This paper appeared in the Proceedings of the 9th Workshop on Parallel and Distributed Simulation, PADS-1995.

© 1995, IEEE. Personal use of this material is permitted. However, permission to reprint or republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained

from the IEEE.

Comparative Analysis of Periodic State Saving Techniques in Time
Warp Simulators®

Josef Fleischmann

Institute of Electronic Design Automation

Technical University of Munich
D-80290 Munich, Germany

jsf@regent.e-technik.tu-muenchen.de

Abstract

Checkpointing in a time warp synchronized parallel sim-
ulator is a necessary and potentially expensive operation.
In the simple case, a time warp simulator checkpoints ev-
ery Y events, for some fixed value x. For larger values of
X, the simulator requires less overhead for saving the state,
but tncurs an increased latency during rollback. Thus, the
problem is to balance the time to save states against the
time to coast forward upon rollback. Unfortunately, a static
determination of a optimal value for y is very difficult and
can vary widely, even between closely related instances of
a time warp simulator. Furthermore, the optimal check-
point interval may actually vary over the lifetime of the
stmulation.

To address these problems, several investigators have
proposed dynamically adjusting the checkpoint interval x as
the simulation progresses. This paper analyzes three previ-
ous techniques for dynamically sizing checkpoint intervals
and presents a new, heuristic algorithm for this purpose.
All four techniques are tmplemented in a common appli-
cation domain (digital system simulation from VHDL de-
scriptions) and a direct comparison between the algorithms
18 performed. The results show a significant difference in
the performance of the implemented algorithms. However,
i virtually all cases, the dynamic algorithms performed
near or better than the best static value. Furthermore, the
best algorithms performed as much as 12% better than the
best static value.

1 Introduction

The time warp mechanism, because of its relaxed syn-
chronization criteria, is an appealing technique for control-
ling parallel discrete event driven simulators. Time warp
parallel simulators trade the overhead of enforcing strict
time-ordered event processing for the overhead of recovery
from out-of-order event processing [8, 11]. Thus, instead
of forcing time-ordered event processing, time warp relaxes
the synchronization scheme so that out-of-order event pro-
cessing is possible (although in the desirable case, infre-

*This work was partially supported by the Advanced Re-
search Projects Agency and monitored by the Department of
Justice under contract number J-FBI-93-116.

Philip A. Wilsey
Center for Digital Systems Engineering
Dept of ECECS, PO Box 210030
Cincinnati, Ohio 45221-0030
phil.wilseyQuc.edu

quent). The chief overheads in time warp needed to al-
low recovery from out-of-order event processing are the
(i) processing time for saving state and event information,
(ii) memory space for the saved event and state informa-
tion, (iii) processing time for computing a global minimum
time of the simulation (the so-called Global Virtual Time,
GVT), and (iv) the cost of reclaiming old memory con-
sumed by saving state and event information (i.e., fossil
collection).

The benefits of the time warp approach is that it can
potentially uncover higher degrees of parallelism in the sys-
tem being simulated. This may lead to a speedup even if a
certain amount of the “lookahead” computation is wasted
due to rollbacks (recovering from out-of-order event pro-
cessing). On the other hand, one obvious drawback of time
warp lies in the extra overhead. One of the most signifi-
cant costs in supporting rollback is the cost of state saving
and state restoration. Several suggestions have been made
to reduce this overhead. In particular, the solutions can
be broadly classified into the following three categories:
hardware accelerators [9], saving only incremental changes
in the state (called incremental state savings) [3, 2], and
reducing the frequency of state saving called periodic check-
pointing [4, 13]. While the hardware solution can produce
dramatic performance improvements, the requirement of
extra hardware for simulation is not always acceptable.
The two software solutions can be more broadly applied.
In applications where a large fraction of the process state
is modified with every simulation step, incremental state
saving is less promising than periodic checkpointing [6, 16].
However, the latter solution requires the establishment of
a value for the number of events to be processed between
state saves (this value is called the checkpoint interval).

In general, establishing a static value for the check-
point interval that produces optimal performance is dif-
ficult [15]. Furthermore, for many applications, the op-
timal value for the checkpoint interval is likely to vary
over the lifetime of the simulation [7]. In fact, several re-
searchers have proposed distinct solutions for dynamically
(during the simulation execution) determining an operat-
ing checkpoint interval [14, 16, 18]. This paper presents
a comparative analysis of four approaches to dynamically

straggler message save state

Mol
LJI
coast_forward rollback
length: ¢ length: r

Figure L Rollback and Coasting Forward (\ = 4)

adjusting the checkpoint interval. In particular, three pre-
viously developed approaches that derive their checkpoint
interval adjustment strategy from analytical models are
compared with a heuristic method developed in this paper.
The results indicate that in one instance of a time warp
simulator (simulations formed from descriptions written in
the hardware description language VHDL ‘17]), significant
speedup can be obtained using dynamically adjusted Be-
riodic checkpomtmg. However, significant differences be-
tween the effectiveness of the algorithms compared were
observed, with the heuristic method performing best.

The remainder of this paper is organized as follows.
Section 2 briefly reviews the basic tradeoffs in determining
the optimal checkpoint interval. Section 3 reviews previ-
ous work to dynamically establish an oPerating checkﬁoint
interval. A new heuristic algorithm for dynamic check-
pointing is presented in Section 4. Section 5 introduces
the method used to analyze the performance results. Em-
pirical results comparing the relative performance of each
Implemented algorithm are shown in Section 6. Finally,
Section 7 contains some concluding remarks.

2 Optimizing the Checkpoint Interval

In general, distinct LPs within a specific application to
be simulated show different characteristics regarding roll-
back frequency, state size, and granularity of events to be
executed. Furthermore this behavior ma%/ change over the
lifetime of the simulation. Because of this disparate and
dynamic nature of LPs, it is difficult to establish a fixed
value for the optimal checkpoint interval that produces
optimal Ferformance. A reasonable alternative to stat-
ically de inin? the checkpoint interval is to dynamically
(during simulation) adjust the period for each individual
LP. Of course, the dynamic frequency for which this cal-
culation need occur may vary significantly based on the
tlme-va[{vmg behavior of the application. Likewise, the
overhead of the method through which the checkpoint in-
terval is dynamically established may influence the utility
of recalculation.

The cost of checkpointing must be balanced against the
frequency of rollback and the cost of reprocessing events
without Intervening checkpoints. For example, Figure 1il-
lustrates a process rolling back upon receipt of a straggler

message. The circles denote events, the filled boxes denote
the action of saving the process state. Since checkFomt-
ing does not occur after every processed event, a rollback
may have to reexecute several intermediate events before
actually processing the straggler event. This reexecution is
called the coastforward phase. Thus, the value of the time-
optimal checkpoint interval reflects a tradeoff between two
costs which adversely affect the performance of an LP. In
particular:

* Increasing the checkpointing interval reduces the
overall time consumed by the state saving routine and
the memory space used by the state coples.

* Increasing the checkpoint interval results in an in-
crease in the average number of events reexecuted
during the coast forward phase. This stems from the
fact that the average length of coasting forward ¢ is
proportional to the checkpoint interval.

In our application domain, time is a more valuable resource
than space. Hence, we concentrate on minimizing the ex-
ecution time. However, there is a similar tradeoff for a
space-optimal checkpoint interval. And a complete disre-
gard for space costs is also not feasible. More precisely,
while sparse checkpointing reduces the amount of memory
allocated for state copies, a side effect of large checkpoint
intervals is a corresponding increase in the size of the in-
put event queue. The larger the checkpoint interval, the
more input events have to be maintained in order to re-
construct intermediate states. This means that, even if
a process shows no rollbacks, the checkpoint interval can-
not be set to infinity because of space consumption by the
input queue.

3 Adaptive Checkpointing Algorithms

There have been a variety of approaches to dynami-
cally adjusting the checkpoint interval. As with any con-
trol system, dynamically adjusting the simulator’s control
parameters requires that several output values be moni-
tored Ll]. While the particular output values monitored
by each method vary, several of them are shared, such as
the average time to save the process state (8S), the average
time to execute one event (se) and the number of rollbacks.
All of the adaptive approaches measure characteristic data
for each individual process during a certain period of time,
and then recalculate the optimal checkpoint interval. This
period hetween recalculations of the checkpoint interval is
referred to as the observation cycle.

In the next few subsections, three particular techniques
for dynamically adjusting the checkpoint interval are ex-
amined [14, 16, 18(. Each of these approaches derives an
analytical model of the time warp simulator and uses the
model to derive a formula for dYnamicaIIy establishin% val-
ues for the checkpoint interval. Unfortunately each ap-
proach results in a fairly complex formula that may re-
quire significant processing time for evaluation and data
capture. Consequently, in addition to the previously devel-

oped methods, a heuristic algorithm for dynamically cal-
culating checkpoint intervals is presented in Section 4.

3.1 Lin’s Model

Lin et al [14] derive a sophisticated analytical model
for establishing upper and lower bounds on the optimal
checkpoint interval. This work extends an earlier model
that was developed by Lin and Lazowska in 1989 [13]. Es-
sentially, the derivation establishes an accurate upper and
lower bound for the execution time overhead that check-
pointing imposes on an LP. The optimal checkpointing
period is thus found according to these two bounds. For-
mally, the lower (x~) and upper (xT) bounds are:

|
>
>

s

X~ = “(@—1) | <x< T

= (a+1) | =x".
66

In this formula, & denotes the average number of process
executions between two subsequent rollbacks, excluding
events being coasted forward.

Based on empirical studies the authors suggest choosing
the upper bound y% as the checkpoint interval. Further-
more, in order to avoid too many potentially expensive
recalculations, the optimal interval size is adjusted only
until the simulation reaches a “steady state.” In several ex-
periments, the authors find that the regulating algorithm
terminates after only a few recalculations.

3.2 Palaniswamy’s Derivation

Palaniswamy [15, 16] begins with a model similar to
Lin’s [13]. Palaniswamy estimates the cost of a rollback
due to periodic state saving. That is, assuming that a large
number of events are committed, he models the average
overhead involved during a given time interval. Minimizing
this overhead function leads to the following expression for
calculating the optimal value xop::

bs (N
opt = 2— | — —1 . 1
Xert ¢6e(kr+7))
where the variables N, &k, and v are the following output
values that must be metered:

e N: number of committed events,
e k,: numger of rollbacks, and

e ~: mean value of the rollback length.

This approach relies on the observation of committed
events and thus it is dependent on updates to GVT cal-
culations (because events are committed only when GVT
advances). Thus, the frequency of updating the check-
point interval in this algorithm cannot be higher than the
frequency of GV'T computations.

3.3 Ronngren’s Approach
Ronngren [18] attempts to minimize the overhead in-
volved in processing R.;. events, where Rops is the total

number of events executed minus the events executed dur-
ing the coasting forward phase. The algorithm is computed
as follows. If &, is the number of rollbacks that occur dur-
ing an observation period, then the optimal checkpoint
interval is computed as:

65 Robs
Xopt = 25 kr ‘ (2)

If the event execution time during the coasting forward
phase, 6., is approximately equal to the normal event ex-
ecution time, é., then we can rewrite Equation 2. More
precisely, consider the fact that the number of process ex-
ecutions Rops equals the number of committed events N
plus the number of events undone due to rollbacks:

Rope = N + k. (3)

Then Equation 2 transforms into

AL (N +) (4)
Xopt = 5. \ %, Y .
This result is only marginally different from Palaniswamy’s
solution, Equation 1, and leads to a slightly larger check-
point interval.

4 Deriving a Simple Heuristic

As previously discussed, the analytically based algo-
rithms for sizing checkpoint intervals have resulted in for-
mula that are costly to evaluate and monitor. In this sec-
tion we present a simple and easy to implement method for
dynamically sizing checkpoint intervals. This is a heuris-
tic and it has been developed after extensive profiling and
analysis of the operation of a locally developed digital sys-
tem parallel simulator. Some of this analysis is shown
below. Unfortunately space limitations prevent a more
detailed discussion; interested readers should see [7] for
additional details. The heuristic algorithm pursues a reg-
ulating mechanism similar to the method of supervisory
controlin control theory [5].

4.1 The Overhead of State Saving

The time warp optimization of Periodic State Saving
(PSS) attempts to balance two types of overhead. That
is, to be effective, PSS must balance the time spent saving
state against time spent coasting forward. More precisely:

Saving States: Periodic State Saving significantly re-
duces the amount of time lost on this operation. The
observed costs for saving state decrease monotonically
with the checkpoint interval (Figure 2).

Coasting Forward: Reexecuting intermediate events
between the last saved state before the rollback point
and the straggler message causing the rollback con-
sumes processor time. This computational costs in-
crease monotonically with the period of checkpointing
(Figure 3).

overhead due to state saving. ALU_STR, proc# 10
T

40 E T T T T T T
35- b
o
£
£
g30- .
Bost i
2
£ o
o
S 20 E 1
[
2
o 8
o215+ 1
5 8
he
©10F é 1
<
o
3 LI
5+ e o g
SEEgs 8
PP 8868888
0 2 4 6 8 10 12 14 16 18 20

checkpoint interval

Figure 2: State saving costs vs. period

overhead due to coasting forward. ALU_STR, proc# 10
100 T T T T T T T

Q
90 o 1
2 o o8
£ 80F © g 2 ¢
g FEEE
o
T = [N
§ & o © g 88 8
8 o
E 60L g 5] g8 o ©]
5 o 9 g g 5 ©
= [s} o 9 o]
5] L o © 4
g % 6 8 g o
2 o o 8 8 o
g 8
8 40r o g 1
2 g€ %o
= (s}
3 30t © g e o i
o o o
8 g LI
§ 20 g B
[}
10+) é B]
0 a L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

checkpoint interval

Figure 3: Coasting forward costs vs. period

Figures 2 and 3 show the costs for state saving C'ss and
coasting forward Ccr in terms of cpu time. The sum of
these costs gives the value E. of our cost function for pe-
riodic state saving:

FE.=Css+ Cerp. (5)

In Figure 4 a typical behavior of the filtered' cost func-
tion with respect to the checkpoint interval is shown. The
checkpoint interval is to be chosen in a way that the over-
head is minimized. In our example the minimum of the
cost function clearly indicates the optimal period y = 4.

1Where necessary, measured data is filtered using low-pass
filtering techniques in order to reduce statistical noise. In par-
ticular, throughout the experiments described in the remainder
of this paper, first order IIR filters with coefficients ag = .4 and
a1 = .6 have been used.

Total Overhead due to PSS, ALU_STR, proc#10
T

N o @ ~ @
o =) = =] =3
T T T T T
I I I I I

Cost function

w
=3
T
I

20 b

0 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

checkpoint interval

Figure 4: Evaluating the cost function

4.2 Regulating Algorithm

The goal is to find the location of the minimum and to
adjust the checkpoint interval correspondingly. According
to the empirical results obtained from a variety of bench-
marks we based the adjusting algorithm on the following
assumptions:

1. The cost function is monotonously increasing for
checkpoint intervals larger than the optimal period,
except for a process without any rollbacks.

2. The cost function shows a minimum. The location of
this minimum indicates the optimum checkpoint in-
terval. The optimal checkpoint interval may be equal
to or greater than one (yope > 1).

We recalculate the period after every N events exe-
cuted. In [18] guidelines are given for choosing N. (In
our experiments we used N = 100 events.) Initially a
checkpoint interval of one is used (Xinitiaz = 1). In the
successive observation intervals (intervals over which the
cost function F. is reevaluated) the checkpoint interval
is incremented by one if F. (as measured during the last
observation interval) did not significantly increase. If the
costs in the current observation cycle become greater than
in previous cycles, we change our “adaptation direction”
and decrement (by one) the checkpoint interval.

To prevent our resulting period from oscillating we use
an appropriate threshold before adjusting the checkpoint
interval. Furthermore, if the process shows no rollbacks
(over its complete history), the checkpoint interval is set
t0 XYmaz- (In accordance with empirical observations we
use Ymaz = 30.) The ability to adapt is maintained, as
an old value of the cost function is stored and periodically
compared to the current value. If the system behavior
changes over time, the checkpoint interval changes as well.
Despite its simplicity, the performance results in Section

Histogramm: 50 repetitions of one simulation run
T T T

@ =) N
T T T
L L L

)
T
L

of samples within interval

| H [] [ﬂ

| I I
5P20 125 130 135 140 145 150
execution time in seconds

Figure 5: Distribution of execution times

6 show that this is an efficient technique for dynamically
sizing checkpoint intervals.

5 Analyzing Performance Data

Before reporting the results of our comparative analy-
sis, we first address the problem of analyzing simulation
performance figures to obtain verifiable results. Perfor-
mance analysis is a nontrivial task, and it is difficult to
characterize the performance of a simulation in any spe-
cific configuration as a single number. In general, repeating
a simulation several times gives different results. We often
see varying results in terms of execution time, number of
rollbacks, and number of simulation cycles. In the follow-
ing subsections, we detail the analysis process followed in
this investigation. This analysis draws heavily from the
discussions found in [10, 12].

5.1 Distribution of Performance Data

Figure 5 depicts the distribution of the execution times
of 50 simulation runs for an identical configuration and
environment. We would assume the data to be normally
distributed. While the histogram undoubtedly bears some
resemblance to a normal distribution, this observation can
only be derived by discarding some of the outlying samples
at the upper end of the range. Thus, in our analysis these
samples are treated as outliers, since they are far away from
the majority of the other observation points. The reason
for this abnormally “slow” simulation runs may either be
found in the non-deterministic nature of Time Warp or
in the nature of our implementation, where every LP is
implemented as a lightweight process (LWP) on an SMP
(symmetric multiprocessor) SUN SparcCenter 1000 work-
station.

Because of resource constraints, it is not possible to per-
form a sufficiently high number of simulation repetitions to
prevent these outliers from disturbing the mean value and
variance of the performance data. Therefore, such obvious

outliers will be discarded in the analysis of Section 6.

5.2 Confidence Intervals

Comparing two sets of identically configured simulation
runs, where each set consists of N, repetitions the follow-
ing observation is made: These two sets differ both in their
mean value and in their variance. Thus, the fundamental
concept of confidence intervals has to be taken into ac-
count. From a limited number of samples we can estimate
the actual mean value p only at a certain confidence level.
Formally we write:

Prob(ci < p<e2)=1—a. (6)

where the interval [c1, c2] is called the confidence interval
with respect to a confidence level of 100(1 — a)%. Thus, «
is called the level of significance. The confidence intervals
depicted in Section 6 are obtained using a normal proba-
bility distribution.

5.3 One Factor Analysis

One Factor Analysisis a method suitable for compar-
ing “several alternatives of a single categorical variable”
[10]. In our case the categorical variable is the type of
the algorithm used for computing and eventually adjust-
ing the checkpoint interval. The following section gives a
short description of this statistical method. More detailed
information may be found in [7, 10].

Regression Modeling

In a single factor design we model the actual value of the
obtained data point y;; as follows:

Yij =k +ayt+ei (7)
where yi; is the 1** measured data point using algorithm
7. It can be split into a sum of the mean response pu, the
effect of the specific algorithm «;, and the statistical error
€.

Performance data is measured by running r repeated
simulations for all a different algorithms. Applying our
model equation (7) gives a set of ar equations and leads
to:

u=al—TZZyw~ (8)

i=1 j=1
Thus, p is the grand mean of all samples. The difference

between the mean value y; of a specific alternative j and
the grand mean are described by the effect a; :

1 r
— s = Y5 = . 9
T§_1yj y=p+ o (9)

Analysis of Variance

The total variation we can observe in the measured sam-
ple can be attributed to both the effects a; of the differ-
ent algorithms and the statistical errors. In a One-Factor-

Analysis this variation is calculated as a squared sum of
errors (SSE) and of the effects (SSA), which sums to the
total variation observed (SST).

An F-test can be computed on the ratio of the mean
square of errors and the effects. The resulting F-value (F-
computed) is to be compared to the (1 — «)-quantile of the
F-variate (F-table). This helps decide whether one algo-
rithm performs significantly better or worse than another.
If F-computed is greater than F-table, then a decision is
possible at a given confidence level (1 —).

6 Experiments and Results

The simulation experiments described in this section
were conducted on a 4-processor SMP SparcCenter 1000.
The LPs execute as lightweight threads using the SO-
LARIS 2.3 threads library and the processes communicate
by event messages in shared memory. An aggressive can-
celation strategy was used and GVT was calculated using
Samadi’s Algorithm [19].

6.1 Implemented Algorithms
Following implementations for dynamically adjusting
the checkpoint interval were studied:

Method 1: Lin’s model [14].

Method 2: Palaniswamy’s derivation, recalculation ev-
ery GVT-cycle, times for saving state and executing
events measured across the complete simulation his-
tory [16].

Method 3: Palaniswamy’s model with less frequent re-
calculations; recalculation is performed in a new GVT
cycle only if a minimum of N new events have been
processed since the last update.

Method 4: Ronngren’s model [18].

Method 5: The heuristic cost function model described
in Section 4 of this paper.

For all analytical methods (except Method 2) the averages
6. and é. were measured only at the very beginning of
the simulation and assumed as constants. The simulation
results are obtained from following VHDL descriptions:

ALUBEH: arithmetic logic unit, 6 processes.
PARMULT16: 16 bit parallel multiplier, 21 processes.
ARRAYMULT: 4 bit array multiplier, 53 processes.
ADDER16: 16 bit adder, 85 processes.

6.2 Overhead

As previously mentioned, all of the above mentioned
algorithms monitor output values of the Logical Processes
at runtime. Furthermore, the frequency at which dynamic
adjustments are made to the checkpoint interval directly
impacts processor execution time overhead. But how sig-
nificant are these computational costs? There are basi-
cally two ways to determine the influence of the additional
computation required. First, the additional calculations

Method execution | confidence estimated

time (s) interval overhead
plain 131.799 130.789 132.816 0.000
Method 1 132.312 131.294 133.329 0.513
Method 2 134.375 133.357 135.393 2.576
Method 3 132.785 131.767 133.802 0.986
Method 4 132.300 131.283 133.318 0.502
Method 5 132.808 131.791 133.826 1.010

Table 1: Overhead

for dynamic checkpointing can be isolated and their exe-
cution time measured. Second, the dynamic computations
can be turned on or off with a fixed checkpoint interval
as the simulation executes and the differences compared.
In these experiments, the second alternative was used be-
cause it more accurately reflects the execution time costs
of the dynamic adjustment.? Thus, we ran simulations
using the (previously determined) ideal static checkpoint
interval. Running the simulation without any monitor-
ing (plain method) gave a base time. Then, we ran the
same simulations applying the various methods, but ig-
noring the computed checkpoint intervals and still using
the ideal static checkpoint interval. The additional time
taken by the adaptive methods in these runs is an estimate
for the overhead of the individual algorithms. The results
of our experiments with the example ADDER16 are summa-
rized in Table 1. The conclusion we draw from the resulting
confidence intervals is that the overhead for all implemen-
tations besides Method 2 is comparably low (< 1%) and
almost disappears within the statistical fluctuations of the
execution time observed.

6.3 Performance
The Analysis of Variance (ANOVA) [10] helps to de-

termine the significance of the differences in performance
for each algorithm studied. The ANOVA results for the
PARMULT16 experiments (Figure 6) are given in Table 2.
These results indicates that F-Computed is significantly
greater than F-table. Thus, we can make a decision at a
95%-confidence level. The effects (the difference in perfor-
mance between the individual algorithms and the overall
mean) of Method 2 (Palaniswamy’s) and Method 5 (Cost
function) differ by almost five percent. The confidence in-
tervals for the effects are given in the last two columns of
Table 2. The remaining three Methods (1, 3, and 4) show
similar confidence intervals, i.e., indicating only a small
performance difference for this benchmark.

A visual depiction of the mean execution times and con-
fidence intervals for our benchmarks is given in Figures
6, 8, 9 and 10. The x-axis indicates the Method num-
ber assigned in subsection 6.1. For PARMULT16, Method 2
(Palaniswamy) performs significantly worse than the other
models. This seems to be due to its amount of overhead,
as Method 3, a less expensive implementation of the same

2That is, it more accurately captures the real cost of the
overhead including, for example, cache misses and page faults.

Sum Of Squares Percentage of Var Mean Square F-Computed F-Table
SSY 1931525.8
SS0 1930336.4
SST 1189.4 100.0
SSA 418.6 35.2 104.6 14.3 2.6
SSE 770.8 64.8 7.3
Mean Standard Confidence
Parameter Effect Deviation Interval
o 132.4708 0.2583 131.9575 132.9841
01 -0.4191 0.5167 -1.4457 0.6076
02 3.7201 0.5167 2.6935 4.7468
03 -0.3732 0.5167 -1.3999 0.6534
04 -0.9223 0.5167 -1.9489 0.1044
05 -2.0056 0.5167 -3.0322 -0.9789

Table 2: ANOVA-Table, PARMULT16

MEAN AND CONFIDENCE
137 T

136 B

134 B

133 B

132

131 - [B

EXECUTION TIME (s)

129 L L L L L
3
METHOD #

Figure 6: Comparison of the Methods: PARMULT16

algorithm, gives significantly better speedup. The new
heuristic algorithm developed in Section 4 (Method 5) per-
forms best in this experiment.

A comparison of the performance data in Figure 6 to the
execution times obtained with different static checkpoint-
ing intervals (Figure 7) shows that near optimal speedup
can be obtained. The speedup compared to the static
checkpointing increases significantly if the optimal period
changes over simulation time and differs for the individual
LPs [7].

Figure 8 shows results for the ARRAYMULT example.
As with PARMULT16, Methods 4 and 5 result in the best
speedup with Method 2 performing the worst.

A quick examination of the remaining experiments (Fig-
ures 9 and 10) also report good performance for Methods
4 and 5 (with 5 performing much better with the smallest
example). In general, the performance of Lin’s Method
(Method 1) depends on the simulated application. In con-

PERIODIC STATE SAVING: PARMULT16
150 T T T T

METHQOD 2

METHO

w
o
T

|

|

I

|

|

|

|

i

Il

|

|

|

|

"' METHOQ|

EXECUTION TIME (s)
2 2 8 B
o o o o

[=]
<]
T
I

I I I I
3 4 5 6 7
CHECKPOINT INTERVAL

o
(=]

[=)
N

Figure 7: Performance of adaptive and static PSS

trast, the other methods show fairly consistent behavior for
the simulated examples. Thus, supporting our belief that
a continuously adjusting algorithm is needed; the contin-
ual adjustment is useful because the optimal checkpoint
interval changes over the lifetime of the simulation (LP
behavior is dynamic over the lifetime of the simulation).
This belief may not hold for different application domains.

6.4 Memory Usage

As already mentioned, this analysis is focussed on the
performance in terms of execution time. Nevertheless, we
have also observed that the distinct algorithms also differ
with regard to memory consumption. Thus, we measured
the maximum length of the state queue for all L.Ps in each
of the simulations. The maximum state queue length is
rather a vague indicator of the memory consumption than

MEAN AND CONFIDENCE
136 T T T

135 J ,

134 F 3

133 B

EXECUTION TIME (s)

132 [B

130 L L L L L
0 3
METHOD #

Figure 8: Comparison of the Methods: ARRAYMULT

MEAN AND CONFIDENCE
l T

170 B

172

166

——

164 | B

——

EXECUTION TIME (s)

160 B
158 B

156 %

154 L L L L
3
METHOD #

o e

Figure 9: Comparison of the Methods: ADDER16

a precise measure, but it is the only (somewhat meaning-
ful) measure that we can report.

Figure 11 represents the typical behavior of the differ-
ent algorithms with respect to memory usage. The values
shown were obtained for the ADDER16 benchmark, they are
qualitatively similar for the other benchmarks. The heuris-
tic algorithm from this paper, Method 5, performs signifi-
cantly better than any of the analytical methods (Method
1-4).

7 Conclusions

In a simulation where all the different LPs show similar
behavior with little fluctuation over simulation time, an
optimal execution time can be reached by applying peri-
odic checkpointing with a fixed checkpoint interval. How-
ever, in most cases, the optimal static checkpoint interval
cannot easily be determined at compile time. Furthermore,

MEAN AND CONFIDENCE

175 T T T T
1
T
170 - R
5 - T
I e Py
T
165 - g
z
w
= 160 - B
5
=z
Q
5
3 155 R
w
<
w
150 - g
145 - |
I
I
140
0 1 3 5 6
METHOD #

Figure 10: Comparison of the Methods: ALU_BEH

65

60 - [i
55 |- J]

50 B

40+ ,

35 - B

30 - B

MAX STATE QUEUE LENGTH

25 - B

. [

10 L L L L L
3
METHOD #

Figure 11: Maximum State Queue Length: ADDER16

in the common case many LPs show different and even
time-varying behavior. Thus, an adaptive checkpointing
technique is essential. In this paper we compared several
possible derivations for optimal checkpointing. We found
that adaptive techniques are effective for speeding paral-
lel simulations with VHDL description as the application
domain. Furthermore we emphasized the need for statisti-
cal analysis in order to compare the different checkpoint-
ing algorithms. Our results indicate, that the computa-
tional overhead for the suggested methods can be reduced
to a comparably low level. But nevertheless, some of the
benchmarks reveal significant differences in their resulting
performance.

For the new heuristic algorithm presented in this pa-
per, we estimate that the additional overhead is less than
one percent. In the worst case, the new heuristic adap-
tive method performs as well as the optimal static check-
pointing method. In the best case (ALUBEH), we outper-

form optimal static checkpointing by more than 12% which
means a speedup of almost 20% over the simulation with-
out sparse checkpointing. The analysis and the perfor-
mance results presented help decide which algorithm to fa-
vor in an actual implementation for the sake of optimizing
the performance of the time warp simulator in the domain
of digital system simulation. Future work is to evaluate the
different checkpointing methods on larger platforms and to
empirically compare them to incremental state saving in
our application domain. Also a more detailed investiga-
tion with regard to memory consumption of the different
algorithms is necessary.

References

[1] AsTrRoM, K. J., AND WITTENMARK, B. Adaptive
Control. Addison Wesley, Reading, MA, 1989.

[2] BAUER, H., AND SPORRER, C. Reducing rollback
overhead in time-warp based distributed simulation
with optimized incremental state saving. In Proc. of
the 26th Annual Simulation Symposium (April 1993),
Society for Computer Simulation, pp. 12-20.

[3] BAUER, H., SPORRER, C., aND KRrRoODEL, T. H.
On distributed logic simulation using time warp. In
VLSI 91 (Edinburgh, Scotland, August 1991), A. Ha-
laas and P. B. Denyer, Eds., IFIP TC 10/WG 10.5,
pp. 127-136.

[4] BELLENOT, S. State skipping performance with the
time warp operating system. In 6th Workshop on Par-
allel and Distributed Simulation (January 1992), So-
ciety for Computer Simulation, pp. 53-61.

[5] CalaNIELLO, E. R. Functional Analysis and Opti-
mezation. Academic Press, New York, 1966.

[6] CLEARY, J., GoMmEs, F., UNGER, B., ZHONGE, X.,
AND THUDT, R. Cost of state saving & rollback.
In Proc. of the 8th Workshop on Parallel and Dis-
tributed Simulation (PADS) (July 1994), Society for
Computer Simulation, pp. 94-101.

[7] FLEISCHMANN, J. Parameter regulation in optimistic
parallel simulation. Diplomarbeit, Technische Univer-
sitat Minchen, December 1994.

[8] FusimoTo, R. Parallel discrete event simulation.
Communications of the ACM 33, 10 (October 1990),
30-53.

[9] FusimoTo, R. M., Tsal, J., AND GOPALAKRISHNAN,
G. C. Design and evaluation of the rollback chip:
Special purpose hardware for time warp. ITEFE Trans-
actions on Computers 41, 1 (January 1992), 68-82.

[10] JaIN, R. The Art of Computer Systems Performance
Analysis. John Wiley & Sons, Inc., New York, 1991.

[11] JEFFERSON, D. Virtual time. ACM Transactions
on Programming Languages and Systems 7, 3 (July
1985), 405-425.

[12] KanT, K. Introduction to Computer System Perfor-
mance Bvaluation. McGraw-Hill, Inc., 1992.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

LiN, Y.-B., anp Lazowska, E. D. The opti-
mal checkpoint interval in time warp parallel simula-
tion. Tech. Rep. 89-09-04, Department of Computer
Science and Engineering, University of Washington,
Seattle, Washington, September 1989.

LiN, Y.-B., Preiss, B. R., Loucks, W. M., AND
LazowskA, E. D. Selecting the checkpoint interval
in time warp simulation. In Proc of the 7th Workshop
on Parallel and Distributed Simulation (PADS) (July
1993), Society for Computer Simulation, pp. 3-10.

Pavaniswamy, A., AND WiLsey, P. A. Adap-
tive checkpoint intervals in an optimistically synchro-
nized parallel digital system simulator. In VLSI 93
(September 1993), pp. 353-362.

Pavaniswamy, A., AND WILSEY, P. A. An analytical
comparison of periodic checkpointing and incremental
state saving. In Proc. of the 7th Workshop on Par-
allel and Distributed Simulation (PADS) (July 1993),
Society for Computer Simulation, pp. 127-134.

PErrY, D. L. VHDL, 2nd ed. McGraw—Hill, New
York, NY, 1994.

RONNGREN, R., AND AYANI, R. Adaptive checkpoint-
ing in time warp. In Proc. of the 8th Workshop on
Parallel and Distributed Simulation (PADS 94) (July
1994), Society for Computer Simulation, pp. 110-117.

SAMADI, B. Distributed Simulation, Algorithms and
Performance Analysis. PhD thesis, Computer Sci-
ence Department, University of California, Los Ange-
les, CA, 1985.

