
T his paper appeared m th e Proceedings of th e 9 th W orkshop on P aralle l and D is trib u ted Sim ulation, PA DS-1995.
© 1995, IE E E . P ersonal use of th is m a teria l is p e rm itted . However, perm ission to rep rin t or republish th is
m a teria l for advertising or p rom otional purposes or for crea ting new collective works for resale or red istribu tion
to servers or lists, or to reuse any copyrigh ted com ponent of th is w ork in o the r works m ust be ob ta ined
from th e IE E E .

C om p arative A n a lysis o f P er iod ic S ta te Saving T echniques in T im e
W arp Sim ulators*

Jose f F leischmann Philip A . Wilsey
In stitu te of Electronic Design A utom ation

Technical U niversity of M unich
D-80290 M unich, G erm any

j sf©regent.e-technik.tu-muenchen.de

A b stra ct
Checkpointing in a t ime warp synchronized parallel s im

ulator is a necessary and po ten tia l ly expensive operation.
In the simple case, a t ime warp sim ula tor checkpoints ev
ery x events, fo r some fixed value x - For larger values of
X, the s im ula tor requires less overhead fo r saving the state,
but incurs an increased la tency during rollback. Thus, the
problem is to balance the t ime to save states against the
t ime to coast forward upon rollback. Unfortunately, a static
de term ina tio n o f a optimal value fo r x i-s very difficult and
can vary widely, even between closely related instances of
a time warp simulator. Furthermore, the optimal check
p o in t interval m a y actually vary over the l i fetime o f the
s imulation.

To address these problems, several investigators have
proposed dynamically adjusting the checkpoint interval x as
the s imula tion progresses. This paper analyzes three previ
ous techniques fo r dynamically s izing checkpoint intervals
and presents a new, heuristic algorithm fo r this purpose.
A ll fo u r techniques are im p lem ented in a co m m on appli
cation dom ain (digital sys tem simula tion from V H D L de
scr ip tions) and a direct comparison between the algorithms
is performed. The results show a significant difference in
the performance o f the im p lem ented algorithms. Rowever,
in vir tually all cases, the dynam ic algorithms performed
near or better than the best s tatic value. Furthermore, the
best algorithms performed as much as 12% better than the
best s tatic value.

1 Introduction
T h e tim e w arp m echanism , because of its relaxed syn

ch ronization criteria , is an appealing technique for contro l
ling parallel d iscrete event driven sim ulators. T im e w arp
parallel sim ulato rs trad e th e overhead of enforcing s tric t
tim e-ordered event processing for th e overhead of recovery
from out-of-order event processing [8 , 11]. T hus, in stead
of forcing tim e-ordered event processing, tim e w arp relaxes
th e synchronization schem e so th a t out-of-order event p ro
cessing is possible (a lthou gh in th e desirable case, infre-

' Thi s work was partia lly su p p o rted by th e A dvanced Re
search P ro jec ts Agency an d m onito red by the D epartm en t of
Justice un d er con trac t num ber J-FBI-93-116.

C enter for D igital Systems Engineering
Dept of ECECS, PO Box 210030

C incinnati, Ohio 45221-0030
phil.wilseyOuc.edu

quen t). T he chief overheads in tim e w arp needed to al
low recovery from out-of-order event processing are the
(i) processing tim e for saving s ta te and event inform ation,
(ii) m em ory space for th e saved event and s ta te in form a
tion , (iii) processing tim e for com puting a global m inim um
tim e of th e sim ulation (the so-called Global Virtual Time,
G V T) , and (iv) th e cost of reclaim ing old m em ory con
sum ed by saving s ta te and event in form atio n (i.e ., fossil
collection).

T h e benefits of th e tim e w arp approach is th a t it can
po ten tia lly uncover higher degrees of parallelism in th e sys
tem being sim ulated . T his m ay lead to a speedup even if a
ce rta in am ount of th e “lookahead” co m p u ta tion is w asted
due to rollbacks (recovering from out-of-order event p ro
cessing). O n th e o th e r hand , one obvious draw back of tim e
w arp lies in th e e x tra overhead. One of th e m ost signifi
can t costs in su ppo rting rollback is th e cost of s ta te saving
and s ta te res to ra tio n . Several suggestions have been m ade
to reduce th is overhead. In p a rticu la r, th e solutions can
be broad ly classified in to th e following th ree categories:
hardw are accelerators [9], saving only increm en ta l changes
in th e s ta te (called increm enta l state savings) [3, 2], and
reducing th e frequency of s ta te saving called periodic check
p o i n t i n g [4, 13]. W hile th e hardw are solution can produce
d ram a tic perform ance im provem ents, th e requirem ent of
ex tra hardw are for sim ulation is no t always acceptable.
T h e two softw are solutions can be m ore broad ly applied.
In applications w here a large frac tion of th e process s ta te
is m odified w ith every sim ulation step , increm en ta l s ta te
saving is less prom ising th a n periodic checkpointing [6 , 16].
However, th e la tte r solution requires th e estab lishm ent of
a value for th e num ber of events to be processed betw een
s ta te saves (th is value is called th e checkpoint interval).

In general, establish ing a s ta tic value for th e check
poin t in terval th a t p roduces op tim al perform ance is dif
ficult [15]. F urtherm ore , for m any applications, th e op
tim a l value for th e checkpoint in terval is likely to vary
over th e lifetim e of th e sim ulation [7]. In fact, several re
searchers have proposed d istinct solutions for dynam ically
(during th e sim ulation execution) de term in ing an o p e ra t
ing checkpoint in terval [14, 16, 18]. T his p aper presen ts
a co m parative analysis of four approaches to dynam ically

straggler message save state

 ̂ n o l t

L J l
coast_forward rollback

length: c length: r

Figure 1: Rollback and Coasting Forward (\ = 4)

ad justin g th e checkpoint in terval. In p a rticu la r, th ree pre
viously developed approaches th a t derive th e ir checkpoint
in terval ad ju stm en t s tra teg y from analy tica l m odels are
com pared w ith a heuristic m e th od developed in th is paper.
T h e resu lts ind icate th a t in one instance of a tim e w arp
sim ulato r (sim ulations form ed from descrip tions w ritten in
th e hardw are descrip tion language V H DL [17]), significant
speedup can be ob ta ined using dynam ically ad ju sted pe
riodic checkpointing. However, significant differences be
tw een th e effectiveness of th e algorithm s com pared were
observed, w ith th e heuristic m e th od perform ing best.

T h e rem ainder of th is p aper is organized as follows.
Section 2 briefly reviews th e basic tradeoffs in determ in ing
th e op tim al checkpoint interval. Section 3 reviews previ
ous w ork to dynam ically estab lish an opera ting checkpoint
in terval. A new heuristic algorithm for dynam ic check
poin ting is p resen ted in Section 4. Section 5 in troduces
th e m e tho d used to analyze th e perform ance results. E m
pirical resu lts com paring th e relative perform ance of each
im plem ented algorithm are shown in Section 6 . Finally,
Section 7 contains som e concluding rem arks.

2 O p tim izing th e C heckpoint Interval
In general, d is tinc t L Ps w ith in a specific app lication to

be sim ulated show different charac te ris tics regard ing roll
back frequency, s ta te size, and g ranu larity of events to be
executed . F u rthe rm ore th is behavior m ay change over the
lifetim e of th e sim ulation. Because of th is d isp ara te and
dynam ic n a tu re of LPs, it is difficult to estab lish a fixed
value for th e op tim al checkpoint in terval th a t produces
op tim al perform ance. A reasonable a lte rn a tive to s ta t
ically defining th e checkpoint in terval is to dynam ically
(during sim ulation) ad ju st th e period for each indiv idual
LP. O f course, th e dynam ic frequency for which th is cal
cu lation need occur m ay vary significantly based on the
tim e-varying behavior of th e application . Likewise, the
overhead of th e m e th od th rou g h which th e checkpoint in
terva l is dynam ically established m ay influence th e u tility
of recalculation.

T h e cost of checkpointing m ust be balanced against the
frequency of rollback and th e cost of reprocessing events
w ith ou t in tervening checkpoints. For exam ple, F igure 1 il
lu s tra te s a process rolling back upon receip t of a straggler

m essage. T he circles denote events, th e filled boxes denote
th e action of saving th e process s ta te . Since checkpoint
ing does no t occur after every processed event, a rollback
m ay have to reexecute several in te rm ed ia te events before
ac tually processing th e straggler event. T his reexecution is
called th e coast forward phase. T hus, th e value of th e tim e-
op tim al checkpoint in terval reflects a tradeoff betw een two
costs which adversely affect th e perform ance of an LP. In
particu lar:

• Increasing th e checkpointing in terval reduces the
overall tim e consum ed by th e s ta te saving rou tine and
th e m em ory space used by th e s ta te copies.

• Increasing th e checkpoint in terval resu lts in an in
crease in th e average num ber of events reexecuted
during th e coast forw ard phase. T his stem s from the
fac t th a t th e average len g th of coasting forw ard c is
p ro po rtio na l to th e checkpoint interval.

In our application dom ain, tim e is a m ore valuable resource
th a n space. Hence, we co ncen tra te on m inim izing th e ex
ecution tim e. However, th e re is a sim ilar tradeoff for a
space-optim al checkpoint in terval. A nd a com plete disre
gard for space costs is also no t feasible. M ore precisely,
while sparse checkpointing reduces th e am ount of m em ory
allocated for s ta te copies, a side effect of large checkpoint
in tervals is a corresponding increase in th e size of th e in
p u t event queue. T he larger th e checkpoint interval, the
m ore in p u t events have to be m ain ta ined in order to re
co nstru c t in te rm ed ia te s ta tes . T his m eans th a t , even if
a process shows no rollbacks, th e checkpoint in terval can
no t be set to infinity because of space consum ption by the
in p u t queue.

3 A d ap tive C heckpointing A lgorithm s
T h ere have been a variety of approaches to dyn am i

cally ad justing th e checkpoint in terval. As w ith any con
tro l system , dynam ically ad justin g th e s im u la to r’s contro l
p a ram ete rs requires th a t several o u tp u t values be m oni
to red [1]. W hile th e p a rticu la r o u tp u t values m on itored
by each m eth od vary, several of them are shared, such as
th e average tim e to save th e process s ta te (8S), th e average
tim e to execute one event (6 e) and th e num ber of rollbacks.
All of th e ad ap tive approaches m easure ch aracte ris tic d a ta
for each indiv idual process during a ce rta in period of tim e,
and th en recalcu la te th e op tim al checkpoint in terval. T his
period betw een recalcu la tions of th e checkpoint in terval is
referred to as th e observation cycle.
In th e nex t few subsections, th ree pa rticu la r techniques
for dynam ically ad justing th e checkpoint in terval are ex
am ined [14, 16, 18]. Each of these approaches derives an
an aly tica l m odel of th e tim e w arp sim ulato r and uses the
m odel to derive a form ula for dynam ically establish ing val
ues for th e checkpoint in terval. U n fo rtu n ate ly each ap
proach resu lts in a fairly com plex form ula th a t m ay re
quire significant processing tim e for evaluation and d a ta
cap tu re . C onsequently, in addition to th e previously devel

oped m ethods, a heuristic algorithm for dynam ically cal
cu lating checkpoint in tervals is p resen ted in Section 4.
3.1 L in ’s M o d el

Lin et al [14] derive a soph istica ted an aly tica l m odel
for establish ing up p er and lower bounds on th e op tim al
checkpoint interval. T his w ork ex tends an earlier m odel
th a t was developed by Lin and Lazowska in 1989 [13]. Es
sentially, th e deriva tion establishes an accura te u pp er and
lower bound for th e execution tim e overhead th a t check
poin ting im poses on an LP. T he op tim al checkpointing
period is th us found according to these two bounds. For
mally, th e lower (x ~) an d up p er (x +) bounds are:

(2a + 1)

In th is form ula, a denotes th e average num ber of process
executions betw een two subsequent rollbacks, excluding
events being coasted forw ard.

B ased on em pirical studies th e au th o rs suggest choosing
th e u pp er bound as th e checkpoint in terval. F u rth e r
m ore, in order to avoid too m any po ten tia lly expensive
recalculations, th e op tim al in terval size is ad ju sted only
un til th e sim ulation reaches a “s teady s ta te .” In several ex
perim ents, th e au th o rs find th a t th e regula ting algorithm
te rm in a tes after only a few recalculations.
3.2 P a la n isw a m y ’s D er iv a tio n

Palanisw am y [15, 16] begins w ith a m odel sim ilar to
L in’s [13]. Palanisw am y estim ates th e cost of a rollback
due to periodic s ta te saving. T h a t is, assum ing th a t a large
num ber of events are co m m itted , he m odels th e average
overhead involved during a given tim e interval. M inim izing
th is overhead function leads to th e following expression for
ca lculating th e op tim al value X o p t -

X opt — + 7 - 1 (1)

w here th e variables N , k r and 7 are th e following o u tp u t
values th a t m ust be m etered:

• N: num ber of co m m itted events,
• k r : num ger of rollbacks, and
• 7 : m ean value of th e rollback length .

T his approach relies on th e observation of com m itted
events and thu s it is dependen t on u p d a tes to G V T cal
cu lations (because events are co m m itted only w hen G V T
advances). T hus, th e frequency of up d a tin g th e check
poin t in terval in th is algorithm canno t be higher th a n the
frequency of G V T com puta tions.
3.3 R o n n g r e n ’s A p p roach

R onngren [18] a tte m p ts to m inim ize th e overhead in
volved in processing Robs events, w here Robs is th e to ta l

num ber of events executed m inus th e events executed d u r
ing th e coasting forw ard phase. T h e algorithm is com puted
as follows. If k r is th e num ber of rollbacks th a t occur d u r
ing an observation period , th en th e op tim al checkpoint
in terval is com puted as:

X o p t — &s Robs
far k r (2)

If th e event execution tim e during th e coasting forw ard
phase, Sc, is approxim ate ly equal to th e norm al event ex
ecution tim e, Se, th en we can rew rite E quation 2. M ore
precisely, consider th e fact th a t th e num ber of process ex
ecutions Robs equals th e num ber of co m m itted events N
p lus th e num ber of events undone due to rollbacks:

Robs — N -f- k r 7 .
T h en E quatio n 2 transfo rm s into

X o p t —

(3)

(4)
T his resu lt is only m arginally different from P alan isw am y’s
solution , E quatio n 1, and leads to a slightly larger check
poin t interval.

4 D er iv ing a S im ple H euristic
As previously discussed, th e analytica lly based algo

rithm s for sizing checkpoint in tervals have resu lted in for
m ula th a t are costly to evaluate and m on ito r. In th is sec
tion we p resen t a sim ple and easy to im plem ent m e th od for
dynam ically sizing checkpoint intervals. T h is is a heuris
tic and it has been developed after extensive profiling and
analysis of th e o pera tion of a locally developed dig ita l sys
tem parallel sim ulato r. Some of th is analysis is shown
below. U n fo rtu nate ly space lim ita tions prevent a m ore
detailed discussion; in te rested readers should see [7] for
ad d itiona l details. T h e heuristic algorithm pursues a reg
u la ting m echanism sim ilar to th e m e tho d of supervisory
control in contro l theo ry [5].
4.1 T h e O verh ead o f S ta te S aving

T h e tim e w arp o p tim izatio n of Periodic S ta te Saving
(PSS) a tte m p ts to balance two types of overhead. T h a t
is, to be effective, PSS m ust balance th e tim e spen t saving
s ta te against tim e spen t coasting forw ard. M ore precisely:
S av in g S ta tes: Periodic S ta te Saving significantly re

duces th e am ount of tim e lost on th is opera tion . T he
observed costs for saving s ta te decrease m onotonically
w ith th e checkpoint in terval (F igure 2).

C o a stin g Forw ard: R eexecuting in te rm ed ia te events
betw een th e last saved s ta te before th e rollback point
and th e s traggler m essage causing th e rollback con
sum es processor tim e. T his co m pu ta tio na l costs in
crease m onotonically w ith th e period of checkpointing
(F igure 3).

£
S 30-

overhead due to state saving. ALU_STR, proc# 10

8 1 0 1 2
checkpoint interval

Total Overhead due to PSS, ALU_STR, proc#10

8 10 12 14 16 18
checkpoint interval

Figure 2: S tate saving costs vs. period

overhead due to coasting forward. ALU_STR, proc# 10

90-
EC 80-o0
~ 70-1
I 60
6
| 50-
.a0 40- ra
■o 30-"OHD
1 205

10-

8 1 0 1 2
checkpoint interval

Figure 3: C oasting forward costs vs. period

Figures 2 and 3 show th e costs for s ta te saving C s s and
coasting forw ard C c f in te rm s of cpu tim e. T he sum of
these costs gives th e value E c of our cost fu n c t io n for pe
riodic s ta te saving:

E c = C'ss + C c f • (5)
In F igure 4 a typ ical behavior of th e filte red 1 cost func
tion w ith respect to th e checkpoint in terval is shown. T he
checkpoint in terval is to be chosen in a way th a t th e over
head is m inim ized. In our exam ple th e m inim um of the
cost function clearly ind icates th e op tim al period x = 4.

1 W here necessary, m easured d a ta is filtered using low-pass
filtering techniques in order to reduce s ta tis tic a l noise. In p a r
ticu lar, th ro ug h o u t th e experim ents described in th e rem ainder
of th is p aper, first order H R filters w ith coefficients O'o = .4 and
a i = .6 have been used.

Figure 4: E valuating the cost function

4.2 R eg u la tin g A lg o r ith m
T h e goal is to find th e location of th e m inim um and to

ad ju st th e checkpoint in terval correspondingly. According
to th e em pirical resu lts ob ta ined from a varie ty of bench
m arks we based th e ad justing algorithm on th e following
assum ptions:

1. T h e cost function is m onotonously increasing for
checkpoint in tervals larger th a n th e op tim al period,
except for a process w ith ou t any rollbacks.

2. T h e cost function shows a m inim um . T he location of
th is m inim um ind icates th e op tim um checkpoint in
terval. T he op tim al checkpoint in terval m ay be equal
to or g rea te r th a n one (xopt > 1).

We recalcu la te th e period after every N events exe
cu ted . In [18] guidelines are given for choosing N . (In
our experim en ts we used N = 100 events.) Initially a
checkpoint in terval of one is used (xinitial = I)- In the
successive observation in tervals (intervals over which the
cost function E c is reevaluated) th e checkpoint in terval
is increm ented by one if E c (as m easured during th e last
observation in terval) did no t significantly increase. If the
costs in th e cu rren t observation cycle becom e g rea te r th a n
in previous cycles, we change our “a d ap ta tio n d irec tion”
and decrem en t (by one) th e checkpoint interval.

To preven t our resu lting period from oscillating we use
an ap p ro p ria te th resho ld before ad justin g th e checkpoint
in terval. F urtherm ore , if th e process shows no rollbacks
(over its com plete h is to ry), th e checkpoint in terval is set
to Xmax■ (In accordance w ith em pirical observations we
use Xmax = 30.) T he ability to ad ap t is m ain tained , as
an old value of th e cost function is sto red and periodically
com pared to th e cu rren t value. If th e system behavior
changes over tim e, th e checkpoint in terval changes as well.
D espite its sim plicity, th e perform ance resu lts in Section

40

35

8 25

20

g>15

1 0

5

0
0 4 20

§
'S

Figure 5: D istribu tion of execution tim es

6 show th a t th is is an efficient technique for dynam ically
sizing checkpoint intervals.

5 A nalyzing Perform ance D ata
Before rep o rting th e resu lts of our co m parative analy

sis, we first address th e problem of analyzing sim ulation
perform ance figures to ob ta in verifiable results. Perfor
m ance analysis is a non triv ial task , and it is difficult to
ch aracterize th e perform ance of a sim ulation in any spe
cific configuration as a single num ber. In general, repeating
a sim ulation several tim es gives different results. We often
see varying resu lts in te rm s of execution tim e, num ber of
rollbacks, and num ber of sim ulation cycles. In th e follow
ing subsections, we de ta il th e analysis process followed in
th is investigation . T his analysis draw s heavily from the
discussions found in [1 0 , 1 2].
5.1 D is tr ib u tio n o f P erfo rm a n ce D a ta

Figure 5 depicts th e d is trib u tio n of th e execution tim es
of 50 sim ulation runs for an iden tical configuration and
environm ent. We would assum e th e d a ta to be norm ally
d is trib u ted . W hile th e h is togram undoub ted ly bears some
resem blance to a norm al d is tribu tion , th is observation can
only be derived by d iscarding som e of th e outly ing sam ples
a t th e up p er end of th e range. T hus, in our analysis these
sam ples are tre a te d as outliers, since they are far away from
th e m a jo rity of th e o th e r observation poin ts. T he reason
for th is abnorm ally “slow” sim ulation runs m ay e ith er be
found in th e n on -d eterm in istic n a tu re of T im e W arp or
in th e n a tu re of our im p lem en tation , w here every LP is
im plem ented as a lightweight process (LW P) on an SM P
(sym m etric m ultip rocessor) SUN S parcC en ter 1000 w ork
sta tion .

Because of resource co nstra in ts, it is no t possible to pe r
form a sufficiently high num ber of sim ulation repe tition s to
prevent these outliers from d istu rb ing th e m ean value and
variance of th e perform ance d a ta . T herefore, such obvious

Histogramm: 50 repetitions of one simulation run outliers will be d iscarded in th e analysis of Section 6.
5.2 C on fid en ce In tervals

C om paring two sets of identically configured sim ulation
runs, w here each set consists of N r repe tition s th e follow
ing observation is m ade: T hese two sets differ b o th in the ir
m ean value and in th e ir variance. T hus, th e fun dam en ta l
concept of confidence intervals has to be tak en in to ac
count. From a lim ited num ber of sam ples we can estim ate
th e ac tua l m ean value /t only a t a ce rta in confidence level.
Form ally we write:

P r o b (c \ < (i < C2) = 1 — a . (6)
w here th e in terval [c i ,c 2] is called th e confidence interval
w ith respect to a confidence level of 100(1 — a)% . T hus, a
is called th e level of significance. T h e confidence intervals
dep icted in Section 6 are ob ta ined using a norm al p rob a
bility d is tribu tion .
5.3 O ne F actor A n a ly sis

One Factor Ana lys is is a m e th od su itab le for com par
ing “several a lte rnatives of a single ca tegorical variable”
[10]. In our case th e ca tegorical variable is th e typ e of
th e algorithm used for com puting and eventually a d ju st
ing th e checkpoint in terval. T he following section gives a
short descrip tion of th is s ta tis tica l m ethod . M ore detailed
in form ation m ay be found in [7, 10].

R egression M od elin g

In a single fac to r design we m odel th e ac tu a l value of the
ob ta ined d a ta po in t y %] as follows:

y,j = fi + a j + e,j (7)
w here y tJ is th e i th m easu red d a ta po in t using algorithm
j . I t can be split in to a sum of th e m ean response /t, the
effect of th e specific algorithm a 3, and th e s ta tis tica l error
eu ■

Perform ance d a ta is m easu red by running r repea ted
sim ulations for all a different algorithm s. A pplying our
m odel eq uation (7) gives a set of ar equations and leads
to:

 ̂ r a
v- = — y z y z • (8)ar z z '

i = i 3 = 1

T hus, /t is th e grand mean of all sam ples. T h e difference
betw een th e m ean value yj of a specific a lte rn a tiv e j and
th e grand m ean are described by th e effect a 3 :

1 T- 'YhVi3 = = ^+ a t=i

A n alysis o f V ariance

T h e to ta l varia tion we can observe in th e m easured sam
ple can be a ttr ib u te d to b o th th e effects a j of th e differ
en t algorithm s and th e s ta tis tica l errors. In a O ne-Factor-

A nalysis th is varia tion is ca lcu lated as a squared sum of
errors (SSE) and of th e effects (SSA), which sum s to the
to ta l varia tion observed (SST).

A n F -te s t can be com puted on th e ra tio of th e m ean
square of errors and th e effects. T h e resulting F-value (F-
co m puted) is to be com pared to th e (1 — a)-q u an tile of the
F -varia te (F -tab le). T his helps decide w hether one algo
rith m perform s significantly b e tte r or worse th a n another.
If F -com puted is g rea te r th a n F -tab le , th en a decision is
possible a t a given confidence level (1 — a).

6 E xp er im en ts and R esu lts
T he sim ulation experim en ts described in th is section

were co nducted on a 4-processor SM P S parcC en ter 1000.
T h e LPs execute as lightw eight th read s using th e SO
LARIS 2.3 th read s lib rary and th e processes com m unicate
by event m essages in shared m em ory. A n aggressive can
celation s tra teg y was used and G V T was ca lcu lated using
S am adi’s A lgorithm [19].
6.1 Im p lem en ted A lg o r ith m s

Following im plem en ta tions for dynam ically ad justing
th e checkpoint in terval were studied:
M e th o d 1: L in’s m odel [14].
M e th o d 2: P alan isw am y’s derivation , reca lcula tion ev

ery G V T-cycle, tim es for saving s ta te and executing
events m easured across th e com plete sim ulation his
to ry [16].

M e th o d 3: P alan isw am y’s m odel w ith less frequen t re
calculations; recalcula tion is perform ed in a new G V T
cycle only if a m inim um of N new events have been
processed since th e last u pd a te .

M e th o d 4: R onng ren’s m odel [18].
M e th o d 5: T h e heuristic cost function m odel described

in Section 4 of th is paper.
For all an aly tica l m ethods (except M ethod 2) th e averages
6S and 8e were m easured only a t th e very beginning of
th e sim ulation and assum ed as co nstan ts . T he sim ulation
resu lts are ob ta ined from following V H DL descriptions:
ALU_BEH: a rithm etic logic un it, 6 processes.
PARMULT16: 16 b it parallel m ultip lier, 21 processes.
ARRAYMULT: 4 b it array m ultip lier, 53 processes.
ADDER16: 16 b it adder, 85 processes.
6.2 O verhead

As previously m entioned, all of th e above m entioned
algorithm s m on itor o u tp u t values of th e Logical Processes
a t run tim e. F urtherm ore , th e frequency a t which dynam ic
ad ju stm en ts are m ade to th e checkpoint in terval d irectly
im pacts processor execution tim e overhead. B u t how sig
nificant are these co m pu ta tion a l costs? T h ere are basi
cally two ways to de term ine th e influence of th e additional
co m p u ta tion required. F irs t, th e add itiona l calculations

M ethod execution
tim e (s)

confidence
interval

estim ated
overhead

plain 131.799 130.789 132.816 0.000
M ethod 1 132.312 131.294 133.329 0.513
M ethod 2 134.375 133.357 135.393 2.576
M ethod 3 132.785 131.767 133.802 0.986
M ethod 4 132.300 131.283 133.318 0.502
M ethod 5 132.808 131.791 133.826 1.010

Table 1: Overhead

for dynam ic checkpointing can be iso lated and th e ir exe
cu tion tim e m easured. Second, th e dynam ic com puta tions
can be tu rn ed on or off w ith a fixed checkpoint in terval
as th e sim ulation executes and th e differences com pared.
In these experim en ts, th e second a lte rn a tiv e was used be
cause it m ore accurate ly reflects th e execution tim e costs
of th e dynam ic ad ju s tm e n t . 2 T hus, we ran sim ulations
using th e (previously de term ined) ideal s ta tic checkpoint
in terval. R unning th e sim ulation w ith ou t any m on ito r
ing (pla in method) gave a base tim e. T hen , we ran the
sam e sim ulations applying th e various m ethods, b u t ig
noring th e com puted checkpoint in tervals and still using
th e ideal s ta tic checkpoint in terval. T h e ad ditiona l tim e
tak en by th e ad ap tive m ethods in these runs is an estim ate
for th e overhead of th e ind iv idual algorithm s. T he results
of our experim en ts w ith th e exam ple ADDER16 are sum m a
rized in Table 1. T h e conclusion we draw from th e resulting
confidence in tervals is th a t th e overhead for all im plem en
ta tio n s besides M ethod 2 is com parab ly low (< 1%) and
alm ost d isappears w ith in th e s ta tis tica l fluc tua tions of the
execution tim e observed.
6.3 P erfo rm a n ce

T h e A nalysis of V ariance (ANOVA) [10] helps to de
term ine th e significance of th e differences in perform ance
for each algorithm stud ied . T he ANOVA resu lts for the
PARMULT16 experim en ts (F igure 6) are given in Table 2.
T hese resu lts ind icates th a t F -C o m p u ted is significantly
g rea te r th a n F -tab le . T hus, we can m ake a decision a t a
95% -confidence level. T h e effects (the difference in perfor
m ance betw een th e ind iv idual algorithm s and th e overall
m ean) of M ethod 2 (P alan isw am y’s) and M ethod 5 (C ost
function) differ by alm ost five percen t. T he confidence in
tervals for th e effects are given in th e last two colum ns of
T able 2. T he rem aining th ree M ethods (1, 3, and 4) show
sim ilar confidence intervals, i.e., ind icating only a sm all
perform ance difference for th is benchm ark.

A visual depiction of th e m ean execution tim es and con
fidence in tervals for our benchm arks is given in Figures
6 , 8 , 9 and 10. T he x-axis ind icates th e M ethod num
ber assigned in subsection 6.1. For PARMULT16, M ethod 2
(Palan isw am y) perform s significantly worse th a n th e o ther
m odels. T his seem s to be due to its am ount of overhead,
as M ethod 3, a less expensive im plem en ta tion of th e sam e

2T h a t is, it m ore accurate ly cap tu res th e real cost of the
overhead including, for exam ple, cache misses an d page faults.

Sum O f Squares P ercen tage of Var M ean Square F -C om pu ted F-T able
SSY 1931525.8
SSO 1930336.4
SST 1189.4 100.0
SSA 418.6 35.2 104.6 14.3 2.6
SSE 770.8 64.8 7.3

M ean S tan d ard Confidence
P a ram ete r Effect D eviation Interval
7i 132.4708 0.2583 131.9575 132.9841
01 -0.4191 0.5167 -1.4457 0.6076
02 3.7201 0.5167 2.6935 4.7468
03 -0.3732 0.5167 -1.3999 0.6534
04 -0.9223 0.5167 -1.9489 0.1044
05 -2.0056 0.5167 -3.0322 -0.9789

Table 2: ANOVA-Table, PARM ULT16

MEAN AND CONFIDENCE PERIODIC STATE SAVING: PARMULT16
150 —

145 -

1 40

1 35

130 - 'F
O 125-ID
a 1 2 0

1 15

110

105-

D 2

3 3 1 ,3 , 4

D 5

Figure 6: C om parison of the M ethods: PARM ULT16
1 0 0 I-

3 4 5
CHECKPOINT INTERVAL

algorithm , gives significantly b e tte r speedup. T h e new
heuristic algorithm developed in Section 4 (M ethod 5) pe r
form s best in th is experim ent.

A com parison of th e perform ance d a ta in F igure 6 to the
execution tim es ob ta ined w ith different s ta tic checkpoint
ing in tervals (F igure 7) shows th a t near op tim al speedup
can be ob ta ined . T h e speedup com pared to th e s ta tic
checkpointing increases significantly if th e op tim al period
changes over sim ulation tim e and differs for th e indiv idual
L Ps [7],

F igure 8 shows resu lts for th e ARRAYMULT exam ple.
As w ith PARMULT16, M ethods 4 and 5 resu lt in th e best
speedup w ith M ethod 2 perform ing th e w orst.

A quick exam ina tion of th e rem aining experim en ts (F ig
ures 9 and 10) also rep o rt good perform ance for M ethods
4 and 5 (w ith 5 perform ing m uch b e tte r w ith th e sm allest
exam ple). In general, th e perform ance of L in’s M ethod
(M ethod 1) depends on th e sim ulated application . In con-

Figure 7: Perform ance of adaptive and sta tic PSS

t ra s t , th e o th e r m ethods show fairly consisten t behavior for
th e sim ulated exam ples. T hus, suppo rting our belief th a t
a continuously ad justin g algorithm is needed; th e contin
ual ad ju stm en t is useful because th e op tim al checkpoint
in terval changes over th e lifetim e of th e sim ulation (LP
behavior is dynam ic over th e lifetim e of th e sim ulation).
T his belief m ay no t hold for different application dom ains.
6 .4 M em o ry U sa g e

As already m entioned, th is analysis is focussed on the
perform ance in te rm s of execution tim e. N evertheless, we
have also observed th a t th e d istinc t algorithm s also differ
w ith regard to m em ory consum ption. T hus, we m easured
th e m axim um len g th of th e s ta te queue for all LPs in each
of th e sim ulations. T h e m axim um s ta te queue len g th is
ra th e r a vague ind icato r of th e m em ory consum ption th a n

MEAN AND CONFIDENCE MEAN AND CONFIDENCE

Figure 8: C om parison of the M ethods: ARRAYM ULT Figure 10: C om parison of the M ethods: ALU-BEH

MEAN AND CONFIDENCE

Figure 9: C om parison of the M ethods: ADDER16

a precise m easure, b u t it is th e only (som ew hat m eaning
ful) m easure th a t we can rep o rt.

F igure 11 rep resen ts th e typ ical behavior of th e differ
en t algorithm s w ith respect to m em ory usage. T h e values
shown were ob ta ined for th e ADDER16 benchm ark , th ey are
qua lita tive ly sim ilar for th e o th e r benchm arks. T h e heuris
tic algorithm from th is paper, M ethod 5, perform s signifi
can tly b e tte r th a n any of th e an aly tica l m ethods (M ethod
1 - 4) .

7 C onclusions
In a sim ulation w here all th e different LPs show sim ilar

behavior w ith little fluc tua tion over sim ulation tim e, an
op tim al execution tim e can be reached by applying peri
odic checkpointing w ith a fixed checkpoint interval. How
ever, in m ost cases, th e op tim al s ta tic checkpoint in terval
canno t easily be determ ined a t com pile tim e. F urtherm ore,

Figure 11: M axim um S tate Queue Length: ADDER16

in th e com m on case m any LPs show different and even
tim e-varying behavior. T hus, an ad ap tive checkpointing
technique is essential. In th is p aper we com pared several
possible derivations for op tim al checkpointing. We found
th a t ad ap tive techniques are effective for speeding p a ra l
lel sim ulations w ith V H DL descrip tion as th e application
dom ain. F u rth e rm o re we em phasized th e need for s ta tis ti
cal analysis in order to com pare th e different checkpoint
ing algorithm s. O ur resu lts ind icate , th a t th e co m pu ta
tiona l overhead for th e suggested m ethods can be reduced
to a com parab ly low level. B u t nevertheless, som e of the
benchm arks reveal significant differences in th e ir resulting
perform ance.

For th e new heuristic algorithm p resen ted in th is pa
per, we es tim ate th a t th e ad ditiona l overhead is less th a n
one percen t. In th e w orst case, th e new heuristic ad ap
tive m e tho d perform s as well as th e op tim al s ta tic check
poin ting m ethod . In th e best case (ALU_BEH), we o u tp e r

0 5 6 6
M ETH O D #

form optim al s ta tic checkpointing by m ore th a n 1 2 % which
m eans a speedup of alm ost 2 0 % over th e sim ulation w ith
ou t sparse checkpointing. T h e analysis and th e perfor
m ance resu lts p resen ted help decide which algorithm to fa
vor in an ac tua l im plem en ta tion for th e sake of optim izing
th e perform ance of th e tim e w arp sim ulato r in th e dom ain
of dig ita l system sim ulation. F u tu re w ork is to evaluate the
different checkpointing m ethods on larger p la tform s and to
em pirically com pare th em to increm en ta l s ta te saving in
our application dom ain. Also a m ore detailed investiga
tion w ith regard to m em ory consum ption of th e different
algorithm s is necessary.

R eferences
[1] A s t r o m , K. J ., a n d W i t t e n m a r k , B . A daptive

Control. A d d is o n W esley , R e a d in g , M A , 1989.
[2] B a u e r , H ., AND S p o r r e r , C. R educing rollback

overhead in tim e-w arp based d is trib u ted sim ulation
w ith optim ized increm en ta l s ta te saving. In Proc. of
the 26th A n n u a l S im ula tion Sym p o s iu m (A pril 1993),
Society for C o m p u ter Sim ulation, pp. 12-20.

[3] B a u e r , H ., S p o r r e r , C ., a n d K r o d e l , T . H.
O n d is trib u ted logic sim ulation using tim e w arp. In
V L S I 91 (Edinburgh , Scotland, A ugust 1991), A. Ha-
laas and P. B . Denyer, Eds., IF IP T C 10 /W G 10.5,
pp. 127-136.

[4] B E L L E N O T , S. S ta te skipping perform ance w ith the
tim e w arp opera ting system . In 6th Workshop on P a r
allel and Distr ibuted S im ula tion (Ja n u ary 1992), So
ciety for C om pu ter S im ulation, pp. 53-61.

[5] CAIANIELLO, E. R . Functional A na lys is and Opti
mization. A cadem ic Press, New York, 1966.

[6] C l e a r y , J ., G o m e s , F ., U n g e r , B . , Z h o n g e , X .,
AND T h u d t , R. C ost of s ta te saving & rollback.
In Proc. o f the 8th Workshop on Parallel and D is
tributed S im ula tion (P A D S) (Ju ly 1994), Society for
C o m p u ter Sim ulation, pp. 94-101.

[7] FLEISC H M A N N , J. P a ram ete r regula tion in optim istic
parallel sim ulation. D ip lom arbeit, Technische Univer-
s ita t M iinchen, D ecem ber 1994.

[8] F U JIM O T O , R . Paralle l d iscrete event sim ulation.
Com m unica tions o f the A C M 33, 10 (O cto ber 1990),
30-53.

[9] F u j i m o t o , R. M ., T s a i , J ., a n d G o p a l a k r i s h n a n ,
G . C. Design and evaluation of th e rollback chip:
Special purpose hardw are for tim e w arp . I E E E Trans
actions on Computers 41, 1 (Ja n u ary 1992), 68-82.

[10] J a in , R . The A r t o f C om puter Sy s tem s P erformance
Analysis . John W iley & Sons, Inc., New York, 1991.

[11] JE F F E R S O N , D. V irtu a l tim e. A C M Transactions
on Programming Languages and Sys tem s 7, 3 (Ju ly
1985), 405-425.

[12] K a n t , K . In troduc tion to C om puter S y s tem P er for
mance Evaluation. M cG raw-Hill, Inc., 1992.

[13] L i n , Y .-B ., a n d L a z o w s k a , E. D. T h e op ti
m al checkpoint in terval in tim e w arp parallel sim ula
tion . Tech. Rep. 89-09-04, D epartm en t of C om pu ter
Science and Engineering, U niversity of W ashington,
Seattle , W ashington , Sep tem ber 1989.

[14] L i n , Y .-B ., P r e i s s , B. R ., L o u c k s , W . M ., a n d
L a z o w s k a , E. D. Selecting th e checkpoint in terval
in tim e w arp sim ulation. In Proc o f the 7th Workshop
on Parallel and Distr ibuted S im ula tion (P A D S) (Ju ly
1993), Society for C o m p u ter Sim ulation, pp. 3-10.

[15] P a l a n i s w a m y , A ., a n d W i l s e y , P . A. A d ap
tive checkpoint in tervals in an optim istically synchro
nized parallel d ig ita l system sim ulator. In VLSL 93
(S ep tem ber 1993), pp. 353-362.

[16] P a l a n i s w a m y , A ., a n d W i l s e y , P . A. A n analy tica l
com parison of periodic checkpointing and increm enta l
s ta te saving. In Proc. o f the 7th Workshop on P a r
allel and Distr ibuted S im ula tion (P A D S) (Ju ly 1993),
Society for C om pu ter Sim ulation, pp. 127-134.

[17] P e r r y , D. L . VHDL, 2nd ed. M cG raw -H ill, New
York, NY, 1994.

[18] RO NNGREN, R . , AND A y a n i , R . A d a p t iv e c h e c k p o in t
in g in t im e w a rp . In Proc. o f the 8th Workshop on
Parallel and Distr ibuted S im ula tion (P A D S 94) (Ju ly
1994), Society for C om pu ter Sim ulation, pp. 110-117.

[19] SAMADI, B. Distr ibuted S im ula tion , A lgori thm s and
Perform ance Analysis . P hD thesis, C o m p u ter Sci
ence D epartm en t, U niversity of C alifornia, Los A nge
les, CA, 1985.

