Parallel Discrete Event Simulation: A Survey

Voon-Yee Vee Wen-Jing Hsu

Centre for Advanced Information Systems, SAS
Nanyang Technological University
Nanyang Avenue, Singapore 639798
vyvee@singnet.com.sg, hsu@ntu.edu.sg

Abstract

In the past decade, parallel processing has gained very significant advances in all fronts of the theory,
systems, and applications. However, despite years of research and its apparent significance, parallel
simulation remains a major outstanding challenge. In particular, there has been no simulation system
which facilitates an early prediction of the program performance.

In this report, we document a survey of the major existing approaches for parallel simulation as well
as a comparative study of two leading computational models, namely, Valiant’s BSP and Leiserson’s Cilk,
which are useful formal models for performance prediction of simulation programs.

1 Introduction

Simulation has been heavily relied upon by computer scientists, physicists, circuit designers, mathematicians,
military force, and even video game designers [LK91, Fis95, Chi92]. For decades, simulationists have been
devising simulation models for large and complex systems to facilitate performance analysis, study of system
behavior, optimization, and essentially all aspects of the systems under simulation.

The speed of sequential processors increases every year, while the complexity of the systems we are
interested in simulating also increases every year. Today, some of the systems we wish to simulate are so
complex that they appear “intractable” to even the fastest uniprocessor we have built to date. Furthermore,
the power of a processor will eventually reach an upper bound imposed by the limits of the physical world
(such as the speed of light and the finite size of a molecule). Given this, performing simulation in parallel is
acknowledged as the most promising solution to simulating those “intractable” systems.

Unfortunately, despite over two decades of research, the technology of parallel simulation has not sig-
nificantly impressed the general simulation community [Fuj93b]. Considerable efforts and expertise are still
required to develop efficient simulation programs. There are no “golden rules” that a programmer can follow
to guarantee an efficient program. Generally speaking, parallel simulation is very hard [Fuj90a).

Nevertheless, the field of parallel simulation does deserve future research and cannot be simply ignored.
Presently, because of its importance, there is much active research to further develop the parallel simulation
technology.

In this paper we give an overview of the existing parallel simulation technology. We first cover some basic
concepts in simulation, followed by various ways of decomposing a simulation model. We survey the major

existing approaches for the parallel discrete-event simulation. Two major models of parallel computation



are also introduced, followed by the existing approaches based on these models. Finally, we offer our views

of the prospects of parallel simulation.

2 An Overview of Simulation

A simulation model can be viewed as a representation of the physical system under simulation. Discrete Fvent
Simulations (DESs) are characterized by discrete-state models (as opposed to continuous-state models) and
the event-driven approach. In a continuous-state model, or continuous simulation, the state of the simulation
changes continuously over time; while in a discrete-state model, or discrete simulation, the change of state
is instantaneous and occurs at discrete points in simulated time [Jai91, Fer95, LK91]. Notice that the term
discrete applies only to the state changes but not to the values of the simulated time.

The discrete event simulation can further be classified according to how the simulation time advances.
In time-driven discrete simulation (sometimes also referred to as the unit time approach), the simulation
time is incremented by a constant time step /A. In the event-driven approach, the increment of simulation
time is triggered by the next earliest occurring event. It is well-known that the time-driven approach is not
a good choice for general-purpose simulation; in particular, the approach is inefficient for events irregularly
dispersed over time [Fer95]. It is often difficult to fix a proper A: to maintain the accuracy of the simulation
generally requires a smaller AA; to run the simulation efficiently requires a larger value of A. The event-driven
approach however does not suffer from this difficulty.

In Sections 2.1 and 2.2, we present overviews of performing DES in sequential and in parallel respectively.

2.1 Sequential Simulation

All sequential DESs have a common structure. The set of future events is maintained in a global event
list. These events are to be scheduled by an event scheduler in a nondecreasing timestamp order, one
after another. After processing an event (of the earliest occurring time among all outstanding events), the
simulation clock recording the current (simulated) time is then advanced to the time of the next earliest
occurring event. The components and organization of a sequential DES model can be found in a large
number of literature, see, e.g., [LK91, Fer78, Jai91].

The simulation community, however, is no longer satisfied with the performance of sequential simulators.
The systems we desire to simulate today are so complex that the tasks of executing these simulation models

are often beyond the capability of sequential simulators [Fuj93b].

2.2 Parallel Simulation

Seminal work of DES in parallel dates back roughly 20 years. Hundreds of papers have been published
since then, the majority appearing within this decade (see References and Bibliography). Various ways
of decomposing a simulation for processing on multiple processors have been proposed, as outlined be-
low [RW89, Fer95, Cal96]:

1. Parallelizing Compilers. In this approach, parallelizing compilers are used to exploit the parallelism
available in a given sequential program. This approach requires no changes in the code for sequential
simulation, and thus is readily applicable to many existing sequential simulation programs. However,

since the compiler completely ignores the structure of the problem, the parallelism exploited is quite
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Figure 1: (a) The space-time graph. Simulation execution, which runs from simulated time 0 to time ¢, is equivalent
of filling in the shaded area. Possible decompositions with respect to (b) space domain and (c) time domain.

limited. The program may have to be rewritten to exploit more parallelism of the underlying problem,

but this is completely ignored with this approach.

2. Replicated Trials (or Parallel Independent Runs, Distributed Experiments). N sequential simulations
are run independently on N processors, and their results are averaged in the end. Since no coordination
is required among the trials, high efficiency can be expected. However, the parameters of all simulation
runs must be decided before any run takes place. This requirement does not encourage interactive
decision making of the parameters, which could have been done if there existed a few fast runs of the
simulation. In addition, the memory space required is proportional to the number of independent trials.

This can impose a severe restriction for certain large simulation or for certain underlying architectures.

3. Distributed Functions. In this approach, the essential subtasks of a simulation are assigned to a
number of processors. The subtasks may include random number generation, event set processing,
file manipulation, statistics collection, etc. This approach requires minimum changes in the code for
sequential simulation. However, since the number of such subtasks is limited, not much parallelism

can be exploited. Furthermore, the workload among the processors is difficult to balance as well.

4. Distributed Events (with Centralized Event List). In this approach, a processor which becomes available
continues to process the event with the earliest timestamp in a global event list. The global event list
may be maintained either distributively or by a particular processor. To avoid incorrect simulation,
each processor has to ensure that the event with the earliest timestamp in the list will not be cancelled
by some events currently processed by other processors. It also has to ensure that processing this event
with other events currently being processed by other processors is in consistence with the semantics
of the system being simulated. This requires knowledge of the simulation model, which may not be
extracted easily. Besides, the global event list can become a bottleneck if many processors are involved

in the simulation.

5. Domain Decomposition. This class of decomposition is based on the view that a simulation execution
is equivalent to filling in a two-dimensional region, with one dimension representing the simulated

time and another dimension the state variables, as shown in Figure 1(a). According to this view, the



space-time domain can be decomposed along the time dimension, as illustrated in Figure 1(b), or along

the space dimension, as illustrated in Figure 1(c).

(a) Space-Parallel Decomposition (or Distributed Simulation). The simulation model is decomposed
into a number of sub-models or components (in space domain). Each component is assigned
a process, where several processes may be run on the same processor. This decomposition is
attractive because it is applicable to any model and shows the greatest potential in offering

scalable performances for large models.

(b) Time-Parallel Decomposition (or Time Parallelism). The domain is partitioned into a number of
intervals [t;_1,%;] for 0 < i < p, p being the number of processors. Each processor is assigned an
interval and is responsible to compute the values of the state variables within that interval. With
this approach, the simulation mechanism must ensure that the state of the system at the end
of [ti—1,t;] must match the state at the beginning of [¢;,%,11]. Recomputations of some intervals
are required if any mismatch of states is detected. Therefore, the efficiency of the decomposition
depends on whether it is possible to find a good way to accurately predict the initial state of each

interval. Nevertheless, the idea is elegant and deserves future research.

Among these classes of approaches, the space-parallel decomposition shows the greatest potential and is
considered the most promising approach to perform DES in parallel [RW89, Win92]. Since the event list is
also decomposed into individual ones, the event lists would not become the bottleneck as with the fourth
approach (distributed events with centralized event list). A higher degree of parallelism is expected since this
class of approaches encourages concurrent processing of events with different timestamps. We will focus on
this approach in the rest of the report. Discussions of the potentials and the limitations of other approaches
can be found in, e.g., [Rey88,Fuj90a], and more recent ones such as [Win92, Cal96, NF94, Fer95].

Early work in decomposition of simulation model along the space dimension referred to the approach
as distributed simulation [CM79,Bry77], as the simulation was intended to be executed on a network of
processors. Later work sometimes uses the term parallel simulation, or more popularly, parallel discrete event
simulation (PDES) or parallel and distributed simulation (PADS). We will treat these terms as synonyms
henceforth.

In Section 3, we will review the important principles of parallel simulation. The PDES protocols, which
distinguish between major existing PDES approaches, are elaborated in Section 4. Mathematical perfor-
mance models of the parallel simulations are introduced in Section 5. Besides simulation protocols, there
are other important components which can also greatly influence the performance of the simulation runs.
These components are briefly described in Section 6. A comparison and critiques of various approaches are
elaborated in Section 7. The prospects of constructing an efficient parallel simulator are outlined before
ending this chapter.

3 Principles of Parallel Simulation

In PDES, a model generally comprises N logical processes (LPs) LPy, LP1,..., LP x_1 which interact among
themselves by sending timestamped event messages. A link exists from LP; to LP; if LP; may send messages

to LP;. Each message is a tuple (Ej,T}) consisting of an event Ej, and its associated timestamp Tj. Each



LP LP; is associated with a local clock, or local virtual time (LVT), Clock; which refers to the simulated
time up to which it has progressed. When Ej, is processed, Clock; is automatically advanced to Tj.

It is very important that causality constraint be observed in order to ensure the correctness of the
simulation.

Let E1 and E» denote two events with timestamps 717 and T5 respectively. Assume that 77 < Tb. If Ey
depends on Ej, then there is a causality constraint over the order of execution of F; and FEs. For instance,
if F1 causes a change of a state variable which will be referenced by FE», then E; must be executed before
FEs or a causality error would occur.

To be concrete, consider a battlefield simulation, in which two tanks A and B are from two opposing
sides. Assume that a bomb shell from one tank can reach its enemy within one second. Suppose that event
E; with timestamp 0900 denotes “tank A fires at tank B (expected hit rate: 95%)”, and E5 with timestamp
0905 denotes “tank B fires at tank A (expected hit rate: 95%)”. If tank A does succeed to annihilate tank
B, then it makes no sense to process Es. In other words, whether E5 should be processed or be discarded is
known only after processing E1, and there is causality constraint from E; to FEs.

Violating causality constraint means that the future can affect the past. This can result in anomalous
behavior and consequently incorrect simulation. It is the responsibility of the synchronization mechanism
to ensure proper and correct interactions among the LPs.

It has been shown in [Mis86] that a parallel simulation obeys the causality constraint if and only if
every LP processes events in nondecreasing timestamp order—a condition formulated as the local causality
constraint in [Fuj90a]. It is important to note that the local causality constraint is a sufficient condition but
not a necessary condition. For instance, if two events in the same LP have different timestamps but there
is no (direct or indirect) dependency between them, then they can be executed in parallel without causing
causality errors.

Parallel simulation approaches broadly fall into two categories—conservative and optimistic—according
to the ways they adhere to the local causality constraint. Conservative approaches avoid all possible causality
errors by strictly adhering to the local causality constraint. Optimistic approaches, on the other hand,
attempt to exploit the nonzero probability of producing no causality error by not strictly adhering to the
local causality constraint. An optimistic approach guarantees to detect any occurrences of causality errors
and provides a rollback mechanism to restore the simulation to a correct state. These two approaches are

discussed in the following sections.

4 Protocols

4.1 Conservative Protocols

Historically, the first parallel simulation mechanism was based on the conservative approaches. In late 1970s,
Chandy, Misra and Bryant [Bry77,CM79,Mis86] developed the algorithms which are often referred to as the
Chandy-Misra-Bryant (CMB) protocols.

In a conservative approach, the synchronization protocol ensures that a logical process LP; with LVT
Clock; will not receive a message (Ey,T}) in which Ty < Clock;. This can be achieved by allowing LP; to
process Fj, only if it is impossible for LFP; to later receive an event with a timestamp less than Ty. The

events which can be processed safely are called safe events.



With this simple mechanism, an LP must block if it does not own any safe event. This may lead to a

deadlock situation if the synchronization mechanism is not properly designed.

4.1.1 Deadlock Avoidance

Assume that the sequence of timestamps on the messages sent over a link is nondecreasing. There is a FIFO
queue and a clock associated with each link. For a particular link, if the associated queue is empty, then
its clock is normally set to the timestamp of the last received message; otherwise, the clock is set to the
timestamp of the message in front of the queue.

Consider the following algorithm. An LP repeatedly selects the link with the smallest clock value, and
processes the first event in the front of the link’s queue. If the queue is empty, then the LP blocks; it resumes
when the queue of the link with the smallest clock value becomes nonempty. It can be shown that the protocol
adheres to the local causality constraint, and therefore no causality error will ever occur [CM79,Mis86]. This
simple algorithm, however, does not prevent the simulation from running into a deadlock. It is possible that
some LPs become blocked and each of them wait indefinitely for each other in a cyclic fashion.

In the CMB approach, null messages are used to avoid deadlock. In this deadlock avoidance algorithm,
an LP sends a null message (null,Tyu;) as a “pledge” that it will not send a message with a timestamp
smaller than Tj,,;. A null message is only for the synchronization purpose and does not correspond to any
event in the physical system. It can be shown that the null message algorithm avoids deadlock situations so
long as there is no cycle of zero timestamp increment [CM79], i.e., a cycle in which a message could traverse
in zero time (although rarely arises in a physical system).

An LP determines the timestamp of a null message it plans to send by checking the clock value of each
incoming link and the simulated time which will elapse when processing an event. Whenever an LP finishes
processing an event, it can send null messages to all LPs whom it links to. A well-known problem with this
approach is the possibility of having a large amount of null messages which can flood the communication
bandwidth and cause a significant slow down of the simulation.

Variations of the algorithm have been proposed to trim down the number of null messages. In some
variations, such as in [Mis86, BS88, NR84|, null messages are sent on a demand basis. The null message

traffic can also be reduced by the lookahead information, whose description follows.

4.1.2 Lookahead

Lookahead refers to the capability of predicting what will happen in the simulation. An obvious form of
lookahead is the minimum increment timestamp increment of an LP for processing any event. If LP; with
local clock Clock; requires at least [ units of simulated time to process any event, then LP; is said to have a
lookahead of [, because it can guarantee that it will no longer generate messages with timestamps less than
Clock; + [. In addition to reducing the null message traffic, the lookahead information also helps to reduce
the possibility of deadlocks and thus speed up simulation.

Many papers related to the derivation and the use of lookahead information have appeared. For example,
Nicol [Nic88] proposes a scheme to improve the lookahead capability by precomputing the service times for
some future events. Cai and Turner [Cai90, CT90] introduce carrier null messages, which play a similar
role as that of the null messages, but carry additional information on lookahead and the route taken. This
approach aims to further improve the quality of lookahead to reduce the message traffic. Fujimoto [Fuj88]

demonstrates the importance of lookahead with experimental results, which show that simulators with poor



lookahead properties can easily become overburdened by excessive overhead. Cota and Sargent [CS90]
suggest a framework for automatic lookahead computation. They discuss the use of control flow graph as a
representation of process behavior and show how lookahead information can be extracted from the graph.
Lin, Lazowska and Baer [LLB90] consider the class of systems in which no lookahead information is available,
and report that these systems cannot be efficiently simulated by using the CMB approach with deadlock
recovery algorithm. They suggest to reconfigure the system such that there is no feedback loop, and then
use the CMB approach to perform the simulation. Wagner and Lazowska [WL89] derive the expressions for

the lookahead for certain queuing network simulation.

4.1.3 Deadlock Detection and Recovery

An alternative of dealing with deadlocks has been proposed by Chandy and Misra [Mis86, CM81]. Instead
of avoiding deadlocks, a simulation is allowed to enter a deadlock. With this approach, two mechanisms are
required: one is used to detect a deadlock, while the other is used to resolve it.

A deadlock can be detected by using an approach similar to that used in general distributed computing.
The deadlock can be resolved by using the fact that the message with the smallest timestamp in any point of
the simulation is always safe to process. Details of these mechanisms are described in [Mis86, CM81,LT90].

The advantages of the deadlock detection-and-recovery method lie in completely avoiding the null message
traffic as well as allowing cycles with zero timestamp increment (although the latter usually leads to poor
performance). The method, however, often results in sequential executions prior to a deadlock. This could
adversely affect the overall performance if the simulation model is prone to deadlock. Deadlocks may occur

frequently if there are relatively few messages compared to the number of links in the network.

4.1.4 Synchronous Method or Conservative Time Windows

Several researchers have suggested synchronous conservative methods which rely on LPs cooperating within
some intervals (in simulated time) to determine safe events and then to process them. An important notion
in this area is the distance, which is part of the concept of lookahead. The distance is a lower bound of the
increment of the simulated time for an unprocessed event to propagate. In other words, it is the minimum
amount of simulated time it takes for an event at one LP to affect the state of another LP.

Lubachevsky [Lub88,Lub89] demonstrates a window based approach based on the bounded lag protocol.
In the bounded lag protocol, if two events are to be processed concurrently, the difference of their timestamps
must be bounded from above by a constant. A problem common to the window-based approaches is the size

of the time window. To tackle this problem, unfortunately, requires information which is application-specific.

4.1.5 Conditional Events

Chandy and Sherman [CS89a| suggest a conditional events approach which classifies events into definite
events and conditional events. Definite events, which generally have smaller timestamps, will definitely be
processed and will not be cancelled or disabled by other events. Conditional events, on the other hand, will
be processed only when certain criteria are satisfied. Clearly, the event with the lowest timestamp in the
system is always a definite event.

It is always safe to process definite events. Conditional events approach explores this property and is

able to distinguish definite events from the conditional ones using conditional knowledge.



4.1.6 Other Enhancements and Approaches

Several researchers have proposed approaches which make use of application-specific information, network
topology of LPs in a model, hardware architecture, etc. to exploit greater parallelism. For example, Ku-
mar [Kum89] proposes a simplified synchronization protocol for acyclic networks. Nevison [Nev90] proposed
a simplification to the coordination of simulated time for networks with many closed loops. Vries [dV90]

considers networks with feedforward and feedback components.

4.2 Optimistic Protocols

Jefferson and Sowizral [Jef85,JS85] proposed an approach called Time Warp in the early 80s, which becomes
one of the most well-known optimistic protocol.

In an optimistic approach, the synchronization mechanism does not prevent the LPs from receiving and
processing messages whose timestamps may be out of order. Since this does not adhere to the local causality
constraint, causality errors may occur.

A causality error is detected whenever an LP with local clock Clock; receives a message (called a straggler)
with a timestamp Ty, < Clock;. Without considering the straggler message, the simulation may have become
incorrect from the simulated time T;,.. To restore the simulation to a correct state, the LP performs a roll
back (or rollback) to a saved state of a simulated time no later than T, and restarts the simulation from
that state. The roll back mechanism can be accomplished by saving the state of each LP periodically.

Note that an LP might have sent messages to other LPs after the simulated time Ty, and in effect
have propagated the error. To “unsend” a previously sent message m,, the LP sends a negative- or anti-
message to annihilate the original one, referred to as the matching positive message of m,. Anti-messages
can be generated by examining the record of positive messages sent. When an LP receives an anti-message, it
examines if it has processed the corresponding positive message. If it has not processed the positive message,
the positive message and the anti-message simply cancel each other. Otherwise, the LP has to perform a
rollback and may have to send anti-messages to other LPs in turn. Repeating this procedure recursively
guarantees to restore the simulation to a correct state.

Note that at any point of simulation the unprocessed event with the smallest timestamp among all
LPs can always be processed. This timestamp is called the Global Virtual Time (GVT). Since no LP will
produce an event which has a timestamp smaller than the GVT and hence causes a rollback, therefore,
for each LP, all but one of the saved states with timestamps smaller than GVT can be discarded safely.
We need one saved state with a time not greater than GVT in case a rollback to GVT occurs. Many
algorithms for efficiently computing or estimating GVT have been proposed, some of which can be found
in [Bel90, Win92, SLWN95, XGUC95, Mat93, VCW95, VCW94, Fer95, BCC91].

There are certain operations such as input and output operations for which it is impossible to undo the
effects. Therefore, such rrevocable operations should be committed only when it is certain that the simulator
will not roll back to a time before the irrevocable operations occur. In other words, such operations are
committed only after when the GV'T has advanced beyond the simulated occurring times of these operations.
The process of “clearing” the unneeded data entries, including reclaiming memory from the state saving

mechanism and committing irrevocable operations, is called fossil collection.



4.2.1 Lazy Cancellation

The original Time Warp algorithm uses aggressive cancellation. In this cancellation strategy, an LP which
rolls back to simulated time 7" immediately sends out anti-messages for any previously sent messages with
timestamp greater than 7. To reduce the anti-message traffic and the frequency of roll backs, a lazy
cancellation strategy has been proposed [Gaf88].

In lazy cancellation, instead of immediately sending anti-messages upon receiving a straggler message,
an LP examines if the rerun of the simulation generates the same positive messages. An anti-message is sent
only if its matching positive message is not regenerated. Adopting lazy cancellation provides an additional
benefit of exploiting lookahead implicitly [Fuj90a]. Unlike in conservative approaches where lookahead must
be specified explicitly, lookahead can be exploited implicitly with lazy cancellation, even when it is not
statically guaranteed. However, lazy cancellation does require additional storage for recording the positive
messages sent; it also entails the overhead of matching an anti-message with an earlier positive message.

A comprehensive comparison of the aggressive cancellation scheme with the lazy cancellation scheme
is given in [RFBJ90]. Lazy cancellation does reduce the traffic overhead, but it may also allow erroneous
computations to propagate further. This is because an LP requires additional time overhead to check whether
same messages are created. One can always construct cases where lazy cancellation outperforms aggressive
cancellation, and vice versa. However, theoretical and empirical studies suggest that lazy cancellation tends

to perform at least as well as aggressive cancellation, if not better [RFBJ90].

4.2.2 Lazy Reevaluation

Lazy reevaluation, also known as jump forward or lazy rollback, is similar to lazy cancellation. However, it
deals with the state vectors rather than messages. Assume that an LP with local clock Clock; receives a
straggler with timestamp tg,.. If there is no state change in the LP within the period from ¢4, to Clock;,
the LP needs not rollback but instead can “jump forward” over the rolled back events.

Lazy reevaluation does prevent the LPs from performing unnecessary recomputation of states. It how-
ever requires additional storage and bookkeeping overhead which can significantly complicate the coding of

optimistic protocols [Fuj90a].

4.2.3 'Wolf Calls

With the goal of preventing the erroneous computation from spreading widely, Madisetti, Walrand, and
Messerschmitt [Mad88] have proposed the Wolf Calls scheme. An LP which just receives a straggler may
send a special control message immediately to all other LPs. An LP which receives this message immediately
freezes its computation.

This scheme however may cause some correct computations to be frozen unnecessarily. Alternatively, it
requires application-specific knowledge such as the speed at which erroneous computation may spread, and
the speed at which the control message may broadcast. It may be difficult to extract such information for

some simulation models.

4.2.4 Optimistic Time Windows

Similar to conservative simulation, window-based approaches have also been proposed for optimistic protocols

with the goal of reducing the number of causality errors. Sokol, Briscoe and Wieland [SBW88] have proposed



the Moving Time Window (MTW) approach that uses a time window with a fixed size W. The LPs can
only process the events within the interval [GVT,GVT + W].

Similar to the time windows approaches in conservative protocols, critics point out that it is not clear how
to determine the size of the window. Furthermore, it is rather difficult to distinguish good computations
from the erroneous ones within the window. The correct computations beyond the upper bound of the
window cannot be processed as well. Empirical results are reported in [SBW88, RWJ89,SS90]. It is found
that MTW offers some improvements in certain cases but only offers little help for others.

Lubachevsky, Shwartz and Weiss [Lub89,LSW89] propose filtered rollback which is a combination of the
Time Warp and the bounded lag simulation algorithms. The algorithm contains tunable parameters which
at one extreme make it identical to the bounded lag algorithm, and at the other extreme make it identical
to the MTW approach.

4.2.5 Other Enhancements and Approaches

Many enhancements have been proposed to improve the optimistic protocols. There are also a number of
hybrid approaches combining certain aspects of conservative approaches and optimistic approaches. Some
of the important ones are outlined here.

Fujimoto [Fuj89] proposes direct cancellation which is optimized for multiprocessors with shared memory
architecture. Let I'p be the set of events scheduled when an event E is processed. In this strategy, the
simulator keeps the pointers from E to all elements in I'y. When an LP rolls back and needs to cancel
the effect due to the processing of E, it can track the events generated (i.e., I'y) due to E by following the
pointers kept with . On a shared memory multiprocessor, this strategy should outperform the anti-message
approach. Empirical results presented in [Fuj89, Fuj90b] show improvements in performance.

Chandy and Sherman [Win92, CS89b] proposed the space-time approach which views a simulation execu-
tion as filling in a two-dimensional space-time region (as shown in Figure 1), with one dimension representing
the simulated time and another dimension the state variables. The key idea of the approach is to partition
the space-time graph into disjoint regions and to assign each process one of these regions. Each process is
then responsible for filling up its own region. It is important that given a region, the conditions along the
boundary must be consistent with the conditions of the regions adjacent to it. Recomputations are required
if there are inconsistencies. The computation proceeds until there is no more inconsistency. It is found that
this approach resembles Time Warp with lazy cancellation strategy [Fuj90al.

Prakash and Subramanian [Win92, PS91] propose the filter algorithm to reduce cascaded rollback by
checking the spread of erroneous computation. However, unlike Wolf calls, the algorithm attempts not to
freeze the correct computation by. It requires each LP to keep some information such as the number of
messages sent so far, the rollbacks carried out, etc. This adds additional overheads to the standard Time
Warp approach.

In Time Warp, if there are excessive numbers of rollbacks, explosion of anti-messages can result, which
in turn leads to unstable performance of the simulation. Breathing Time Buckets (BTB) approach [Ste93,
Ste92], proposed by Steinman, is a window-based approach which does not require anti-messages and there-
fore does not suffer from the this problem. Breathing Time Warp (BTW) [Ste93] is later proposed also by
Steinman aiming to combine the best aspects of Time Warp and BTB while eliminating their shortcomings.

Preliminary results show that BTW outperforms BTB and Time Warp for certain applications.
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5 Mathematical Performance Models

Mathematical performance modeling of parallel simulations has been studied for years with the goal to
compare the efficiencies of various strategies under various assumptions. Simple models generally provide
intuitive insights into the qualitative behavior of PDES, while complex models provide better performance
predictions. A few interesting results are outlined below.

In [FK90], Felderman and Kleinrock show that the average potential speedup obtained from using an
asynchronous protocol over a synchronous protocol is no more than O(log P), where P denotes the number of
processors. The analysis assumes exponentially distributed execution time in every processor. For uniformly
distributed time, the potential speedup obtained is no more than 2. Although the model is simplistic, the
result suggests that one should lower the expectation of getting great speedups when switching from a
synchronous scheme to an asynchronous scheme.

The performance of Time Warp has been studied and demonstrated extensively. In [LL90], Lin and
Lazowska prove that, assuming (unrealistically) zero-cost rollbacks and infinite memory space, Time Warp
approach outperforms the CMB approach in feedforward network! simulation. Lipton and Mizell [LM90]
show that there exists a simulation model for which Time Warp outperforms the CMB approach by a factor
of p, p being the number of processes—but the reverse is not true; the CMB approach can only outperform
Time Warp by a constant factor. In [Gun94|, Gunter shows that Time Warp with lazy cancellation can
beat the critical path lower bound, where the critical path is a lower bound on the time for a conservative
approach to execute a simulation.

For a discussion of more complex models and a more comprehensive survey on mathematical performance

models, the readers are directed to [NF94], a survey conducted by Nicol and Fujimoto.

6 Other Important Issues

Besides simulation strategies, which define the operational principle of a simulation framework, there are
other components which can also critically affect the simulation behavior. This section briefly covers the
basic concepts of some of these topics [FN92, NF94].

Hardware Support. Hardware supports for PDES have been discussed for years. However, most of the
supports developed are application-specific. For example, circuit simulations with hardware support have
been researched and applied in the industries for years. Work for general-purpose simulation has been
carried out. Hardware supports for optimistic protocols have been studied, with the goal of minimizing
various overheads incurred in optimistic protocols. See, e.g., [Con89, FTG92].

Load Balancing. A load balancing algorithm is responsible for distributing the workload evenly among
all available physical processors. This generally involves a many-to-one mapping, from the logical processes
to the physical processors. The algorithm can either be static, which employs only one fixed mapping
throughout a simulation run, or dynamic, which allows the mapping to change during execution. See,
e.g., [NXG85,LK87,NR90).

Memory Management. Memory management is particularly important in optimistic protocols because
optimistic protocols generally require enormous memory consumptions (mainly for state saving) which can

even cause memory exhaustion. Many memory managements schemes have been proposed. For instance,

'A feedforward network, or feedforward graph, is a directed-acyclic graph (dag)
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many have proposed efficient fossil collection strategy based on faster computations of GVT; others have
suggested schemes based on infrequent state saving, etc. See, e.g., [LP91,PL95, WH95].

Random Number Generation. Just like sequential DESs, PDESs also require random quantities and
therefore parallel pseudorandom number generators (parallel PRNGs) are needed. To guarantee good quality
of randomness, there are more stringent requirements for parallel PRNG compared to that of sequential
PRNG. For example, in PDES, it is required that sequences generated on any pair of processors be free of
mutual correlations. Therefore, replicating the same sequential PRNG may not guarantee a good parallel
PRNG. Although PRNG is a relatively traditional topic, it remains an active research area. See, e.g., [Alu97,
L’E94, BR87].

FEvent-Set Algorithm. Similar to the case in DES, event-set algorithm is used to schedule the events in
proper order in PDES. However, a basic priority queue structure cannot meet the requirements of some sim-
ulation approaches, because operations on the event set have to be serialized and may become a bottleneck.

A concurrent priority queue data structure is required in this case. See, e.g., [Ste96, RAFD93, Jon89].

7 Parallel Simulation: A Summary

This section presents a comparison and some critiques to the approaches for parallel simulation. A com-
parison of the strategies employed by conservative approaches with that of optimistic approaches is also

presented.

7.1 A Comparison of Existing Strategies

Table 1 compares the main features of the conservative approaches and the optimistic approaches. The table
summarizes some operational principles of both approaches, and presents some critiques to them.

Many analytical and empirical studies have been conducted to evaluate various strategies. The per-
formance of the conservative approaches are studied in, e.g., [CT97, KRR96, Fuj88, MRR90]; performance
of the optimistic approaches in, e.g., [Gil88, LCUWS88, Bel93, Fuj90b]. Some of the important findings are

summarized below:

e There has been no single approach which is able to provide good performance for all (or most) kinds
of applications. An approach which is good for certain applications may perform badly for the other

applications.

e Conservative approaches are constantly accused of lacking robustness in terms of their performances.
First, they heavily rely on lookahead. Stripping the lookahead information off the specification can
degrade the performance considerably. Second, The simulation time taken can be sensitive to small
changes in the system (which can affect the lookahead values). In contrast, optimistic approaches do
not rely heavily on lookahead and hence their performance is less sensitive to small changes in the

specification.

e Optimistic approaches inherently have more overheads which are not shared by conservative ap-
proaches. The overheads include state saving, rollback, GVT calculation, fossil collection, etc. The
degree at which they may affect the overall performance depends on factors such as the granularity of

each LP, the frequency of state saving, supports from hardware, etc.
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Strategy Conservative Approaches Optimistic Approaches
Principle strict adherence to local causality allow violation of local causality
constraint constraint; provide rollback
mechanism to recover if causality
€rrors occur
Parallelism allow less parallelism for exploitation | allow aggressive exploitation of
parallelism
Synchronization block LPs which may violate local rollback mechanism to recover from
causality constraint; may cause causality errors; incur state-saving
deadlocks if precaution is not taken overhead
Deadlock adopt avoidance strategy, no deadlock problem
detection-and-recovery strategy, or
synchronous approaches
Lookahead rely heavily on lookahead to achieve | no dependence on lookahead to

good performance; lookahead
however might not be statically
guaranteed but dynamically available

achieve good performance; lookahead
can be exploited automatically with
lazy cancellation or lazy reevaluation

Configuration of
LPs

require static configurations by most
existing conservative techniques

network configuration can be
changed dynamically

Memory require less memory than that of require more memory; more complex

Requirement optimistic protocols and complicated memory
management

Implementation straightforward implementation and | notoriously hard to implement;

data structures

complex data manipulations

Table 1: A comparison between conservative approaches and optimistic approaches

Optimistic methods appear to offer greater hope for general purpose simulation, if state-saving overhead
is kept within a manageable level [Fuj90a]. Recently, many successful cases of using optimistic methods have
been reported, as can be seen from the number of publications in this field.

Nevertheless, conservative methods have also been found to offer great potential for certain classes of
applications, particularly when we have ample application-specific knowledge of the systems being simulated.
See, e.g., [PN98, MRRY0].

7.2 Prospects of Parallel Simulation

Despite two decades of research, parallel simulation technology has not had significant impact to the simula-
tion community. Computer scientists have to admit that developing a good parallel simulation with current
technology remains a specialized technique which is mastered by only a small portion of researchers.

It is generally agreed that the future success of parallel simulation depends on whether it is possible
to reduce the expertise and effort required to develop efficient simulation programs [Fuj93b]. Ideally, the
users who develop simulation models should not be concerned about the low-level mechanisms adopted by
the underlying simulation approach. Rather, they should be able to concentrate on correctly modeling the
physical systems. Fujimoto [Fuj93b,Fuj93a] has suggested four potential “silver bullets” which would make
parallel simulation more accessible: application-specific libraries, better languages for parallel simulation,

good solutions to the support for shared state, and automatic parallelization of sequential simulations.
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Abrams [Abr93] also outlines several scenarios which would foster wider use of parallel simulation technology.

8 Computational Models for Parallel Simulations

In the previous section, we have identified some critical issues which must be tackled to ensure the future
success of PDES. In particular, the effort and the expertise required must be reduced; the performance
concerns must also be alleviated.

Recently, to address the above concerns, a few researchers in this field have started to look into certain
models of parallel computation and have attempted to design PDES algorithms based on these models. It is
generally agreed that these computational models can provide a framework to simplify the design of correct
and efficient algorithms, and to provide a cost model for performance prediction.

An introduction to the models of parallel computation is presented in Section 8.1. The BSP model and
several existing PDES algorithms based on BSP are studied in Sections 8.2 and 8.3. The Cilk model is

introduced in Section 8.5 while several existing PDES algorithms by using Cilk are reviewed in Section 8.6.

8.1 Models of Computation

Modeling complex phenomena is an old art. The purposes of modeling are to capture the salient charac-
teristics of phenomena with clarity, and to provide the right degree of accuracy to facilitate analysis and
prediction [MMT95].

In sequential computing, the Random Access Machine (RAM) has been a very successful model of
computation that promoted consistency and coordination among algorithm developers, computer architects
and language experts. It has elegantly expressed the important characteristics of sequential computation.
In the realm of parallel computing, however, there has been no similar success [MMT95]. Parallel Random
Access Machine (PRAM), the natural parallel analog of RAM, does not provide similarly good characteristics
for modeling parallel computations. Surveys on PRAM and its variations can be found in, e.g., [MMT95,
Go0093,McC93].

Since the PRAM model has not been able to reflect the key characteristics of the existing parallel
computers, many other models have been proposed, see, e.g., the surveys in [MMT95, Ham96, CG96]. Of
late, the BSP model and the Cilk model have gained much attention of the parallel computing community.

The BSP model and the Cilk model were proposed in the early 90s. Of particular interest, both models
allow the programmers to make early prediction of the performance of a parallel program. The Cilk model
even offers a guarantee of highly scalable performance, as long as the parallel program adheres to the Cilk

programming paradigm [BJK*95].

8.2 The BSP Model

The Bulk-Synchronous Parallel (BSP) model was proposed in 1990 by Valiant [Val90] as a bridging model
of parallel computation. The notion and the role of a bridging model was aptly captured and introduced
by Valiant in [Val90]: “ ..the von Neumann model is the connecting bridge that enables programs from the
diverse and chaotic world of software to run efficiently on machines from the diverse and chaotic world of
hardware.”

As shown in Figure 2, a BSP model, or a bulk-synchronous parallel computer (BSPC), has the following

elements:
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Figure 2: A Bulk-Synchronous Parallel Computer (BSPC)

1. A number of components, each performing processing and/or memory functions. In practice, a com-

ponent can be viewed as consisting of a processor with a private local memory.
2. A router that delivers messages point-to-point between pairs of components.

3. A global barrier synchronization mechanism for synchronizing all, or a subset of, the components. The

interval from a synchronization to the next synchronization is referred to as a superstep.

A BSP computation consists of a sequence of supersteps. In each superstep, each component may
perform a number of operations on the data held locally. A component can also communicate with the
other components by sending and/or receiving messages, but all messages will only be routed after the next
synchronization, i.e., at the end of the current superstep. For clarity, a superstep can be divided conceptually
into a computation superstep and a communication superstep.

The BSP model facilitates the prediction of program performance based on two parameters: L, the

synchronization period; and g, the bandwidth parameter, defined as:

»  computation rate

communication rate
total local operations performed by all processors per time unit

total messages delivered by the rounter per time unit

which attempts to summarize the characteristics of network bandwidth as well as the latency or the startup
cost of routing.
For a superstep with a h-relation, i.e., a routing request where each processor sends and receives at most

h messages, its cost model is given by [GV94]:
max{L,z + hg}

where z is the maximum number of local computations executed by any processor in that superstep. There
are also alternative charges, such as max{z, L+ghs, L+gh,} [GV94], or max{L, z, ghs, gh, } [McC93,McC94],

where hg and h, are the maximum number of messages sent or received by any processor in that superstep
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respectively. These alternatives are due to the small variations in interpreting and realizing the BSP model.
Nevertheless, the difference among the costs will not, in general, be significant.

With this cost model, the performance of a BSP algorithm can be predicted by using the parameters L, g,
and p parameters regardless of the underlying architecture, p being the number of components. In addition,
the BSP model is generally able to assure good performance if there exists sufficient parallel slackness [Val90],
i.e. v > p for an algorithm written for v virtual parallel processors running on p physical processors. In this

case, it is said that there exists a parallel slackness factor of %.

8.3 The BSP Algorithms for PDES
8.3.1 Conservative Protocols based on BSP

Calinescu [Cal95] and Marin [Mar97a, Mar97b] propose several conservative approaches for parallel simula-
tion with the BSP model. A characteristic shared by most of these algorithms is that messages sent between
LPs during a superstep are processed by the recipients in the subsequent rather than the current super-
step. This is because in BSP all messages are routed only at the end of a superstep. Another important
characteristic is the use of double buffering technique for communication between LPs.

Recall that in the BSP model, a component can only operate on the data held locally. If we associate
a link from LP; to LP; with only one buffer, then, in any superstep, the buffer can only be operated
exclusively by either LP; or LPj, because the same buffer cannot be simultaneously read and written
by different components. An algorithm employing this single buffering technique can ensure such mutual
exclusive access by, say, allowing all LPs to send messages only (and cannot read any messages received) in
some supersteps, and to read the messages received in the other supersteps. Alternatively, such inefficiency
can be eliminated by using the double buffering technique.

With double buffering, a link is associated with two buffers. One buffer is used for reception while
another for transmission. These two buffers are swapped in the communication superstep.

The buffer size must be properly chosen as it can affect the overall performance significantly. A smaller
buffer size implies more supersteps which will incur more overheads. However, a larger buffer size does not
necessarily increase the overall performance, because it may result in many idling LPs in any superstep and
hence limit the potential parallelism of the simulation [Cal95]. To see this, consider the simulation of a cyclic
queuing network with only 3 LPs, as illustrated in Figure 4. Assume that LP, initially generates a total of
3,000 messages to be passed to LP;. Whenever an LP receives a message, the message will be redirected to
another LP after arbitrary simulated time.

If the buffer can hold at least 3,000 messages, then in any superstep, only one LP will be busy processing
these messages from the input link. However, if the buffer can hold only 1,000 messages, every LP will be
busy processing 1,000 messages. Clearly, the loads among the LPs are more balanced in the latter case. The
smaller buffer has helped to distribute the messages more evenly, and better parallelism is obtained in the
latter case. A proper choice of buffer size is therefore crucial to the performance. This example serves also
to illustrate the subtlety of (and the interplay between) a myriad of factors may affect the performance in

parallel simulations.
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Figure 3: A cyclic queuing network

Deadlock Resolution

With BSP, the null messages approach for deadlock resolution can be inefficient, because supersteps are
needed additionally for sending null messages. The deadlock detection and recovery scheme which uses a
marker in [Mis86] is not appropriate neither. Since an LP is restricted to using only local data, the marker
requires p supersteps to traverse all p LPs. This can increase the number of supersteps significantly as well.

The deadlock detection and recovery algorithm proposed in [Cal95] is based on the algorithm by Reed,
Malony and McCredie in [RMMS88]. With this algorithm, each physical processor is responsible for reporting
whether it is deadlocked to a special guardian processor which is responsible for monitoring the global system
state. The algorithm entails only two supersteps, with p-relation for each superstep, to detect a deadlock
and to resume the simulation. This requires a cost of 2(L + pg). Thus, the algorithm is not quite suitable for
large g and also not scalable with respect to p. An algorithm which generalizes the pattern of broadcasting
has been proposed in [Cal95]. The algorithm requires only k-relation in each superstep, where 1 < k < p,
but requires more supersteps. This algorithm costs 2|log, p|(I + kg).

Calinescu presents some empirical results using his approach in [Cal95]. It is found that the performance
of the simulation is heavily influenced by two parameters: the parallel slackness of the algorithm and the
inter-process buffer size. A speedup of about 8 is obtained with 14 processors in simulating a 42-LP tandem
network. However, it is not clear how the buffer size should be chosen to maximize the performance.

In [Mar97b], Marin demonstrates an algorithm which uses null messages with lookahead values to reduce
the null message traffic and the likelihood of getting deadlocked. A deadlock is resolved by using a deadlock
detection and recovery algorithm which recognizes that it is always safe to process the event E,,;, with the
smallest timestamp T},;, in the system. A master process is responsible to determine 7},;, and broadcast
the value to all LPs. However, no experimental results of Marin’s approaches have been published.

In [LLC"98], Lim et al. has evaluated the performance of a conservative approach using BSP for man-
ufacturing simulation based on the safe time algorithm proposed in [CLT97], which will be introduced in
Section 8.6. They show good speedups for LP with medium to large granularity. However, it is believed

that the approach is relatively less scalable when the granularity is small.
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8.3.2 Optimistic Protocols based on BSP
GVT Computation

In [Cal96], Calinescu suggests an optimistic approach for parallel simulation with the BSP model, and
considers some important issues related. One of the issues is the efficient algorithms of GVT computation.
Since the BSP model guarantees that any messages sent in a superstep are delivered by the start of the next
superstep, no acknowledgments are required. This property greatly simplifies the design of the algorithms
for GVT computation.

In this approach, the processors are first organized into a complete g-ary tree, i.e., a tree whose non-
leaf nodes have exactly ¢ > 2 sons, and all leaves are in the same level. In the first superstep, each of
the leaf processors estimates its local GVT over the set of LPs they simulate, and sends it to its parent.
In the subsequent supersteps, a processor which receives the estimates from its children computes its own
estimate of the GVT, and then sends the estimate to its parent. Such computation is repeated until the root
processor receives the estimates. After computing the global GVT estimate, the root processor sends the
value to its children. In the subsequent supersteps, each processor which receives the estimate propagates
it to its children in the subsequent superstep. The propagation stops when all processors have received the

estimate.

Recursive-Rollback Avoidance

If the parallel simulation progresses in a way that all messages (including anti-messages) are handled and
propagated (if necessary) in the same superstep, recursive-rollback can occur. Consider a simple simulation
model with a number of LPs connected in a directed cycle. If an LP ever sends an anti-message to another LP,
the anti-message can chase its matching positive message for the rest of the simulation. This phenomenon,
referred to as recursive-rollback, can degrade the performance of the simulation dramatically due to the
heavy traffic of the anti-messages.

The algorithm presented in [Cal96] addresses the problem by keeping a rollback history queue on each
LP. It keeps a record of the anti-messages generated. Basically, if an LP receives an anti-message which is
recorded in the queue, the anti-message will no longer be propagated. With this algorithm, it can be shown

that any anti-message will eventually stop propagating.

Semi-Optimistic Approach

Marin also suggests a semi-optimistic [Mar97b] algorithm in BSP which allows a processor to execute events
optimistically if it has no safe events to process in that superstep. When causality errors occur, a rollback
message is broadcast to all processors. Notice that no anti-messages are ever required since a global rollback

is used.

Optimistic Approaches

An BSP approach to optimistic PDES with filtered rollback is outlined in [Cal96]. A BSP version of Time
Warp (BSP TW) is given in [Mar97b, Mar98c|. Marin also compares the effectiveness of Time Warp and

Event Horizon in [Mar98a]. An important result is that the total number of supersteps required by Time
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Warp is at most that required by Event Horizon approach [Ste94]. This implies that Time Warp generally

offers more parallelism.

Empirical Results

At the time of this writing, few experimental results have been published for the optimistic approaches
based on BSP. Calinescu has not published the empirical results based on his approach. Marin presents
in [Mar98b] some preliminary results of several optimistic PDES approaches on BSP. Several BSP version
of approaches such as BSP, MTW, BTB, BTW are compared in terms of important parameters such as the
number of supersteps involved and the balance in communication. He concludes that in many situations,

BSP TW should outperform the other approaches.

8.4 Critiques of BSP Approaches to PDES

The research of using the BSP model for PDES is still in early stage. A lot of work is still needed. Some of
the drawbacks for the existing approaches are discussed in this section.

With current approaches, the programmers still need to be concerned about the details of the underlying
simulation mechanism in order to achieve good performance. For example, the performance of the algorithms
as presented in [Cal95] is sensitive to the buffer size associated with each link and to the bandwidth of the
system.

Perhaps more seriously, as JaJ4 argues in [J4J96], the BSP model is not a suitable bridging model
because the parameters of the BSP model have to be adjusted across various platforms. This can hinder the
developments of tools and algorithms to improve performance. Furthermore, although the model provides
early prediction of performance, it is not able to provide a performance guarantee. In summary, we therefore
argue that the performance concerns have not been alleviated significantly with BSPC.

In the following section, we will introduce the Cilk model, which is the first and only model that provides
the programmers with a guarantee of application performance. Moreover, since the Cilk language is a
natural extension of the C language, it allows a C programmer to adopt the Cilk programming paradigm
with minimum efforts. In contrast, we believe that it requires longer time for a C programmer to get
used to the BSP programming paradigm. [LLCT98] also reports that the BSP version of the safe time
algorithm [CLT97], which will be introduced in Section 8.6, is more complex than the Cilk version, mainly
because each component in the BSPC is allowed to operate only on the data held locally.

In the following sections, some current PDES approaches using the Cilk model will also be introduced.

Some general considerations and implications of applying Cilk in PDES are also presented.

8.5 The Cilk Model

Cilk [BJK 95, MIT98, Joe96, Ran98] is a C-based runtime system for multithreaded parallel programming.
It was developed and is being maintained by a team led by Leiserson at MIT. The Cilk model comprises a

model for parallel computation with an algorithmic performance guarantee.

8.5.1 Computation Model

A Cilk procedure is a parallel analog of a C function which is identified by the keyword cilk. Parallelism

is introduced when a Cilk procedure is invoked with the keyword spawn. Instead of waiting for the children

19



Level 0

Level 1

Level 2

Level 3

Figure 4: The Cilk model of computation. Threads, which are shown as white circles, are embedded into a tree
of Cilk procedures, shown as shaded boxes with rounded corners. The edges denote the ordering constraints. The
sequence of instructions within a Cilk procedure is order by horizontal edges. Each downward edge corresponds to a
spawn of a child, while each upward, dashed edge corresponds to the dependency introduced by sync statement.

(the spawned procedures) to complete as is done in C, the parent procedure instance continues to execute in
parallel. To synchronize, the parent procedure executes a sync statement, which serves as a local “barrier”,
to wait for the completion of all its children.

A Cilk procedure is broken down into a sequence of threads, which are considered as atomic execution
units. Each thread is a maximal sequence of instructions ending with a spawn, a sync statement, or a return
from a Cilk procedure.

With the Cilk call/return semantics (spawn and sync) for parallelism, the computation of a Cilk program
can be viewed as a series-parallel dag [FL97] (called a Cilk dag henceforth) that unfolds dynamically as the
computation progresses. Figure 4 shows an example of the computation of a Cilk program. The Cilk
procedure C7, shown as the shaded box lying in level 0, is broken down into 5 threads, shown as the white
circles. The edges denote the ordering constraints. For instance, the first thread in C; spawns C5, which in
turn spawns C3 and Cy. Notice that C3 and Cy can execute concurrently, along with the third thread of Cs.

Cs waits for the completion of C3 and C; at the sync statement before returning to Cj.

8.5.2 Performance Model

The Cilk runtime system provides an algorithmic model of performance based on two parameters: T (work)
and T, (critical path length). The execution of any parallel program can be measured in terms of these two
parameters [BJK*95, Blu95, BL94, KR90]. The work of a program corresponds to its execution time on one
processor. The critical-path length corresponds to its execution time on an infinite number of processors,
which is also the time required to execute the threads along the longest dependency path in the Cilk dag.
The performance of the Cilk runtime system depends on the efficiency of its work scheduler. Cilk uses a
provably efficient scheduler which is based on the concept of randomized work-stealing [Blu95,BL94]. With
this technique, a processor (the thief) who runs out of work selects another processor (the victim) randomly,

from whom to steal a ready thread. It has been shown that the scheduler guarantees that the expected
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execution time of a lock-free Cilk program? on P processors is given by [Blu95, BL94]
T, =Ty /P + O(T)

which provides a near-linear speedup and is asymptotically optimal, since T} /P and T, are both lower
bounds [BL94, BJK195]. The equation also resembles Brent’s theorem [CLR90, p. 709] which yields the
upper bound of T}, < T} /P + Ty, [Blu95]. It has been verified empirically that the constant factor hidden
by the order notation is small, so that T, ~ T1/P + T is a good approximation for a wide range of
applications [Blu95, BJK95 FLR98, BL94].

8.6 The Cilk Algorithms for PDES

PDES by using Cilk is a relatively new research topic. Only two existing results based on conservative
protocols have been presented in the literature. Both results and their empirical findings are presented

below.

8.6.1 The Safe Time Approach

Cai, Letertre and Turner describe in [CLT97] a general conservative simulation algorithm, referred to as
the safe time approach, by using Cilk. The algorithm is robust in that it can be applied for simulation
applications where lookahead information is not available or is difficult to extract.

The algorithm comprises a number of iterations, where all LPs wait at every transition of iterations for
the computation of the gst, the global simulation time. The gst is the minimum of all LVTs (Local Virtual
Times) and the timestamps of all messages in the simulation. Let inclock be the minimum of the input link
clocks of a given LP. In any iteration an LP first computes the safe time which is the maximum of (1) the
inclock in the current iteration and (2) the gst computed at the beginning of the current iteration. The
algorithm guarantees that, given an LP, all events within the LP with timestamps not greater than the safe
time are safe events, which are always safe to process.

At each transition after gst has been computed, it is propagated to all LPs in a divide-and-conquer
manner. The divide-and-conquer procedure creates a hierarchy (specifically, a binary tree cf. Figure 5) of
Cilk procedure instances, in which each Cilk procedure instance is assigned a number of LPs. When the
number of LPs assigned to the same Cilk procedure instance is smaller than a fixed threshold, they are
executed serially.

At the end of an iteration, a Cilk procedure returns to its parent the minimum of (1) the LVTs of the
subset of the LPs it is simulating, and (2) the timestamps of all messages generated in the current iteration.
The root procedure instance computes the gst by taking the minimum of all values returned. It then
broadcasts the value to all LPs, which starts another iteration. Detailed descriptions and the pseudo-code
of the algorithm is given in [CLT97].

Figure 5 shows a trace of a simulation program with this algorithm. At the beginning of an iteration,

a procedure instance “broadcasts” the gst to its child procedure instances in a divide-and-conquer manner.

2The statement applies only to Cilk programs that contain no lock constructs. Cilk guarantees that critical sections guarded
by the same lock act atomically with respect to each other. If the lock contention is reasonably low, this performance model
should still apply.

21



gst

/ computation

"broadcasting"

"combining"”

LP
simulation

LP
simulation

Figure 5: A trace of a simulation program with the safe time approach. The trace illustrates various steps involved
in an iteration.

After simulating the LPs, each child procedure instance returns a value for gst computation. These values

are “combined” (by taking the minimum) as the new gst for the next iteration.

Empirical Results

Promising results have been reported using the safe time approach [CLT97]. With 16 processors, a speedup
of about 9.4 has been achieved for the super-ring simulation, while a speedup of about 13 has been achieved
for a simplified manufacturing simulation. However, as also further confirmed in [LLC198], large grain size
is required for the approach to be scalable to more processors. Low speedup is obtained if the grain size
is small, since in this case the overhead of spawning Cilk procedures would dominate the execution of the

simulation run.

8.6.2 Nops: A Conservative PDES Engine

Poplawski and Nicol implemented a parallel simulator, Nops, to support the TeD (Telecommunications
Description Language) by using Cilk [PN98]. Their approach is to modify the Cilk runtime system in order
to map a TeD process to a Cilk thread naturally. They have included a mechanism to suspend and to restart
a Cilk thread—a feature not in the original Cilk model. Nevertheless, they retain Cilk’s mechanisms for
spawning threads, saving state, a limited degree of scheduling, etc.

However, in their approach the Cilk’s work-stealing mechanism has been suppressed, which happens to
be the main element that guarantees the application performance. It is thus of a major interest to see

whether the performance can be improved by applying load balancing, or by using the original Cilk model.

Empirical Results

Although the Cilk runtime system has been modified, Nops is reportedly able to provide near-optimal
speedup [PN98]. Nevertheless, when the grain size is small, the algorithm is also less scalable with respect

to the increase in the number of processors. In spite of this restriction, Poplawski and Nicol have shown
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that Nops outperforms most of the other existing simulation packages [PN98].

Discussion

Encouraging results have been reported in applying Cilk to certain parallel simulation applications. We
believe that there are still ample rooms for enhancement to the current approaches. In particular, we
aim to further exploit the potentials of Cilk and design approaches that target wider range of simulation

applications, including medium- to small-grained simulation applications.

9 Conclusions

Simulation has been heavily relied upon in many fields of engineering and science. The simulation technology
is developing rapidly in recent years. In this paper, we have surveyed the major existing approaches and
examined the outlook of the field. We also cover the approaches based on two leading models of parallel
computation. Such approaches facilitate certain degree of performance prediction. We also give a snapshot

of some important issues related to the parallel simulation and a comparison of existing strategies.
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