. The
control and twiddle factor reading mechanism have been also
omitted for clarity. All data and arithmetic operations are
complex, and a constraint that N is a power of 4 applies.
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Figure 1: Various schemes for pipeline FFT processor

R2MDC: Radix-2 Multi-path Delay Commutator [6] was
probably the most straightforward approach for pipeline
implementation of radix-2 FFT algorithm. The input se-
quence has been broken into two parallel data stream flow-
ing forward, with correct “distance” between data elements
entering the butterfly scheduled by proper delays. Both
butterflies and multipliers are in 50% utilization. log2 N�2
multipliers, log2 N radix-2 butterflies and 3=2N � 2 reg-
isters (delay elements) are required.

R2SDF: Radix-2 Single-path Delay Feedback [7] uses the
registers more efficiently by storing the butterfly output
in feedback shift registers. A single data stream goes
through the multiplier at every stage. It has same number of
butterfly units and multipliers as in R2MDC approach, but
with much reduced memory requirement: N � 1 registers.
Its memory requirement is minimal.

R4SDF: Radix-4 Single-path Delay Feedback [8] was pro-
posed as a radix-4 version of R2SDF, employing CORDIC1

iterations. The utilization of multipliers has been increased
to 75% due to the storage of 3 out of radix-4 butterfly out-
puts. However, the utilization of the radix-4 butterfly,
which is fairly complicated and contains at least 8 com-
plex adders, is dropped to only 25%. It requires log4 N�1
multipliers, log4 N full radix-4 butterflies and storage of
size N � 1.

R4MDC: Radix-4 Multi-path Delay Commutator [6] is a
radix-4 version of R2MDC. It has been used as the ar-
chitecture for the initial VLSI implementation of pipeline
FFT processor [3] and massive wafer scale integration [9].
However, it suffers from low, 25%, utilization of all com-
ponents, which can be compensated only in some special
applications where four FFTs are being processed simul-
taneously. It requires 3 log4 N multipliers, log4 N full
radix-4 butterflies and 5=2N � 4 registers.

R4SDC: Radix-4 Single-path Delay Commutator [10] uses a
modified radix-4 algorithm with programable 1=4 radix-4
butterflies to achieve higher, 75% utilization of multipliers.
A combined Delay-Commutator also reduces the memory
requirement to 2N�2 from 5=2N�1, that of R4MDC. The
butterfly and delay-commutator become relatively compli-
cated due to programmability requirement. R4SDC has
been used recently in building the largest ever single chip
pipeline FFT processor for HDTV application [4].

A swift skimming through of the architectures listed above
reveals the distinctive merits of the different approaches:
First, the delay-feedback approaches are always more effi-
cient than corresponding delay-commutator approaches in
terms of memory utilization since the stored butterfly output
can be directly used by the multipliers. Second, radix-4 algo-
rithm based single-path architectures have higher multiplier
utilization, however, radix-2 algorithm based architectures
have simpler butterflies which are better utilized. The new
approach developed in following sections is highly motivated
by these observations.

III. RADIX-22 DIF FFT ALGORITHM

By the observations made in last section the most desirable
hardware oriented algorithm will be that it has the same
number of non-trivial multiplications at the same positions in
the SFG as of radix-4 algorithms, but has the same butterfly
structure as that of radix-2 algorithms. Strictly speaking, al-
gorithms with this feature is not completely new. An SFG
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with a complex “bias” factor had been obtained implicitly as
the result of constant-rotation/compensation procedure using
restricted CORDIC operations [11]. Another algorithm com-
bining radix-4 and radix-‘4 + 2’ in DIT form has been used
to decrease the scaling error in R2MDC architecture, without
altering the multiplier requirement [12]. The clear derivation
of the algorithm in DIF form with perception of reducing the
hardware requirement in the context pipeline FFT processor
is, however, yet to be developed.

To avoid confusing with the well known radix-2=4 split
radix algorithm and the mixed radix-‘4 + 2’ algorithm, the
notion of radix-22 algorithm is used to clearly reflect the
structural relation with radix-2 algorithm and the identical
computational requirement with radix-4 algorithm.

The DFT of size N is defined by

X(k) =

N�1X
n=0

x(n)Wnk
N 0 � k < N (1)

where WN denotes the N th primitive root of unity, with
its exponent evaluated modulo N . To make the derivation
of the new algorithm clearer, consider the first 2 steps of
decomposition in the radix-2 DIF FFT together. Applying a
3-dimensional linear index map,

n = < N
2 n1 +

N
4 n2 + n3 >N

k = < k1 + 2k2 + 4k3 >N
(2)

the Common Factor Algorithm (CFA) has the form of
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(3)
where the butterfly structure has the form of

B
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N
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n2 + n3) + (�1)k1x(

N

4
n2 + n3 +

N

2
)

If the expression within the braces of eqn. (3) is to be com-
puted before further decomposition, an ordinary radix-2 DIF
FFT results. The key idea of the new algorithm is to pro-
ceed the second step decomposition to the remaining DFT

coefficients, including the “twiddle factor”W
(N4 n2+n3)k1

N , to
exploit the exceptional values in multiplication before the
next butterfly is constructed. Decomposing the composite
twiddle factor and observe that

W
(N4 n2+n3)(k1+2k2+4k3)

N

=WNn2k3
N W

N

4 n2(k1+2k2)

N W
n3(k1+2k2)

N W 4n3k3
N

= (�j)n2(k1+2k2)W
n3(k1+2k2)

N W 4n3k3
N

(4)
Substituting eqn. (4) in eqn. (3) and expand the summation
with index n2. After simplification we have a set of 4 DFTs
of length N=4,

X(k1 + 2k2 + 4k3) =

N

4 �1X
n3=0

h
H(k1; k2; n3)W

n3(k1+2k2)

N

i
W

n3k3
N

4

(5)
where H(k1; k2; n3) is expressed in eqn. (6).
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Figure 2: Butterfly with decomposed twiddle factors.

eqn. (6) represents the first two stages of butterflies with
only trivial multiplications in the SFG, as BF I and BF II in
Fig. 2. After these two stages, full multipliers are required
to compute the product of the decomposed twiddle factor
W

n3(k1+2k2)

N in eqn. (5), as shown in Fig. 2. Note the order of
the twiddle factors is different from that of radix-4 algorithm.

Applying this CFA procedure recursively to the remaining
DFTs of length N=4 in eqn. (5), the complete radix-22 DIF
FFT algorithm is obtained. An N = 16 example is shown
in Fig. 3 where small diamonds represent trivial multiplica-
tion by W

N=4
N = �j, which involves only real-imaginary

swapping and sign inversion.
Radix-22 algorithm has the feature that it has the same mul-

tiplicative complexity as radix-4 algorithms, but still retains
the radix-2 butterfly structures. The multiplicative opera-
tions are in a such an arrangement that only every other stage
has non-trivial multiplications. This is a great structural ad-
vantage over other algorithms when pipeline/cascade FFT
architecture is under consideration.

IV. R22SDF ARCHITECTURE

Mapping radix-22 DIF FFT algorithm derived in last section
to the R2SDF architecture discussed in section II., a new archi-
tecture of Radix-22 Single-path Delay Feedback (R22SDF)
approach is obtained.
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Figure 3: Radix-22 DIF FFT flow graph for N = 16

Fig. 5 outlines an implementation of the R22SDF archi-
tecture for N = 256, note the similarity of the data-path to
R2SDF and the reduced number of multipliers. The imple-
mentation uses two types of butterflies, one identical to that
in R2SDF, the other contains also the logic to implement the
trivial twiddle factor multiplication, as shown in Fig. 4-(i)(ii)
respectively. Due to the spatial regularity of Radix-22 algo-
rithm, the synchronization control of the processor is very
simple. A (log2 N)-bit binary counter serves two purposes:
synchronization controller and address counter for twiddle
factor reading in each stages.

With the help of the butterfly structures shown in Fig. 4,
the scheduled operation of the R22SDF processor in Fig. 5
is as follows. On first N=2 cycles, the 2-to-1 multiplexors
in the first butterfly module switch to position “0”, and the
butterfly is idle. The input data from left is directed to the
shift registers until they are filled. On next N=2 cycles, the
multiplexors turn to position “1”, the butterfly computes a
2-point DFT with incoming data and the data stored in the
shift registers.

Z1(n) = x(n) + x(n+N=2)
Z1(n+N=2) = x(n)� x(n+N=2)

,0 � n < N=2 (7)

The butterfly outputZ1(n) is sent to apply the twiddle fac-
tor, and Z1(n+N=2) is sent back to the shift registers to be
“multiplied” in still nextN=2 cycles when the first half of the
next frame of time sequence is loaded in. The operation of the
second butterfly is similar to that of the first one, except the
“distance” of butterfly input sequence are just N=4 and the
trivial twiddle factor multiplication has been implemented by
real-imaginary swapping with a commutator and controlled
add/subtract operations, as in Fig. 4-(ii), which requires two
bit control signal from the synchronizing counter. The data
then goes through a full complex multiplier, working at 75%
utility, accomplishes the result of first level of radix-4 DFT
word by word. Further processing repeats this pattern with
the distance of the input data decreases by half at each consec-
utive butterfly stages. AfterN�1 clock cycles, The complete
DFT transform result streams out to the right, in bit-reversed
order. The next frame of transform can be computed without
pausing due to the pipelined processing of each stages.
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Figure 4: Butterfly structure for R22SDF FFT processor

In practical implementation, pipeline register should be in-
serted between each multiplier and butterfly stage to improve
the performance. Shimming registers are also needed for
control signals to comply with thus revised timing. The la-
tency of the output is then increased toN �1+3(log4 N�1)
without affecting the throughput rate.

V. CONCLUSION

In this paper, a hardware-oriented radix-22 algorithm is de-
rived which has the radix-4 multiplicative complexity but re-
tains radix-2 butterfly structure in the SFG. Based on this algo-
rithm, a new, efficient pipeline FFT architecture, the R22SDF
architecture, is put forward. The hardware requirement of
proposed architecture as compared with various approaches
is shown in Table 1, where not only the number of complex
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Figure 5: R22SDF pipeline FFT architecture for N = 256
multipliers, adders and memory size but also the control com-
plexity are listed for comparison. For easy reading, base-4
logarithm is used whenever applicable. It shows R22SDF has
reached the minimum requirement for both multiplier and the
storage, and only second to R4SDC for adder. This makes
it an ideal architecture for VLSI implementation of pipeline
FFT processors.

Table 1: Hardware requirement comparison

multiplier # adder # memory size control
R2MDC 2(log4 N � 1) 4 log4 N 3N=2� 2 simple
R2SDF 2(log4 N � 1) 4 log4 N N � 1 simple
R4SDF log4 N � 1 8 log4 N N � 1 medium
R4MDC 3(log4 N � 1) 8 log4 N 5N=2� 4 simple
R4SDC log4 N � 1 3 log4 N 2N � 2 complex
R22SDF log4 N � 1 4 log4 N N � 1 simple

The architecture has been modeled with hardware descrip-
tion language VHDL with generic parameters for transform
size and word-length, using fixed point arithmetic and a com-
plex array multiplier implemented with distributed arithmetic.
The validity and efficiency of the proposed architecture has
been verified by extensive simulation.
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