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A b stra ct
Checkpointing in a t ime warp synchronized  parallel s im 

ulator is a necessary and po ten tia l ly  expensive operation. 
In  the simple case, a t ime warp sim ula tor  checkpoints ev
ery x  events, fo r  some fixed value x -  For larger values of  
X, the s im ula tor  requires less overhead fo r  saving the state,  
but incurs an increased la tency  during rollback. Thus, the 
problem is to balance the t ime to save states against the 
t ime to coast forward upon rollback. Unfortunately,  a static  
de term ina tio n  o f  a optimal value fo r  x  i-s very difficult and  
can vary widely, even between closely related instances of  
a time warp simulator. Furthermore, the optimal check
p o in t  interval m a y  actually vary over the l i fetime o f  the 
s imulation.

To address these problems, several investigators have 
proposed dynamically  adjusting the checkpoint interval x  as 
the s imula tion  progresses. This paper analyzes three previ
ous techniques fo r  dynamically  s izing checkpoint intervals  
and presents  a new, heuristic  algorithm fo r  this purpose.  
A ll  fo u r  techniques are im p lem ented  in a co m m on appli
cation dom ain  (digital sys tem  simula tion  from  V H D L de
scr ip tions)  and a direct comparison between the algorithms  
is performed. The results show a significant difference in 
the performance o f  the im p lem ented  algorithms. Rowever,  
in vir tually all cases, the dynam ic  algorithms performed  
near or better than the best s tatic value. Furthermore, the 
best algorithms performed as much as 12% better than the 
best s tatic value.

1 Introduction
T h e tim e w arp m echanism , because of its  relaxed syn

ch ronization  criteria , is an appealing technique for contro l
ling parallel d iscrete event driven sim ulators. T im e w arp 
parallel sim ulato rs trad e  th e  overhead of enforcing s tric t 
tim e-ordered  event processing for th e  overhead of recovery 
from  out-of-order event processing [8 , 11]. T hus, in stead  
of forcing tim e-ordered  event processing, tim e w arp  relaxes 
th e  synchronization  schem e so th a t  out-of-order event p ro
cessing is possible (a lthou gh  in th e  desirable case, infre-
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quen t). T he chief overheads in tim e w arp needed to  al
low recovery from  out-of-order event processing are the
(i) processing tim e for saving s ta te  and event inform ation,
(ii) m em ory space for th e  saved event and s ta te  in form a
tion , (iii) processing tim e for com puting  a global m inim um  
tim e of th e  sim ulation  (the  so-called Global Virtual Time,  
G V T ) ,  and (iv) th e  cost of reclaim ing old m em ory con
sum ed by saving s ta te  and event in form atio n  (i.e .,  fossil  
collection).

T h e benefits of th e  tim e w arp approach  is th a t  it can 
po ten tia lly  uncover higher degrees of parallelism  in th e  sys
tem  being sim ulated . T his m ay lead to  a speedup  even if a 
ce rta in  am ount of th e  “lookahead” co m p u ta tion  is w asted  
due to  rollbacks (recovering from  out-of-order event p ro
cessing). O n th e  o th e r hand , one obvious draw back  of tim e 
w arp lies in th e  e x tra  overhead. One of th e  m ost signifi
can t costs in su ppo rting  rollback is th e  cost of s ta te  saving 
and s ta te  res to ra tio n . Several suggestions have been m ade 
to  reduce th is  overhead. In  p a rticu la r, th e  solutions can 
be broad ly  classified in to  th e  following th ree  categories: 
hardw are  accelerators [9], saving only increm en ta l changes 
in th e  s ta te  (called increm enta l  state savings)  [3, 2], and 
reducing th e  frequency of s ta te  saving called periodic check
p o i n t i n g [4, 13]. W hile th e  hardw are  solution can produce 
d ram a tic  perform ance im provem ents, th e  requirem ent of 
ex tra  hardw are  for sim ulation  is no t always acceptable. 
T h e two softw are solutions can be m ore broad ly  applied. 
In applications w here a large frac tion  of th e  process s ta te  
is m odified w ith  every sim ulation  step , increm en ta l s ta te  
saving is less prom ising th a n  periodic checkpointing [6 , 16]. 
However, th e  la tte r  solution requires th e  estab lishm ent of 
a value for th e  num ber of events to  be processed betw een 
s ta te  saves (th is value is called th e  checkpoint interval).

In general, establish ing a s ta tic  value for th e  check
poin t in terval th a t  p roduces op tim al perform ance is dif
ficult [15]. F urtherm ore , for m any applications, th e  op
tim a l value for th e  checkpoint in terval is likely to  vary 
over th e  lifetim e of th e  sim ulation  [7]. In  fact, several re
searchers have proposed d istinct solutions for dynam ically  
(during th e  sim ulation  execution) de term in ing  an o p e ra t
ing checkpoint in terval [14, 16, 18]. T his p aper presen ts 
a co m parative analysis of four approaches to  dynam ically
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Figure 1: Rollback and Coasting Forward ( \  =  4)

ad justin g  th e  checkpoint in terval. In  p a rticu la r, th ree  pre
viously developed approaches th a t  derive th e ir checkpoint 
in terval ad ju stm en t s tra teg y  from  analy tica l m odels are 
com pared  w ith  a heuristic  m e th od  developed in th is  paper. 
T h e resu lts  ind icate  th a t  in one instance  of a tim e w arp 
sim ulato r (sim ulations form ed from  descrip tions w ritten  in 
th e  hardw are  descrip tion  language V H DL [17]), significant 
speedup  can be ob ta ined  using dynam ically  ad ju sted  pe
riodic checkpointing. However, significant differences be
tw een th e  effectiveness of th e  algorithm s com pared  were 
observed, w ith  th e  heuristic  m e th od  perform ing best.

T h e rem ainder of th is  p aper is organized as follows. 
Section 2 briefly reviews th e  basic tradeoffs in determ in ing  
th e  op tim al checkpoint interval. Section 3 reviews previ
ous w ork to  dynam ically  estab lish  an opera ting  checkpoint 
in terval. A new heuristic  algorithm  for dynam ic check
poin ting  is p resen ted  in Section 4. Section 5 in troduces 
th e  m e tho d  used to  analyze th e  perform ance results. E m 
pirical resu lts com paring th e  relative perform ance of each 
im plem ented  algorithm  are shown in Section 6 . Finally, 
Section 7 contains som e concluding rem arks.

2 O p tim izing  th e  C heckpoint Interval
In general, d is tinc t L Ps w ith in  a specific app lication  to  

be sim ulated  show different charac te ris tics  regard ing roll
back frequency, s ta te  size, and g ranu larity  of events to  be 
executed . F u rthe rm ore  th is  behavior m ay change over the  
lifetim e of th e  sim ulation. Because of th is  d isp ara te  and 
dynam ic n a tu re  of LPs, it is difficult to  estab lish  a fixed 
value for th e  op tim al checkpoint in terval th a t  produces 
op tim al perform ance. A reasonable a lte rn a tive  to  s ta t 
ically defining th e  checkpoint in terval is to  dynam ically  
(during sim ulation) ad ju st th e  period  for each indiv idual 
LP. O f course, th e  dynam ic frequency for which th is  cal
cu lation  need occur m ay vary significantly based on the  
tim e-varying behavior of th e  application . Likewise, the  
overhead of th e  m e th od  th rou g h  which th e  checkpoint in
terva l is dynam ically  established m ay influence th e  u tility  
of recalculation.

T h e cost of checkpointing m ust be balanced against the  
frequency of rollback and th e  cost of reprocessing events 
w ith ou t in tervening checkpoints. For exam ple, F igure 1 il
lu s tra te s  a process rolling back upon  receip t of a straggler

m essage. T he circles denote events, th e  filled boxes denote 
th e  action  of saving th e  process s ta te . Since checkpoint
ing does no t occur after every processed event, a rollback 
m ay have to  reexecute several in te rm ed ia te  events before 
ac tually  processing th e  straggler event. T his reexecution  is 
called th e  coast forward phase. T hus, th e  value of th e  tim e- 
op tim al checkpoint in terval reflects a tradeoff betw een two 
costs which adversely affect th e  perform ance of an LP. In 
particu lar:

•  Increasing th e  checkpointing in terval reduces the  
overall tim e consum ed by th e  s ta te  saving rou tine  and 
th e  m em ory space used by th e  s ta te  copies.

•  Increasing th e  checkpoint in terval resu lts in an in
crease in th e  average num ber of events reexecuted  
during th e  coast forw ard phase. T his stem s from  the  
fac t th a t  th e  average len g th  of coasting forw ard c is 
p ro po rtio na l to  th e  checkpoint interval.

In  our application  dom ain, tim e is a m ore valuable resource 
th a n  space. Hence, we co ncen tra te  on m inim izing th e  ex
ecution  tim e. However, th e re  is a sim ilar tradeoff for a 
space-optim al checkpoint in terval. A nd a com plete disre
gard  for space costs is also no t feasible. M ore precisely, 
while sparse checkpointing reduces th e  am ount of m em ory 
allocated  for s ta te  copies, a side effect of large checkpoint 
in tervals is a corresponding increase in th e  size of th e  in
p u t event queue. T he  larger th e  checkpoint interval, the  
m ore in p u t events have to  be m ain ta ined  in order to  re
co nstru c t in te rm ed ia te  s ta tes . T his m eans th a t ,  even if 
a process shows no rollbacks, th e  checkpoint in terval can
no t be set to  infinity because of space consum ption  by the  
in p u t queue.

3 A d ap tive  C heckpointing  A lgorithm s
T h ere  have been a variety  of approaches to  dyn am i

cally ad justing  th e  checkpoint in terval. As w ith  any con
tro l system , dynam ically  ad justin g  th e  s im u la to r’s contro l 
p a ram ete rs  requires th a t  several o u tp u t values be m oni
to red  [1]. W hile th e  p a rticu la r o u tp u t values m on itored  
by each m eth od  vary, several of them  are shared, such as 
th e  average tim e to  save th e  process s ta te  (8S), th e  average 
tim e to  execute one event (6 e ) and th e  num ber of rollbacks. 
All of th e  ad ap tive approaches m easure ch aracte ris tic  d a ta  
for each indiv idual process during a ce rta in  period  of tim e, 
and th en  recalcu la te  th e  op tim al checkpoint in terval. T his 
period  betw een recalcu la tions of th e  checkpoint in terval is 
referred  to  as th e  observation cycle.
In th e  nex t few subsections, th ree  pa rticu la r techniques 
for dynam ically  ad justing  th e  checkpoint in terval are ex
am ined [14, 16, 18]. Each of these approaches derives an 
an aly tica l m odel of th e  tim e w arp sim ulato r and uses the  
m odel to  derive a form ula for dynam ically  establish ing val
ues for th e  checkpoint in terval. U n fo rtu n ate ly  each ap
proach resu lts  in a fairly com plex form ula th a t  m ay re
quire significant processing tim e for evaluation  and d a ta  
cap tu re . C onsequently, in addition  to  th e  previously devel



oped m ethods, a heuristic  algorithm  for dynam ically  cal
cu lating  checkpoint in tervals is p resen ted  in Section 4.
3.1 L in ’s M o d el

Lin et al [14] derive a soph istica ted  an aly tica l m odel 
for establish ing up p er and lower bounds on th e  op tim al 
checkpoint interval. T his w ork ex tends an earlier m odel 
th a t  was developed by Lin and Lazowska in 1989 [13]. Es
sentially, th e  deriva tion  establishes an accura te  u pp er and 
lower bound  for th e  execution tim e overhead th a t  check
poin ting  im poses on an LP. T he op tim al checkpointing 
period  is th us  found according to  these two bounds. For
mally, th e  lower ( x ~ )  an d up p er ( x + ) bounds are:

(2a +  1 )

In th is  form ula, a  denotes th e  average num ber of process 
executions betw een two subsequent rollbacks, excluding 
events being coasted  forw ard.

B ased on em pirical studies th e  au th o rs  suggest choosing 
th e  u pp er bound  as th e  checkpoint in terval. F u rth e r
m ore, in order to  avoid too  m any po ten tia lly  expensive 
recalculations, th e  op tim al in terval size is ad ju sted  only 
un til th e  sim ulation  reaches a “s teady  s ta te .” In  several ex
perim ents, th e  au th o rs  find th a t  th e  regula ting  algorithm  
te rm in a tes  after only a few recalculations.
3.2 P a la n isw a m y ’s D er iv a tio n

Palanisw am y [15, 16] begins w ith  a m odel sim ilar to  
L in’s [13]. Palanisw am y estim ates th e  cost of a rollback 
due to  periodic s ta te  saving. T h a t is, assum ing th a t  a large 
num ber of events are co m m itted , he m odels th e  average 
overhead involved during a given tim e interval. M inim izing 
th is  overhead function  leads to  th e  following expression for 
ca lculating  th e  op tim al value X o p t -

X opt  — +  7 - 1 (1)

w here th e  variables N ,  k r and 7  are th e  following o u tp u t 
values th a t  m ust be m etered:

•  N:  num ber of co m m itted  events,
•  k r : num ger of rollbacks, and
•  7 : m ean value of th e  rollback length .

T his approach  relies on th e  observation  of com m itted  
events and thu s  it is dependen t on u p d a tes  to  G V T  cal
cu lations (because events are co m m itted  only w hen G V T  
advances). T hus, th e  frequency of up d a tin g  th e  check
poin t in terval in th is  algorithm  canno t be higher th a n  the  
frequency of G V T  com puta tions.
3.3  R o n n g r e n ’s A p p roach

R onngren [18] a tte m p ts  to  m inim ize th e  overhead in
volved in processing Robs events, w here Robs is th e  to ta l

num ber of events executed  m inus th e  events executed  d u r
ing th e  coasting forw ard phase. T h e algorithm  is com puted  
as follows. If k r is th e  num ber of rollbacks th a t  occur d u r
ing an observation  period , th en  th e  op tim al checkpoint 
in terval is com puted  as:

X o p t  — &s Robs
far k r (2)

If th e  event execution tim e during th e  coasting forw ard 
phase, Sc, is approxim ate ly  equal to  th e  norm al event ex
ecution  tim e, Se, th en  we can rew rite  E quation  2. M ore 
precisely, consider th e  fact th a t  th e  num ber of process ex
ecutions Robs equals th e  num ber of co m m itted  events N  
p lus th e  num ber of events undone due to  rollbacks:

Robs — N  -f- k r 7 . 
T h en  E quatio n  2 transfo rm s into

X o p t  —

(3)

(4)
T his resu lt is only m arginally  different from  P alan isw am y’s 
solution , E quatio n  1, and leads to  a slightly larger check
poin t interval.

4 D er iv ing  a S im ple H euristic
As previously discussed, th e  analytica lly  based algo

rithm s for sizing checkpoint in tervals have resu lted  in for
m ula th a t  are costly to  evaluate  and m on ito r. In  th is  sec
tion  we p resen t a sim ple and easy to  im plem ent m e th od  for 
dynam ically  sizing checkpoint intervals. T h is is a heuris
tic and it has been developed after extensive profiling and 
analysis of th e  o pera tion  of a locally developed dig ita l sys
tem  parallel sim ulato r. Some of th is  analysis is shown 
below. U n fo rtu nate ly  space lim ita tions prevent a m ore 
detailed  discussion; in te rested  readers should see [7] for 
ad d itiona l details. T h e heuristic  algorithm  pursues a reg
u la ting  m echanism  sim ilar to  th e  m e tho d  of supervisory  
control in contro l theo ry  [5].
4.1 T h e  O verh ead  o f  S ta te  S aving

T h e tim e w arp o p tim izatio n  of Periodic S ta te  Saving 
(PSS) a tte m p ts  to  balance two types of overhead. T h a t 
is, to  be effective, PSS m ust balance th e  tim e spen t saving 
s ta te  against tim e spen t coasting forw ard. M ore precisely:
S av in g  S ta tes: Periodic S ta te  Saving significantly re

duces th e  am ount of tim e lost on th is  opera tion . T he 
observed costs for saving s ta te  decrease m onotonically  
w ith  th e  checkpoint in terval (F igure 2).

C o a stin g  Forw ard: R eexecuting in te rm ed ia te  events 
betw een th e  last saved s ta te  before th e  rollback point 
and th e  s traggler m essage causing th e  rollback con
sum es processor tim e. T his co m pu ta tio na l costs in
crease m onotonically  w ith  th e  period  of checkpointing 
(F igure 3).
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Figure 3: C oasting forward costs vs. period

Figures 2  and 3 show th e  costs for s ta te  saving C s s  and 
coasting  forw ard C c f  in te rm s of cpu tim e. T he  sum  of 
these costs gives th e  value E c of our cost fu n c t io n  for pe
riodic s ta te  saving:

E c = C'ss +  C c f • (5)
In F igure 4 a typ ical behavior of th e  filte red 1 cost func
tion  w ith  respect to  th e  checkpoint in terval is shown. T he 
checkpoint in terval is to  be chosen in a way th a t  th e  over
head is m inim ized. In  our exam ple th e  m inim um  of the  
cost function  clearly ind icates th e  op tim al period  x  =  4.

1 W here necessary, m easured  d a ta  is filtered  using low-pass 
filtering techniques in  order to  reduce s ta tis tic a l noise. In  p a r
ticu lar, th ro ug h o u t th e  experim ents described in  th e  rem ainder 
of th is p aper, first order H R filters w ith  coefficients O'o =  .4 and  
a i  =  .6 have been  used.

Figure 4: E valuating the cost function

4.2  R eg u la tin g  A lg o r ith m
T h e goal is to  find th e  location  of th e  m inim um  and to  

ad ju st th e  checkpoint in terval correspondingly. According 
to  th e  em pirical resu lts  ob ta ined  from  a varie ty  of bench
m arks we based th e  ad justing  algorithm  on th e  following 
assum ptions:

1. T h e cost function  is m onotonously  increasing for 
checkpoint in tervals larger th a n  th e  op tim al period, 
except for a process w ith ou t any rollbacks.

2. T h e cost function  shows a m inim um . T he location  of 
th is  m inim um  ind icates th e  op tim um  checkpoint in
terval. T he op tim al checkpoint in terval m ay be equal 
to  or g rea te r th a n  one (xopt >  1 ).

We recalcu la te  th e  period  after every N  events exe
cu ted . In  [18] guidelines are given for choosing N .  (In 
our experim en ts we used N  =  100 events.) Initially  a 
checkpoint in terval of one is used (xinitial =  I)- In  the  
successive observation  in tervals (intervals over which the  
cost function  E c is reevaluated) th e  checkpoint in terval 
is increm ented  by one if E c (as m easured  during th e  last 
observation  in terval) did no t significantly increase. If the  
costs in th e  cu rren t observation  cycle becom e g rea te r th a n  
in previous cycles, we change our “a d ap ta tio n  d irec tion” 
and decrem en t (by one) th e  checkpoint interval.

To preven t our resu lting  period  from  oscillating we use 
an ap p ro p ria te  th resho ld  before ad justin g  th e  checkpoint 
in terval. F urtherm ore , if th e  process shows no rollbacks 
(over its  com plete h is to ry ), th e  checkpoint in terval is set 
to  Xmax■ (In accordance w ith  em pirical observations we 
use Xmax =  30.) T he ability  to  ad ap t is m ain tained , as 
an old value of th e  cost function  is sto red  and periodically 
com pared  to  th e  cu rren t value. If th e  system  behavior 
changes over tim e, th e  checkpoint in terval changes as well. 
D espite its  sim plicity, th e  perform ance resu lts  in Section
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Figure 5: D istribu tion  of execution tim es

6 show th a t  th is  is an efficient technique for dynam ically  
sizing checkpoint intervals.

5 A nalyzing  Perform ance D ata
Before rep o rting  th e  resu lts of our co m parative analy

sis, we first address th e  problem  of analyzing sim ulation 
perform ance figures to  ob ta in  verifiable results. Perfor
m ance analysis is a non triv ial task , and it is difficult to  
ch aracterize  th e  perform ance of a sim ulation  in any spe
cific configuration  as a single num ber. In  general, repeating  
a sim ulation  several tim es gives different results. We often 
see varying resu lts in te rm s of execution tim e, num ber of 
rollbacks, and num ber of sim ulation  cycles. In  th e  follow
ing subsections, we de ta il th e  analysis process followed in 
th is  investigation . T his analysis draw s heavily from  the  
discussions found in [1 0 , 1 2 ].
5.1 D is tr ib u tio n  o f  P erfo rm a n ce  D a ta

Figure 5 depicts th e  d is trib u tio n  of th e  execution tim es 
of 50 sim ulation  runs for an iden tical configuration  and 
environm ent. We would assum e th e  d a ta  to  be norm ally 
d is trib u ted . W hile th e  h is togram  undoub ted ly  bears some 
resem blance to  a norm al d is tribu tion , th is  observation  can 
only be derived by d iscarding som e of th e  outly ing sam ples 
a t th e  up p er end of th e  range. T hus, in our analysis these 
sam ples are tre a te d  as outliers,  since they  are far away from  
th e  m a jo rity  of th e  o th e r observation  poin ts. T he reason 
for th is  abnorm ally  “slow” sim ulation  runs m ay e ith er be 
found in th e  n on -d eterm in istic  n a tu re  of T im e W arp or 
in th e  n a tu re  of our im p lem en tation , w here every LP is 
im plem ented  as a lightweight process  (LW P) on an SM P 
(sym m etric  m ultip rocessor) SUN S parcC en ter 1000 w ork
sta tion .

Because of resource co nstra in ts, it is no t possible to  pe r
form  a sufficiently high num ber of sim ulation  repe tition s to  
prevent these outliers from  d istu rb ing  th e  m ean value and 
variance of th e  perform ance d a ta . T herefore, such obvious

Histogramm: 50 repetitions of one simulation run outliers will be d iscarded in th e  analysis of Section 6.
5.2 C on fid en ce In tervals

C om paring two sets of identically  configured sim ulation 
runs, w here each set consists of N r repe tition s th e  follow
ing observation  is m ade: T hese two sets differ b o th  in the ir 
m ean value and in th e ir variance. T hus, th e  fun dam en ta l 
concept of confidence intervals  has to  be tak en  in to  ac
count. From  a lim ited  num ber of sam ples we can estim ate  
th e  ac tua l m ean value /t only a t a ce rta in  confidence level. 
Form ally we write:

P r o b ( c \  <  (i <  C2 ) =  1 — a .  (6)
w here th e  in terval [c i ,c 2 ] is called th e  confidence interval  
w ith  respect to  a confidence level of 100(1 — a )% . T hus, a  
is called th e  level of significance. T h e  confidence intervals 
dep icted  in Section 6  are ob ta ined  using a norm al p rob a
bility d is tribu tion .
5.3 O ne F actor A n a ly sis

One Factor Ana lys is  is a m e th od  su itab le  for com par
ing “several a lte rnatives of a single ca tegorical variable”
[10]. In  our case th e  ca tegorical variable is th e  typ e  of 
th e  algorithm  used for com puting  and eventually a d ju st
ing th e  checkpoint in terval. T he following section gives a 
short descrip tion  of th is  s ta tis tica l m ethod . M ore detailed  
in form ation  m ay be found in [7, 10].

R egression M od elin g

In a single fac to r design we m odel th e  ac tu a l value of the  
ob ta ined  d a ta  po in t y %] as follows:

y,j = fi +  a j  + e,j (7)
w here y tJ is th e  i th m easu red  d a ta  po in t using algorithm
j .  I t  can be split in to  a sum  of th e  m ean response /t, the
effect of th e  specific algorithm  a 3, and th e  s ta tis tica l error
eu ■

Perform ance d a ta  is m easu red  by running  r repea ted  
sim ulations for all a different algorithm s. A pplying our 
m odel eq uation  (7) gives a set of ar equations and leads 
to:

 ̂ r a
v- = — y z  y z  • (8)ar  z z '

i = i  3 = 1

T hus, /t is th e  grand mean  of all sam ples. T h e difference 
betw een th e  m ean value yj  of a specific a lte rn a tiv e  j  and 
th e  grand  m ean are described by th e  effect a 3 :

1 T- 'YhVi3 = = ^+ a  t=i

A n alysis o f V ariance

T h e to ta l  varia tion  we can observe in th e  m easured  sam 
ple can be a ttr ib u te d  to  b o th  th e  effects a j  of th e  differ
en t algorithm s and th e  s ta tis tica l errors. In  a O ne-Factor-



A nalysis th is  varia tion  is ca lcu lated  as a squared  sum  of 
errors (SSE) and of th e  effects (SSA), which sum s to  the  
to ta l  varia tion  observed (SST).

A n F -te s t can be com puted  on th e  ra tio  of th e  m ean 
square of errors and th e  effects. T h e  resulting  F-value (F- 
co m puted) is to  be com pared  to  th e  ( 1  — a)-q u an tile  of the  
F -varia te  (F -tab le ). T his helps decide w hether one algo
rith m  perform s significantly b e tte r  or worse th a n  another. 
If F -com puted  is g rea te r th a n  F -tab le , th en  a decision is 
possible a t a given confidence level ( 1  — a).

6 E xp er im en ts  and R esu lts
T he sim ulation  experim en ts described in th is  section 

were co nducted  on a 4-processor SM P S parcC en ter 1000. 
T h e LPs execute as lightw eight th read s  using th e  SO
LARIS 2.3 th read s  lib rary  and th e  processes com m unicate 
by event m essages in shared  m em ory. A n aggressive can
celation s tra teg y  was used and G V T  was ca lcu lated  using 
S am adi’s A lgorithm  [19].
6.1 Im p lem en ted  A lg o r ith m s

Following im plem en ta tions for dynam ically  ad justing  
th e  checkpoint in terval were studied:
M e th o d  1: L in’s m odel [14].
M e th o d  2: P alan isw am y’s derivation , reca lcula tion  ev

ery G V T-cycle, tim es for saving s ta te  and executing 
events m easured  across th e  com plete sim ulation  his
to ry  [16].

M e th o d  3: P alan isw am y’s m odel w ith  less frequen t re
calculations; recalcula tion  is perform ed in a new G V T  
cycle only if a m inim um  of N  new events have been 
processed since th e  last u pd a te .

M e th o d  4: R onng ren’s m odel [18].
M e th o d  5: T h e heuristic  cost function  m odel described 

in Section 4 of th is  paper.
For all an aly tica l m ethods (except M ethod  2) th e  averages 
6S and 8e were m easured  only a t th e  very beginning of 
th e  sim ulation  and assum ed as co nstan ts . T he sim ulation 
resu lts  are ob ta ined  from  following V H DL descriptions:
ALU_BEH: a rithm etic  logic un it, 6  processes.
PARMULT16: 16 b it parallel m ultip lier, 21 processes. 
ARRAYMULT: 4 b it array  m ultip lier, 53 processes.
ADDER16: 16 b it adder, 85 processes.
6.2 O verhead

As previously m entioned, all of th e  above m entioned 
algorithm s m on itor o u tp u t values of th e  Logical Processes  
a t run tim e. F urtherm ore , th e  frequency a t which dynam ic 
ad ju stm en ts  are m ade to  th e  checkpoint in terval d irectly  
im pacts  processor execution tim e overhead. B u t how sig
nificant are these co m pu ta tion a l costs? T h ere  are basi
cally two ways to  de term ine th e  influence of th e  additional 
co m p u ta tion  required. F irs t, th e  add itiona l calculations

M ethod execution 
tim e (s)

confidence
interval

estim ated
overhead

plain 131.799 130.789 132.816 0.000
M ethod  1 132.312 131.294 133.329 0.513
M ethod  2 134.375 133.357 135.393 2.576
M ethod  3 132.785 131.767 133.802 0.986
M ethod  4 132.300 131.283 133.318 0.502
M ethod  5 132.808 131.791 133.826 1.010

Table 1: Overhead

for dynam ic checkpointing can be iso lated  and th e ir exe
cu tion  tim e m easured. Second, th e  dynam ic com puta tions 
can be tu rn ed  on or off w ith  a fixed checkpoint in terval 
as th e  sim ulation  executes and th e  differences com pared. 
In  these experim en ts, th e  second a lte rn a tiv e  was used be
cause it m ore accurate ly  reflects th e  execution tim e costs 
of th e  dynam ic ad ju s tm e n t . 2 T hus, we ran  sim ulations 
using th e  (previously de term ined ) ideal s ta tic  checkpoint 
in terval. R unning th e  sim ulation  w ith ou t any m on ito r
ing (pla in  method ) gave a base tim e. T hen , we ran  the  
sam e sim ulations applying th e  various m ethods, b u t ig
noring th e  com puted  checkpoint in tervals and still using 
th e  ideal s ta tic  checkpoint in terval. T h e  ad ditiona l tim e 
tak en  by th e  ad ap tive m ethods in these runs is an estim ate  
for th e  overhead of th e  ind iv idual algorithm s. T he results 
of our experim en ts w ith  th e  exam ple ADDER16 are sum m a
rized in Table 1. T h e conclusion we draw  from  th e  resulting  
confidence in tervals is th a t  th e  overhead for all im plem en
ta tio n s  besides M ethod  2 is com parab ly  low (<  1%) and 
alm ost d isappears w ith in  th e  s ta tis tica l fluc tua tions of the  
execution tim e observed.
6.3  P erfo rm a n ce

T h e A nalysis of V ariance (ANOVA) [10] helps to  de
term ine th e  significance of th e  differences in perform ance 
for each algorithm  stud ied . T he ANOVA resu lts  for the  
PARMULT16 experim en ts (F igure 6 ) are given in Table 2. 
T hese resu lts  ind icates th a t  F -C o m p u ted  is significantly 
g rea te r th a n  F -tab le . T hus, we can m ake a decision a t a 
95% -confidence level. T h e effects (the  difference in perfor
m ance betw een th e  ind iv idual algorithm s and th e  overall 
m ean) of M ethod  2 (P alan isw am y’s) and M ethod  5 (C ost 
function) differ by alm ost five percen t. T he confidence in
tervals for th e  effects are given in th e  last two colum ns of 
T able 2. T he rem aining th ree  M ethods (1, 3, and 4) show 
sim ilar confidence intervals, i.e., ind icating  only a sm all 
perform ance difference for th is  benchm ark.

A visual depiction  of th e  m ean execution tim es and con
fidence in tervals for our benchm arks is given in Figures 
6 , 8 , 9 and 10. T he x-axis ind icates th e  M ethod  num 
ber assigned in subsection  6.1. For PARMULT16, M ethod  2 
(Palan isw am y) perform s significantly worse th a n  th e  o ther 
m odels. T his seem s to  be due to  its  am ount of overhead, 
as M ethod  3, a less expensive im plem en ta tion  of th e  sam e

2T h a t is, it m ore accurate ly  cap tu res th e  real cost of the 
overhead including, for exam ple, cache misses an d  page faults.



Sum  O f Squares P ercen tage of Var M ean Square F -C om pu ted  F-T able
SSY 1931525.8
SSO 1930336.4
SST 1189.4 100.0
SSA 418.6 35.2 104.6 14.3 2.6
SSE 770.8 64.8 7.3

M ean S tan d ard  Confidence 
P a ram ete r Effect D eviation  Interval
7i 132.4708 0.2583 131.9575 132.9841
01 -0.4191 0.5167 -1.4457 0.6076
02 3.7201 0.5167 2.6935 4.7468
03 -0.3732 0.5167 -1.3999 0.6534
04 -0.9223 0.5167 -1.9489 0.1044
05 -2.0056 0.5167 -3.0322 -0.9789

Table 2: ANOVA-Table, PARM ULT16
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algorithm , gives significantly b e tte r  speedup. T h e  new 
heuristic  algorithm  developed in Section 4 (M ethod  5) pe r
form s best in th is  experim ent.

A com parison of th e  perform ance d a ta  in F igure 6  to  the  
execution tim es ob ta ined  w ith  different s ta tic  checkpoint
ing in tervals (F igure 7) shows th a t  near op tim al speedup 
can be ob ta ined . T h e  speedup  com pared  to  th e  s ta tic  
checkpointing increases significantly if th e  op tim al period 
changes over sim ulation  tim e and differs for th e  indiv idual 
L Ps [7],

F igure 8  shows resu lts for th e  ARRAYMULT exam ple. 
As w ith  PARMULT16, M ethods 4 and 5 resu lt in th e  best 
speedup  w ith  M ethod  2 perform ing th e  w orst.

A quick exam ina tion  of th e  rem aining experim en ts (F ig
ures 9 and 10) also rep o rt good perform ance for M ethods
4 and 5 (w ith  5 perform ing m uch b e tte r  w ith  th e  sm allest 
exam ple). In  general, th e  perform ance of L in’s M ethod 
(M ethod  1) depends on th e  sim ulated  application . In  con-

Figure 7: Perform ance of adaptive and sta tic  PSS

t ra s t ,  th e  o th e r m ethods show fairly consisten t behavior for 
th e  sim ulated  exam ples. T hus, suppo rting  our belief th a t  
a continuously ad justin g  algorithm  is needed; th e  contin 
ual ad ju stm en t is useful because th e  op tim al checkpoint 
in terval changes over th e  lifetim e of th e  sim ulation  (LP 
behavior is dynam ic over th e  lifetim e of th e  sim ulation). 
T his belief m ay no t hold for different application  dom ains.
6 .4  M em o ry  U sa g e

As already m entioned, th is  analysis is focussed on the  
perform ance in te rm s of execution tim e. N evertheless, we 
have also observed th a t  th e  d istinc t algorithm s also differ 
w ith  regard  to  m em ory consum ption. T hus, we m easured 
th e  m axim um  len g th  of th e  s ta te  queue for all LPs in each 
of th e  sim ulations. T h e m axim um  s ta te  queue len g th  is 
ra th e r  a vague ind icato r of th e  m em ory consum ption  th a n
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a precise m easure, b u t it is th e  only (som ew hat m eaning
ful) m easure th a t  we can rep o rt.

F igure 11 rep resen ts th e  typ ical behavior of th e  differ
en t algorithm s w ith  respect to  m em ory usage. T h e values 
shown were ob ta ined  for th e  ADDER16 benchm ark , th ey  are 
qua lita tive ly  sim ilar for th e  o th e r benchm arks. T h e heuris
tic algorithm  from  th is  paper, M ethod  5, perform s signifi
can tly  b e tte r  th a n  any of th e  an aly tica l m ethods (M ethod  
1 - 4 ) .

7 C onclusions
In a sim ulation  w here all th e  different LPs show sim ilar 

behavior w ith  little  fluc tua tion  over sim ulation  tim e, an 
op tim al execution tim e can be reached by applying peri
odic checkpointing w ith  a fixed checkpoint interval. How
ever, in m ost cases, th e  op tim al s ta tic  checkpoint in terval 
canno t easily be determ ined  a t com pile tim e. F urtherm ore,

Figure 11: M axim um  S tate  Queue Length: ADDER16

in th e  com m on case m any LPs show different and even 
tim e-varying behavior. T hus, an ad ap tive checkpointing 
technique is essential. In  th is  p aper we com pared  several 
possible derivations for op tim al checkpointing. We found 
th a t  ad ap tive techniques are effective for speeding p a ra l
lel sim ulations w ith  V H DL descrip tion  as th e  application  
dom ain. F u rth e rm o re  we em phasized th e  need for s ta tis ti
cal analysis in order to  com pare th e  different checkpoint
ing algorithm s. O ur resu lts  ind icate , th a t  th e  co m pu ta
tiona l overhead for th e  suggested m ethods can be reduced 
to  a com parab ly  low level. B u t nevertheless, som e of the  
benchm arks reveal significant differences in th e ir resulting  
perform ance.

For th e  new heuristic  algorithm  p resen ted  in th is  pa
per, we es tim ate  th a t  th e  ad ditiona l overhead is less th a n  
one percen t. In  th e  w orst case, th e  new heuristic  ad ap 
tive m e tho d  perform s as well as th e  op tim al s ta tic  check
poin ting  m ethod . In  th e  best case (ALU_BEH), we o u tp e r

0 5 6 6
M ETH O D #



form  optim al s ta tic  checkpointing by m ore th a n  1 2 % which 
m eans a speedup  of alm ost 2 0 % over th e  sim ulation  w ith 
ou t sparse checkpointing. T h e analysis and th e  perfor
m ance resu lts  p resen ted  help decide which algorithm  to  fa
vor in an ac tua l im plem en ta tion  for th e  sake of optim izing 
th e  perform ance of th e  tim e w arp sim ulato r in th e  dom ain 
of dig ita l system  sim ulation. F u tu re  w ork is to  evaluate the  
different checkpointing m ethods on larger p la tform s and to  
em pirically com pare th em  to  increm en ta l s ta te  saving in 
our application  dom ain. Also a m ore detailed  investiga
tion  w ith  regard  to  m em ory consum ption  of th e  different 
algorithm s is necessary.

R eferences
[1] A s t r o m , K. J ., a n d  W i t t e n m a r k , B . A daptive  

Control. A d d is o n  W esley , R e a d in g ,  M A , 1989.
[2] B a u e r , H ., AND S p o r r e r , C. R educing rollback 

overhead in tim e-w arp  based d is trib u ted  sim ulation 
w ith  optim ized increm en ta l s ta te  saving. In  Proc. of  
the 26th A n n u a l  S im ula tion  Sym p o s iu m  (A pril 1993), 
Society for C o m p u ter Sim ulation, pp. 12-20.

[3] B a u e r , H ., S p o r r e r , C ., a n d  K r o d e l , T . H. 
O n d is trib u ted  logic sim ulation  using tim e w arp. In 
V L S I  91 (Edinburgh , Scotland, A ugust 1991), A. Ha- 
laas and P. B . Denyer, Eds., IF IP  T C  10 /W G  10.5, 
pp. 127-136.

[4] B E L L E N O T , S. S ta te  skipping perform ance w ith  the  
tim e w arp opera ting  system . In 6th Workshop on P a r 
allel and Distr ibuted S im ula tion  (Ja n u ary  1992), So
ciety for C om pu ter S im ulation, pp. 53-61.

[5] CAIANIELLO, E. R . Functional A na lys is  and Opti
mization.  A cadem ic Press, New York, 1966.

[6] C l e a r y , J ., G o m e s , F ., U n g e r , B . ,  Z h o n g e , X .,  
AND T h u d t , R. C ost of s ta te  saving & rollback. 
In Proc. o f  the 8th Workshop on Parallel and D is
tributed S im ula tion  (P A D S )  (Ju ly  1994), Society for 
C o m p u ter Sim ulation, pp. 94-101.

[7] FLEISC H M A N N , J. P a ram ete r  regula tion  in optim istic 
parallel sim ulation. D ip lom arbeit, Technische Univer- 
s ita t M iinchen, D ecem ber 1994.

[8 ] F U JIM O T O , R . Paralle l d iscrete event sim ulation. 
Com m unica tions  o f  the A C M  33, 10 (O cto ber 1990), 
30-53.

[9] F u j i m o t o , R. M ., T s a i , J ., a n d  G o p a l a k r i s h n a n , 
G . C. Design and evaluation  of th e  rollback chip: 
Special purpose hardw are  for tim e w arp . I E E E  Trans
actions on Computers 41, 1 (Ja n u ary  1992), 68-82.

[10] J a in ,  R . The A r t  o f  C om puter  Sy s tem s  P erformance  
Analysis .  John  W iley & Sons, Inc., New York, 1991.

[11] JE F F E R S O N , D. V irtu a l tim e. A C M  Transactions  
on Programming Languages and Sys tem s  7, 3 (Ju ly  
1985), 405-425.

[12] K a n t , K . In troduc tion  to C om puter  S y s tem  P er for
mance Evaluation.  M cG raw-Hill, Inc., 1992.

[13] L i n , Y .-B ., a n d  L a z o w s k a , E. D. T h e op ti
m al checkpoint in terval in tim e w arp parallel sim ula
tion . Tech. Rep. 89-09-04, D epartm en t of C om pu ter 
Science and Engineering, U niversity  of W ashington, 
Seattle , W ashington , Sep tem ber 1989.

[14] L i n , Y .-B ., P r e i s s , B. R ., L o u c k s , W . M ., a n d  
L a z o w s k a , E. D. Selecting th e  checkpoint in terval 
in tim e w arp sim ulation. In  Proc o f  the 7th Workshop  
on Parallel and Distr ibuted S im ula tion  (P A D S )  (Ju ly
1993), Society for C o m p u ter Sim ulation, pp. 3-10.

[15] P a l a n i s w a m y , A ., a n d  W i l s e y , P .  A. A d ap
tive checkpoint in tervals in an optim istically  synchro
nized parallel d ig ita l system  sim ulator. In  VLSL 93 
(S ep tem ber 1993), pp. 353-362.

[16] P a l a n i s w a m y , A ., a n d  W i l s e y , P .  A. A n analy tica l 
com parison of periodic checkpointing and increm enta l 
s ta te  saving. In  Proc. o f  the 7th Workshop on P a r
allel and Distr ibuted S im ula tion  (P A D S )  (Ju ly  1993), 
Society for C om pu ter Sim ulation, pp. 127-134.

[17] P e r r y , D. L . VHDL,  2nd ed. M cG raw -H ill, New 
York, NY, 1994.

[18] RO NNGREN, R . ,  AND A y a n i , R .  A d a p t iv e  c h e c k p o in t 
in g  in  t im e  w a rp .  In  Proc. o f  the 8th Workshop on 
Parallel and Distr ibuted S im ula tion  (P A D S  94)  (Ju ly
1994), Society for C om pu ter Sim ulation, pp. 110-117.

[19] SAMADI, B. Distr ibuted S im ula tion ,  A lgori thm s and  
Perform ance Analysis .  P hD  thesis, C o m p u ter Sci
ence D epartm en t, U niversity  of C alifornia, Los A nge
les, CA, 1985.


