
Parallel and Distributed Simulation of Discrete Event Systems

contributed to the:
Handbook of Parallel and D istributed Computing

McGraw-Hill
1995

Alois Ferscha

In s ti tu t für A ngew andte In fo rm atik , U n iversity of V ienna

Lenaugasse 2 /8 , A-1080 V ienna, A U ST R IA

E m ail: ferscha@ ani.un iv ie .ac.a t

1

mailto:ferscha@ani.univie.ac.at

A bstract

T h e achievem ents a t ta in e d in acce lera ting th e s im u la tio n of th e dynam ics of com plex discrete

event system s using p ara lle l or d is trib u te d m u ltip rocessing env ironm en ts are com prehensively

presen ted . W hile parallel d iscre te event s im u la tio n (D ES) governs th e evo lu tion of th e system

over s im u la ted tim e in an ite ra tiv e SIM D way, distributed, D ES trie s to sp a tia lly decom pose the

event s tru c tu re underly ing th e system , an d executes event occurrences in sp a tia l subreg ions by

logical processes (LP s) u sua lly assigned to different (physical) processing elem ents. S ynchroniza

tio n p ro toco ls are necessary in th is app roach to avoid tim in g inconsistencies an d to g u aran tee

th e p rese rva tion of event causa lities across LPs.

Included in th e survey are discussions on th e sources an d levels o f para lle lism , synchronous

vs. asynchronous s im u la tio n an d princip les o f LP sim u la tio n . In th e con tex t o f conservative LP

s im u la tio n (C h a n d y /M is ra /B ry a n t) deadlock avoidance an d deadlock de tec tio n /reco v ery s tra te

gies, C onservative T im e W indow s an d th e C arrie r N ullm essage p ro toco l are presen ted . R e la ted

to o p tim is tic LP s im u la tio n (T im e W arp), O p tim is tic T im e W indow s, m em ory m an ag em en t,

G V T c o m p u ta tio n , p ro b ab ilis tic o p tim ism contro l an d ad ap tiv e schem es are investiga ted .

C R C ategories and Subject D escriptors: C .1.0 [P ro cesso r A r c h ite c tu r e s:] G eneral; C.2 [C o m p u te r C o m m u n i

c a t io n N etw o rk s:] D istribu ted System s — D istribu ted A pplications; C.4 [C o m p u te r S y s te m s O rg a n iza tio n :]

Perform ance of System s — M odeling techniques; D.4.1 [O p era tin g S y stem s:] Process M anagem ent — C oncur

rency, D eadlocks, Synchronization; 1.6.0 [S im u la t io n a n d M o d e lin g :] G eneral; 1.6.8 [S im u la t io n a n d M o d e lin g :]

T ypes of S im ulation - D istribu ted , Parallel

G eneral Term s: A lgorithm s, Perform ance

A dditional Key W ords and Phrases: Parallel Sim ulation, D istribu ted S im ulation, C onservative Sim ulation, O ptim istic

Sim ulation, Synchronization Protocols, M em ory M anagem ent

2

C ontents

1 In trod u ction 4

2 S im u lation P rin c ip les 5
2.1 Continuous vs. Discrete Event S im u la tio n ... 5
2.2 Time Driven vs. Event Driven S im u la tio n ... 5
2.3 Accelerating S im u la tio n s ... 8

2.3.1 Levels of Parallelism /D istribution ... 8

2.4 Parallel vs. D istributed S im u la tio n .. 10
2.5 Logical Process Simulation .. 10

2.5.1 Synchronous LP S im u la tio n ... 12
2.5.2 Asynchronous LP S im u la tio n ... 13

3 “C lassica l” LP S im u lation P ro to co ls 15
3.1 Conservative Logical P r o c e s s e s ... 15

3.1.1 Deadlock A v o id a n c e .. 16
3.1.2 Example: Conservative LP Simulation of a PN with Model Parallelism 19
3.1.3 Deadlock D e tection /R ecovery ... 22
3.1.4 Conservative Time Windows ... 24
3.1.5 The Carrier Null Message P ro to c o l ... 25

3.2 Optimistic Logical P rocesses.. 26
3.2.1 Time W a r p ... 26
3.2.2 Rollback and Annihilation Mechanisms ... 28
3.2.3 Optimistic Time W in d o w s.. 33
3.2.4 The Limited Memory D ile m m a .. 34
3.2.5 Increm ental and Interleaved State S a v i n g ... 35
3.2.6 Fossil Collection ... 36
3.2.7 Freeing Memory by Returning M essa g e s ... 37
3.2.8 Algorithms for GVT C o m p u ta t io n ... 43
3.2.9 Limiting the Optimism to Time B u c k e ts ... 48
3.2.10 Probabilistic Optimism ... 50

4 C on servative v s . O p tim istic P rotoco ls? 55

5 C on clusions and O utlook 57

6 Sources o f L iterature and F urther R ead ing 59

3

1 In trod uction

Modeling and analysis of the tim e behavior of dynamic systems is of wide interest in various

fields of science and engineering. Common to ‘realistic’ models of tim e dynamic systems is their

complexity, very often prohibiting numerical or analytical evaluation. Consequently, for those cases,

simulation remains the only tractab le evaluation methodology. Conducting simulation experiments

is, however, tim e consuming for several reasons. F irst, the design of sufficiently detailed models

requires in depth modeling skills and usually extensive model development efforts. The availability

of sophisticated modeling tools today significantly reduces development tim e by standardized model

libraries and user friendly interfaces. Second, once a simulation model is specified, the simulation

run can take exceedingly long to execute. This is due either to the objective of the simulation, or

the nature of the simulated model. For statistical reasons it might for example be necessary to

perform a whole series of simulation runs to establish the required confidence in the performance

param eters obtained by the simulation, or in other words make confidence intervals sufficiently

small. Another na tu ra l consequence why simulation should be as fast as possible comes from the

objective of exploring large param eter spaces, or to iteratively improve a param eter estim ate in a

loop of simulation runs. The simulation model as such might require trem endous com putational

resources, making the use of contem porary 100 M FLOPs computers hopeless.

Possibilities to resolve these shortcomings can be found in several m ethods, one of which is the

use of statistical knowledge to prune the num ber of required simulation runs. Statistical m ethods

like variance reduction can be used to avoid the generation of “unnecessary” system evolutions, in

the sense th a t statistical significance can be preserved with a smaller num ber of evolutions given the

variance of a single random estim ate can be reduced. Im portance sampling m ethods can be effective

in reducing com putational efforts as well. Naturally, however, faster simulations can be obtained

by using more com putational resources, particularly multiple processors operating in parallel. It

seems obvious at least for simulation models reflecting real life systems constituted by components

operating in parallel, th a t this inherent model parallelism could be exploited to make the use of a

parallel com puter potentially effective. Moreover, for the execution of independent replications of

the same simulation model with different param etrizations the parallelization appears to be trivial.

In this work we shall system atically describe ways of accelerating simulations using multiprocessor

systems with focus on the synchronization of logical simulation processes executing in parallel on

different processing nodes in a parallel or distributed environment.

4

2 S im ulation P rin cip les

2 .1 C o n tin u o u s v s . D is c r e t e E v e n t S im u la t io n

Basically every simulation model is a specification of a physical system (or at least some of its

components) in term s of a set of states and events. Performing a simulation thus means mimicking

the occurrence of events as they evolve in tim e and recognizing their effects as represented by

states. Future event occurrences induced by states have to be planned (scheduled). In a continuous

simulation, sta te changes occur continuously in tim e, while in a discrete simulation the occurrence

of an event is instantaneous and fixed to a selected point in time. Because of the convert ability of

continuous simulation models into discrete models by just considering the s ta rt instant as well as

the end instant of the event occurrence, we sill subsequently only consider discrete simulation.

2 .2 T im e D r iv e n v s . E v e n t D r iv e n S im u la t io n

Two kinds of discrete simulation have emerged th a t can be distinguished with respect to the way

simulation tim e is progressed. In time driven discrete simulation simulated tim e is advanced in time

steps (or ticks) of constant size A , or in other words the, observation of the simulated dynamic

system is discretized by unitary tim e intervals. The choice of A interchanges simulation accuracy

and elapsed simulation time: ticks short enough to guarantee the required precision generally

imply longer simulation time. Intuitively, for event structures irregularly dispersed over tim e, the

time-driven concept generates inefficient simulation algorithms.

Event driven discrete simulation discretizes the observation of the simulated system at event

occurrence instants. We shall refer to this kind of simulation as discrete event simulation (DES)

subsequentially. A DES, when executed sequentially repeatedly processes the occurrence of events

in simulated tim e (often called “virtual t im e”, VT) by m aintaining a tim e ordered event list (EVL)

holding tim estam ped events scheduled to occur in the future, a (global) clock indicating the current

tim e and state variables S = (s i , s 2, .. . s n) defining the current sta te of the system (see Figure 1).

A simulation engine (SE) drives the simulation by continuously taking the first event out of the

event list (i.e. the one with the lowest tim estam p), simulating the effect of the event by changing

the sta te variables an d /o r scheduling new events in EVL - possibly also removing obsolete events.

This is performed until some pre-defined endtime is reached, or there are no further events to occur.

As an example, assume a physical system of two machines participating in a m anufacturing

process. In a preprocessing step, one machine produces two subparts A1 and A2 of a product A,

5

Figure 1: Simulation Engine for Discrete Event Simulation

both of which can be assembled concurrently. P art A1 requires a single assembly step, whereas A2

takes a nonpredictable am ount of assemblies. Once one A1 and one A2 are assembled (irrespective

of the machine th a t assembled it) one piece of a A is produced.

The system is modelled in term s of a Petri net (PN): transition t\ models the preprocessing

step and the forking of independent postprocessing steps, /2 and £3 . Machines in the preprocessing

phase are represented by tokens in p i, finished parts A1 by tokens in ps and finished or “still in

assembly” parts A2 by tokens in p±. Once there is at least one token in ps and at least one token in

P4 , the assembly process stops or repeats with equal probability (conflict among /4 and / 5). Once

the assembly process term inates yielding one A, one machine is released (/5). The tim e behavior

of the physical system is modelled by associating tim ing inform ation to transitions (t (/ i) = 3,

r (/ 2) = T(t3) = 2 and r(t^) = r(t^) = 0). This means th a t a transition ti th a t became enabled by

the arrival of tokens in the input places at tim e t and remained enabled (by the presence of tokens

in the input places) during [/,/ + r(ti)) . It fires at tim e t + r (/ 4-) by removing tokens from input

places and depositing tokens in t^s ou tput places. The initial sta te of the system is represented by

the marking of the PN where place p i has 2 tokens (for 2 machines), and no tokens are available

in any other place. Both the tim e driven and the event driven DES of the PN are illustrated in

Figure 2.

The tim e driven DES increments VT (denoted by a watch symbol in the table) by one time

unit each step, and collects the sta te vector S as observed at th a t time. Due to tim e resolution and

non tim e consuming sta te changes of the system, not all the relevant inform ation could be collected

with this simulation strategy.

The event driven DES employs a simulation engine as in Figure I and exploits a na tu ra l corre

spondence among event occurences in the physical system and transition firings in the PN model

by relating them : whenever an event occurs in the real (physical) system, a transition is fired in the

6

Tim e Driven Simulation

VT S
P i P 2 P3 P 4 P 5

Event Driven Simulation

ooo
GQQ©©0000

2 0 0 0 0

2 0 0 0 0

2 0 0 0 0

0 0

0 2 2 0 0

0 2 0 1

0 0 1

0 0 1

0 0

0 0

0 0

0 0

0
00000000000

P i P 2 P3 P 4 P 5

2 0 0 0 0

0 0

0 2 2 0 0

0 2 0 1

0 1

0 0 2 1

0 0

0 0

0 0 1

0 0 1

2 0 0 0 0

0 0

t 1 0
t 1 0
12 O
12 O
12 O
t 3 O
t 3 Q
t 3 O
1 2 ©
t 4 ©
t 1 ©
t 1 ©

" H t ! O •

- H t 2 Q q *

- H t 2 © t 3 © “H t 3 © 1*1

-Ht2 © 3Ht 3 © *
-Ht3 © 3 ^ 4 © H ^ ©•
- H t 4 Q © H ^ Q H
- H t 4 © t 1 © *
-Ht2 © t 1 © *
- H t 1 © •

-Ht5 © t 1 © *
- H t 1 © •

-Ht2 © © •
Figure 2: A Sample Simulation Model described as Timed Petri Net

model. The event list hence carries transitions and the tim e instant at which they will lire, given

th a t the firing is not preem pted by the firing of another transition in the meantime. The sta te of

the system is represented by the current PN marking (S), which is changed by the processing of

an event, i.e. the firing of a transition: the transition with the smallest tim estam p is withdrawn

from the event list, and S is changed according to the corresponding token moves. The new state ,

however, can enable new transitions (in some cases maybe even disable enabled transitions), such

th a t EVL has to be corrected accordingly: new enabled transitions are scheduled with their firing

tim e to occur in the future by inserting them into EVL (while disabled transitions are removed).

Finally the VT is set to the tim estam p (ts) of the transition just fired.

Related now to the example in Figure 2 we have: Before the first step of the simulation starts ,

VT is set to 0 and transition t\ is scheduled twice for firing at tim e 0 + r (/ i) = 3 according to the

initial sta te S = (2, 0 ,0 , 0,0). There are two identical event entries with identical tim estam ps in

the EVL, announcing two event occurrences at th a t time. In the first simulation step, one of these

events (since both have identical, lowest tim estam ps) is taken out of EVL arbitrarily, and the state

is changed to S = (1 , 1 , 1 , 0 , 0) since firing t\ removes one token from p\ and generates one token for

both p 2 and p3 . Finally VT is adjusted. The new marking now enables transitions /2 and £3 , both

with firing tim e 2. Hence, new event tuples (^@ V T + r f o)) and (^3@VT + r f e)) are generated

and scheduled, i.e. inserted in EVL in increasing order of tim estam p. In step 2, again, the event

with smallest tim estam p is taken from EVL and processed in the same m anner, etc.

7

2 .3 A c c e le r a t in g S im u la t io n s

In the example of Figure 2, there are situations where several transitions have identical smallest

tim estam ps, e.g. in step 5 where all scheduled transitions have identical end firing tim e instants.

This is not an exceptional situation but appears whenever (i) two or more events (potentially) can

occur at the same tim e but are m utually exclusive in their occurrence, or (ii) (actually) do occur

simultaneously in the physical system. The la tte r distinction is very im portant with respect to the

construction of parallel or distributed simulation engines: 2̂ and t% are scheduled to fire at tim e 5

(their enabling lasted for the whole period of their firing tim e r f o) = r (^3) = 2), where the firing

of one of them will not interfere with the firing of the other one. 2̂ and t% are said to be concurrent

events since their occurrences are not interrelated. Obviously 2̂ and t% could be simulated in

parallel, say 2̂ by some processor P I and t% by another processor P2. As an improvement of

the sequential simulation on the other hand, they could both be removed from EVL in a single

simulation step. The situation is somewhat different with 14 and / 5 , since the occurrence of one of

them will disable the other one - /4 and /5 are said to be conflicting events. The effect of simulating

one of them would (besides changing the state) also be to remove the other one from EVL. /4 and

/5 are mutually exclusive and preclude parallel simulation.

Before following the idea of simulating a single simulation model (like the example PN) in

parallel, we will first take a more system atic look at the possibilities to accelerate the execution of

simulations using P processors.

2.3 .1 L evels o f P a r a lle lism /D istr ib u tio n

A p p lica tion -L evel The most obvious acceleration of simulation experiments with the aim to

explore large search spaces is to assign independent replications of the same simulation model

with possibly different input param eters to the available processors. Since no coordination is

required between processors during their execution high efficiency can be expected. The sequential

simulation code can be reused avoiding costly program parallelization and problem scalability is

unlimited. D istributing whole simulation experiments, however, might not be possible due to

memory space lim itations in the individual processing nodes.

S u b rou tin e-L evel Simulation studies in which experiments m ust be sequenced due to iteration

dependencies among the replications, i.e. input param eters of replication i are determined by the

output values of replication i — 1, naturally preclude application-level distribution. The distribution

8

of subroutines constituting a simulation experiment, like random num ber generation, event pro

cessing, sta te update, statistics collection might be effective for acceleration in this case. Due to a

ra ther small am ount of simulation engine subtasks, the num ber of processors th a t can be employed,

and thus the degree of attainable speedup, is lim ited with a subroutine-level distribution.

C om p on en t-L evel Neither of the two distribution levels above makes use of the parallelism

available in the physical system being modelled. For th a t, the simulation model has to be de

composed into model components or submodels, such th a t the decomposition directly reflects the

inherent model parallelism or at least preserves the chance to gain from it during the simulation

run. A natu ra l simulation problem decomposition could be the result of an object oriented system

design, where object class instances corresponding to (real) system components represent compu

tational tasks to be assigned to parallel processors for execution. A queueing network workflow

model of a business organization for example, th a t directly reflects organizational units like offices

or agents as single queues, defines in a na tu ra l way the decomposition and assignment of the sim

ulation experiment to a m ultiprocessor. The processing of documents by an agent then could be

simulated by a processor, while the document propagation to another agent in the physical system

could be simulated by sending a message from one processor to the other.

E ven t-L evel, C en tra lized EV L Model parallelism exploitation at the next lower level aims

at a distribution of single events among processors for their concurrent execution. In a scheme

where EVL is a centralized d a ta structure m aintained by a m aster processor, acceleration can be

achieved by distributing (heavy weighted) concurrent events to a pool of slave processors dedicated

to execute them . The m aster processor in this case takes care th a t consistency in the event structure

is preserved, i.e. prohibitis the execution of events potentially yielding causality violations due to

overlapping effects of events being concurrently processed. As we have seen with the example in

Figure 2 (step 5 in the event driven sim ulation), this requires knowledge about the event structure

which m ust be extracted from the simulation model. The distribution at the event level with a

centralized EVL is particularly appropriate for shared memory multiprocessors where EVL can be

implemented as a shared da ta structure accessed by all processors. The events processed in parallel

are typically the ones located at the same tim e moment (or small epoch) of the space-time plane.

E ven t-L evel, D ecen tra lized EV L The most permissive way of conducting simulation in par

allel is at the level where events from arb itrary points of the space-time are assigned to different

9

processors, either in a regular or an unstructured way. Indeed, a higher degree of parallelism can

be expected to be exploitable in strategies th a t allow the concurrent simulation of events with dif

ferent tim estam ps. Schemes following this idea require protocols for local synchronization, which

may in tu rn cause increased communication costs depending on the event dispersion over space and

tim e in the underlying simulation model. Such synchronization protocols have been the objective

of parallel and distributed simulation research, which has received significant a tten tion since the

proliferation of massively parallel and distributed computing platform s.

2 .4 P a r a lle l v s . D is tr ib u t e d S im u la t io n

An im portant distinction of parallel or multiple processor machines is their operational principle.

In a SIMD operated environm ent, a set of processors perform identical operations on different da ta

in lock step. Each processor possesses its own local memory for private d a ta and program s, and

executes an instruction stream controled by a central unit. Though the size of da ta items might

vary from a simple datum to a complex da ta set, and although the instruction could be a complex

com puter program , the control unit forces synchronism among the independent com putations.

Physically, SIMD operated computers have been implemented on shared memory architectures or on

distributed memory architectures with static, regular interconnection networks as a means of da ta

exchange. W henever the synchronism imposed by the SIMD operational principle is exploited to

conduct simulation with P processors (under central control) we shall talk about parallel simulation.

An alternative design to SIMD is the MIMD model of parallel com putation. A collection of

processes as assigned to processors operate asynchronously in parallel, usually employing message

passing as a means of communication. In contrast to SIMD, communication in a MIMD operated

com puter has the purpose of d a ta exchange, but also of locally synchronizing the communicating

processes’ activities. The generality of the MIMD model adds another difficulty to the design,

im plem entation and execution of parallel simulations, namely the necessity of an explicit encoding

of a synchronization strategy in the parallel simulation program . We shall refer to simulation

strategies using P processors with an explicit encoding of synchronization among processes by the

term distributed simulation.

2 .5 L o g ic a l P r o c e s s S im u la t io n

Common to all simulation strategies with distribution at the event level is their aim to divide a

global simulation task into a set of communicating logical processes (LPs), trying to exploit the

10

CI ... Communication Interface SE ... Simulation Engine
R ... Region, Simulation Sub-Model LP ... Logical Process

Figure 3: Architecture of a Logical Process Simulation

parallelism inherent among the respective model components with the concurrent execution of these

processes. We can thus view a logical process simulation (LP simulation) as the cooperation of an

arrangem ent of interacting LPs, each of them simulating a subspace of the space-time which we will

call an event structure region. In our example a region would be a spatial part of the PN topology.

Generally a region is represented by the set of all events in a sub-epoch of the simulation tim e, or

the set of all events in a certain subspace of the simulation space.

The basic architecture of an LP simulation can be viewed as in Figure 3:

• A set of LPs is devised to execute event occurrences synchronously or asynchronously in

parallel.

• A communication system (CS) provides the possibility to LPs to exchange local data , but

also to synchronize local activities.

• Every LP; has assigned a region R; as part of the simulation model, upon which a simulation

engine SE; operating in event driven mode (Figure 1) executes local (and generates remote)

event occurrences, thus progressing a local clock (local v irtual tim e, LVT).

• Each LP; (SE;) has access only to a statically partitioned subset of the state variables Si C S,

disjoint to sta te variables assigned to other LPs.

• Two kinds of events are processed in each LP;: internal events which have causal im pact only

to Si C S , and external events also affect Sj C S (i 7 ̂ j) the local states of other LPs.

• A communication interface CI; attached to the SE takes care for the propagation of effects

causal to events to be simulated by rem ote LPs, and the proper inclusion of causal effects to

11

the local simulation as produced by rem ote LPs. The main mechanism for this is the sending,

receiving and processing of event messages piggybacked with copies of the senders LVT at

the sending instant.

Basically two classes of CIs have been studied for LP simulation, either taking a conservative

or an optimistic position with respect to the advancement of event executions. Both are based on

the sending of messages carrying causality inform ation th a t has been created by one LP and affects

one or more other LPs. On the other hand, the Cl is also responsible for preventing global event

causality violations. In the first case, the conservative protocol, the Cl triggers the SE in a way

which prevents from causality errors ever occuring (by blocking the SE if there is the chance to

process an ‘unsafe’ event, i.e. one for which causal dependencies are still pending). In the optim istic

protocol, the Cl triggers the SE to redo the simulation of an event should it detect th a t prem ature

processing of local events is inconsistent with causality conditions produced by other LPs. In both

cases, messages are invoked and collected by the CIs of LPs, the propagation of which consumes

real tim e dependent on the technology the communication system is based on. The practical impact

of the Cl protocols developed in theory therefore is highly related to the effective technology used

in target m ultiprocessor architectures. (We shall avoid presenting the achievements of research in

the light of readily available technology, perm anently being subject to change.)

For the representation and advancement of simulated tim e (VT) in an LP simulation we can

devise two possibilities[50]: a synchronous L P simulation implements VT as a global clock, which

is either represented explicitly as a centralized da ta structure, or implicitly implemented by a time-

stepped execution procedure - the key characteristic being th a t each LP (at any point in real time)

faces the same VT. This restriction is relaxed in an asynchronous L P simulation , where every LP

m aintains a local VT (LVT) with generally different clock values at a given point in real time.

2.5 .1 Syn ch ron ou s LP S im u lation

In a time-stepped LP simulation [50], all the L Ps’ local clocks are kept at the same value at every

point in real tim e, i.e. every local clock evolves on a sequence of discrete values (0, A , 2A, 3 A ,...) .

In other words, simulation proceeds according to a global clock since all local clocks appear to

be just a copy of the global clock value. Every LP m ust process all events in the tim e interval

[iA, (i + 1)A) (time step i) before any of the LPs are allowed to begin processing events with occur

rence tim e (i + 1)A and after. This strategy considerably simplifies the im plem entation of correct

simulations by avoiding problems of deadlock and possibly overwhelming message traffic and /o r

12

memory requirem ents as will be seen with synchronization protocols for asynchronous simulation.

Moreover, it can efficiently use the barrier synchronization mechanisms available in almost every

parallel processing environment. The imbalance of work across the LPs in certain tim e steps on

the other hand naturally leads to idle times and thus represents a source of inefficiency.

Both centralized and decentralized approaches of implementing global clocks have been followed.

In [62], a centralized im plem entation with one dedicated processor controlling the global clock is

proposed. To overcome stepping the tim e at instances where no events are occuring, algorithms to

determine for every LP at what point in tim e the next interaction with another LP shall occur have

been developed. Once the minimum tim estam p of possible next external events is determined, the

global clock can be advanced by A (S), i.e. an am ount which depends on the particular sta te S.

For a distributed im plem entation of a global clock [50], a structured (hierarchical) LP organization

can be used [17] to determine the minimum next event time. A parallel m in-reduction operation

can bring this tim estam p to the root of a process tree [4], which can then be propagated down the

tree. Another possibility is to apply a distributed snapshot algorithm [11] in order to avoid the

bottleneck of a centralized global clock coordinator.

Combinations of synchronous LP simulation with event-driven global clock progression have

also been studied. Although the global clock is advanced to the minimum next event tim e as in the

event driven scheme, LPs are only allowed to simulate within a A-tick of tim e, called a bounded

lag by Lubachevsky [41] or a Moving Time W indow by [59].

2.5 .2 A syn ch ron ou s LP S im u lation

Asynchronous LP simulation relies on the presence of events occuring at different simulated times

th a t do not affect one another. Concurrent processing of those events thus effectively accelerates

sequential simulation execution time.

The critical problem, however, which asynchronous LP simulation poses is the chance of causality

errors. Indeed, an asynchronous LP simulation insures correctness if the (to tal) event ordering as

produced by a sequential DES is consistent with the (partial) event ordering as generated by the

distributed execution. Jefferson [35] recognized this problem to be the inverse of L am port’s logical

clock problem [36], i.e. providing clock values for events occuring in a distributed system such th a t

all events appear ordered in logical time.

It is intuitively convincing and has been shown in [46] th a t no causality error can ever occur in

an asynchronous LP simulation if and only if every LP adheres to processing events in nondecreasing

13

tim estam p order only (local causality constraint (lee) as form ulated in [26]). A lthough sufficient,

it is not always necessary to obey the lee, because two events occuring within one and the same

LP may be concurrent (independent of each other) and could thus be processed in any order. The

two main categories of mechanisms for asynchronous LP simulation already mentioned adhere to

the lee in different ways: conservative m ethods strictly avoid lee violations, even if there is some

nonzero probability th a t an event ordering m ism atch will not occur; whereas optim istic m ethods

hazardously use the chance of processing events even if there is nonzero probability for an event

ordering m ism atch. The variety of mechanisms around these schemes will be the main body of this

review.

In a comparison of synchronous and asynchronous LP simulation schemes it has been shown

[22], th a t the potential performance improvement of an asynchronous LP simulation strategy over

the tim e-stepped variant is at most 0 (lo g P), P being the num ber of LPs executing concurrently on

independent processors. The analysis assumes each tim e step to take an exponentially distributed

am ount of execution tim e T step^ ~ exp(X) in every LP; (E [T stePji\ = j) . As a consequence, the ex

pected simulation tim e E [T sync] for a k tim e step synchronous simulation is k i?[max4-=i..p (TstePti)\

= ^ I Ya=i 7 ^ Relaxing now the synchronization constraint (as an asynchronous sim

ulation would) the expected simulation tim e would be E [T async] = _E?[max4-=i..p(A; Tstep,i)\ > j -
]T'\rr s y n c \

We have Hmjfe-coojP-KX) E[Tasync] ~ log(P), saying th a t with increasing simulation size k, an asyn

chronous simulation could complete (at m ost) log(P) times as fast as the synchronous simulation,

and the maximum attainable speedup of any tim e stepped simulation is These results, how

ever, are a direct consequence of the exponential step execution tim e assum ption, i.e. comparing

the expectation of the k-fold sum over the m ax of exponential random variates (synchronous) with

the expectation of the m ax over P £;-stage Erlang random variates. For a step execution time
J7'\rr s y n c]

uniformly distributed over [/, u\ we have lim*:_,.00vp_,.00 p[pasi/ne] ~ 2, or intuitively with T sync < k u

and E [T async] > k^~Y^~ the ratio of synchronous to asynchronous finishing times is ^ < 2,

i.e. constant. Therefore for a local event processing tim e distribution with finite support the im

provement of an asynchronous strategy reduces to an am ount independent of P.

Certainly the model assum ptions are far from what would be observed in real implem entations

on certain platform s, but the results might help to rank the two approaches at least from a statistical

viewpoint.

14

3 “C lassica l” LP S im ulation P rotoco ls

3 .1 C o n se r v a t iv e L o g ic a l P r o c e s s e s

LP simulations following a conservative strategy date back to original works by Chandy and Misra

[12] and Bryant [9], and are often referred to as the Chandy-M isra-Bryant (CMB) protocols. As

described by [46], in CMB causality of events across LPs is preserved by sending tim estam ped

(external) event messages of type (ee@/), where ee denotes the event and / is a copy of LVT of the

sending LP at (@) the instant when the message was created and sent. / = ts(ee) is also called

the timestamp of the event. A logical process following the conservative protocol (subsequently

denoted by L Pcons) is allowed to process safe events only, i.e. events up to a LVT for which the LP

has been guaranteed not to receive (external event) messages with LVT < / (tim estam p “in the

pas t”). Moreover, all events (internal and external) m ust be processed in chronological order. This

guarantees th a t the message stream produced by an L Pcons is in tu rn in chronological order, and

a communication system (Figure 3) preserving the order of messages sent from LP?ons to L P jons

(FIFO) is sufficient to guarantee th a t no out of chronological order message can ever arrive in any

L P qons (n e c e s s a r y f o r correctness). A conservative LP simulation can thus be seen as a set of all LPs

p p cons _ L P“ ns together with a set of directed, reliable, FIFO communication channels CH =

chkti = (LPfc,LPj-) th a t constitute the Graph of Logical Processes G LPcons = (L P ,C H).

(It is im portant to note, th a t G LPcons has a static toplogy, which compared to optim istic protocols,

prohibits dynamic (re-)scheduling of LPs in a set of physical processors. Note at the same tim e, th a t

this view of a conservative simulation is based on a logical process model. A parallel simulation in

order to be conservative does not necessarily need to employ this LP model, neither is the message

transm ission order assum ption required [41].)

The communication interface Clcons of an L Pcons on the input side m aintains one input buffer

IB[i] and a channel (or link) clock CC[i] for every channel ch{^ £ CH pointing to L P“ ns (Figure 4).

IB[i] interm ediately stores arriving messages in FIFO order, whereas CC[i] holds a copy of the

tim estam p of the message at the head of IB [«]; initially CC[i] is set to zero. LVTH = m in8 CC[i]

is the tim e horizon up until which LVT is allowed to progress by simulating internal or external

events, since no external event can arrive with a tim estam p smaller than LVTH. Cl now triggers

the SE to conduct event processing just like a (sequential) event driven SE (Figure 1) based on

(internal) events in the EVL, but also to process (external) events from the corresponding IBs

respecting chronological order and only up until LVT meets LVTH. During this, SE might have

15

Communication System

Figure 4: Architecture of a Conservative Logical Process

produced future events for rem ote LPs. For each of those, a message is constructed by adding a

copy of LVT to the event, and deposited into FIFO output buffers OB[i] to be picked up there and

delivered by the communication system. Cl m aintains individual ou tput buffers OB[i] for every

outgoing channel chkti G CH to subsequent LPs LP/. The basic algorithm is sketched in Figure 5.

Given now th a t within the horizon LVTH neither internal nor external events are available to

process, then L P“ ns blocks processing, and idles to receive new messages potentially widening the

tim e horizon. Two key problems appear with this policy of “blocking-until-safe-to-process” , namely

deadlock and memory overflow as explained with Figure 6 : Each LP is waiting for a message to

arrive, however, awaiting it from an LP th a t is blocked itself (deadlock). Moreover, the cyclic

waiting of the LPs involved in deadlock leaves events unprocessed in their respective input buffers,

the am ount of which can grow unpredictably, thus causing memory overflow. This is possible even

in the absence of deadlock. Several m ethods have been proposed to overcome the vulnerability of

the CMB protocol to deadlock, falling into the two principle categories: deadlock avoidance and

deadlock detection/recory.

3 .1 .1 D ead lock A vo id an ce

Deadlock as in Figure 6 can be prevented by modifying the communication protocol based on the

sending of nullmessages [46] of the form (0@/), where 0 denotes a nullevent (event without effect).

16

program LP°ons(R^)
51 LVT = 0; EVL = {}; 5 = initialstate();
52 for all ССИ do (CC[i] = 0) od;
53 for all iei caused by S do chronologicaLinsert((ie8'@occurrence_time(ie8')), EVL) od;
54 w h ile LVT < endtime do
S4-1 for all IB [г] do aw ait not .em pty (IB [г]) od;
S4-2 for all СС[г] do СС[г] = ts(first(IB[i])) od;
54.3 LVTH = inin,-С С [г];
54.4 min_channel_index = i | СС[г] = = min_channel_clock;
54.5 if ts(first(EV L)) < LVTH

th en /* select first internal event*/
e = remove_first(EVL) ;

else /* select first external event*/
e = remove_first(IB[min_clianneLindex]);

end if;
/* now process the selected event */

54.6 LVT = ts(e);
S4-7 if not nullmessage(e) th en
S4-7.1 S = modified_by_occurrence_of(e);
S4-7.2 for all iei caused by S do chronological_insert((ie8'@occurrence_time(ie8')), EVL) od;
S4-7.3 for all iei preem pted by S do rem ove(ie8-, EVL) od;
S4-7-4 for all eei caused by S do deposit((ee8@LVT), corresponding(OB[j])) od;

end if;
S4 .U for all empty(OB[i]) do deposit((0@LVT + lookahead(c/ifcj8)), ОВ[г]) od;
S4-12 for all ОВ[г] do send_out_contents(OB[i]) od;

od while;

Figure 5: Conservative LP Simulation Algorithm Sketch.

Figure 6 : Deadlock and Memory Overflow

17

A nullmessages is not related to the simulated model and only serves for synchronization purposes.

Essentially it is sent on every output channel as a promise not send any other message with smaller

tim estam p in the future. It is launched whenever an LP processed an event th a t did not generate an

event message for some corresponding target LP. The receiver LP can use this implicit information

to extend its LVTH and by th a t become unblocked. In our example (Figure 6), after the LP in the

middle would have broadcasted (0@19) to the neighboring LPs, both of them would have chance to

progress their LVT up until tim e 19, and in tu rn issue new event messages expanding the LVTHs

of other LPs etc. The nullmessage based protocol can be guaranteed to be deadlock free as long as

there are no closed cycles of channels, for which a message traversing this cycle cannot increment

its tim estam p. This implies, th a t simulation models whose event structure cannot be decomposed

into regions such th a t for every directed channel cycle there is at least one LP to put a nonzero

tim e increment on traversing messages cannot be simulated using CMB with nullmessages.

Although the protocol extension is straight-forw ard to implement, it can put a dram atic burden

of nullmessage overhead on the performance of the LP simulation. Optimizations of the protocol

to reduce the frequency and am ount of nullmessages, e.g. sending them only on demand (upon

request), delayed until some tim eout, or only when an LP becomes blocked have been proposed

[46]. An approach where additional inform ation (essentially the routing path as observed during

traversal) is attached to the nullmessage, the carrier nullmessage protocol [10] will be investigated

in more detail later.

One problem th a t still remains with conservative LPs is the determ ination of when it is safe

to process an event. The degree to which LPs can look ahead and predict future events plays a

critical role in the safety verification and as a consequence for the performance of conservative LP

simulations. In the example in Figure 6 , if the LP with LVT 19 could know th a t processing the

next event will certainly increment LVT to 22, then nullmessages (0@22) (so called lookahead of 3)

could have been broadcasted as further improvement on the LVTH of the receivers.

Lookahead m ust come directly from the underlying simulation model and enhances the predic

tion of future events, which is - as seen - necessary to determine when it is safe to process an event.

The ability to exploit lookahead from FCFS queueing network simulations was originally demon

stra ted by Nicol [47], the basic idea being th a t the simulation of a job arriving at a FCFS queue

will certainly increment LVT by the service tim e, which can already be determined, e.g. by random

variate presampling, upon arrival since the num ber of queued jobs is known and preem ption is not

possible.

18

S im ulation E n g in e 1

' " 'A '" '
S im ulation E n g in e 2

Future Lists for x = 2

T1 T2

0.37 0.51
0.17 0.39
0.22 0.42
0.34 0.05
0.93 0.88
0.65 0.17

Figure 7: LP Simulation of a Trivial PN with Model Parallelism

3 .1 .2 E xam ple: C on serva tive LP S im u lation o f a P N w ith M od el P ara lle lism

To dem onstrate the development and parallel execution of an LP simulation consider again a simu

lation model described in term s of a PN as depicted in the Figure 7. Assume a physical system con

sisting of three machines, either being in operation or being m aintained. The PN model comprises

two places and two transitions with stochastic tim ing and balanced firing delays (r (T l) ~ exp(0.5),

r(T 2) ~ exp(0.5)), i.e. tim e operating is approxim ately the same as tim e being m aintained. Related

to those firing delays and the num ber of machines being represented by circulating tokens, a certain

am ount of model parallelism can be exploited when partitioning the net into two LPs, such th a t the

individual PN regions of LPi and L P 2 are: R i = ({T l} , {P I} , { (P I, T l)} , r (T l) ~ exp(A = 0.5)),

and i ?2 = ({T2}, {P2}, {(P2, T2)}, r(T 2) ~ exp{A = 0.5)).

Let the future list [47], a sequence of exponentially distributed random firing times (random

variates), for T l and T2 be as in the table of Figure 7. The sequential simulation would then

sequence the variates according to their resulting scheduling in v irtual tim e units when simulating

the tim ed behavior of the PN as in Table 1. This sequencing stems from the policy of always using

the next free variate from the future list to schedule the occurrence of the next event in EVL. In

an LP simulation scheme this sequencing is related to the protocol applied to m aintain causality

among the events.

To explain model parallelism as requested by an LP simulation scheme, observe th a t the firing

of a scheduled transition (internal event) always generates an external event, namely a message

carrying a token as the event description (tokenmessage), and a timestamp equal to the local virtual

time LVT of the sending LP. On the other hand, the receipt of an event message (external event)

19

Step V T s EVL T
0 0.00 (2,1) T l@ 0.17; T l@ 0.37; T 2@0.51 —
1 0.17 (1,2) T l@ 0.37; T 2@0.51; T 2@0.56 T 1
2 0.37 (0,3) T 2@0.51; T 2@0.56; T 2@0.79 T 1
3 0.51 (1,2) T 2@0.56; T l@ 0.73; T 2@0.79 T 2
4 0.56 (2,1) T l@ 0.73; T 2@0.79; T l@ 0.90 T 2
5 0.73 (1,2) T 2@0.78; T 2@0.79; T l@ 0.90 T 1

Table 1: Sequential DES of a PN with Model Parallelism

T1

T2

fl(T1,

____________ fl(T1,4

=fl(T1,3) = 0.22-------

= 0.34A

■

= fl(T 2 ,6) = 0.17---------
fl(T2,4)
= 0.05

0.00 0.17

■fl(TU) = t™

=fl(T2,i) = t =

0.37 0.51 0.56 0.73 0.78
0.79

0.90

i-th variate from future list of T1

i-th variate from future list of T2

| firing of T1, token move schedules T2

| firing of T2, token move schedules T1

Figure 8 : Model Parallelism Observed in the PN execution

always causes a new internal event to the receiving LP, namely the scheduling of a new transition

firing in the local EVL. By just looking at the PN model and the variates sampled in the future

list (Figure 7), we observe th a t the first occurrence of T1 and the first occurrence of T2 could be

simulated in a time overlapped way.

This is explained as follows (Figure 8): Both T1 and T2 have infinite server firing semantics, i.e.

whenever a token arrives in P I or P2, T1 (or T2) is enabled with a scheduled firing at LVT plus the

transitions next future variate. There are constantly M = 3 tokens in the PN model, therefore the

maximum degree of enabling is M for both T1 and T2. Considering now the initial state ,5' = (2,1)

(two tokens in P i and one in P 2), one occurrence of T1 is scheduled for time = 0.17, and another

one for = 0.37. One occurrence of T2 is scheduled for time = 0.51. The next variate for

T1 is 0.22, the one for T2 is 0.39. A token can be expected in P I at m in(0.51, 0.39, 0.42) = 39 at

the earliest, leading to a new (the third) scheduling of T1 at 0.39 + 0.22 = 0.61 at the earliest,

maybe later. Consequently the first occurrence of T1 must be at / (T l i) = 0.17, and the second

20

mailto:Tl@0.17
mailto:Tl@0.37
mailto:T2@0.51
mailto:Tl@0.37
mailto:T2@0.51
mailto:T2@0.56
mailto:T2@0.51
mailto:T2@0.56
mailto:T2@0.79
mailto:T2@0.56
mailto:Tl@0.73
mailto:T2@0.79
mailto:Tl@0.73
mailto:T2@0.79
mailto:Tl@0.90
mailto:T2@0.78
mailto:T2@0.79
mailto:Tl@0.90

Step L P 1 l p 2

IB LVT S p i EVL OB B IB LVT to T! to EVL OB B

0 0.00 2 T l @ 0 .1 7 ;
T l@ 0 .3 7

0.00 1 T2@0.51

1 0.00 2 T l @ 0 .1 7 ;
T l@ 0 .3 7

{ 0; P2; 0.17 > • 0.00 1 T2@0.51 { 0; P I ; 0.39 > •

2 { 0; P I ; 0.39 > 0.17 1 T l@ 0 .37 { 1; P2; 0.17 > { 0; P2; 0.17 > 0.17 1 T2@0.51 { 0; P I ; 0.51 > •

3 { 0; P I ; 0.51 > 0.37 0 { 1; P2; 0.37 > { 1; P2; 0.17 > 0.17 2 T2@ 0.51 ;
T2@0.56

{ 0; P I ; 0.51 > •

4 { 0; P I ; 0.51 > 0.51 0 { 0; P2; 0.73 > • { 1; P2; 0.37 > 0.37 3 T2@ 0.51 ;
T2@ 0.56 ;
T2@0.79

{ 0; P I ; 0.51 > •

5 { 0; P I ; 0.51 > 0.51 0 { 0; P2; 0.73 > • { 0; P2; 0.73 > 0.51 2 T2@ 0.5 6 ;

T2@1.79

{ 1; P I ; 0.51 >

6 { 1; P I ; 0.51 > 0.51 1 T l@ 0.73 { 0; P2; 0.73 > • { 0; P2; 0.73 > 0.56 1 T2@0.79 { 1; P I ; 0.56 >

7 { 1; P I ; 0.56 > 0.56 2 T l @ 0 .7 3 ;
T l@ 0.90

{ 0; P2; 0.73 > • { 0; P2; 0.73 > 0.73 1 T2@0.79 { 0; P I ; 0.78 > •

8 { 0; P I ; 0.78 > 0.73 1 T l@ 0.90 { 1; P2; 0.73 > { 0; P2; 0.73 > 0.73 1 T2@0.79 { 0; P I ; 0.78 > •

Table 2: Parallel Conservative LP Simulation of a PN with Model Parallelism

occurence of T1 m ust be / (T I 2) = 0.37. The first occurrence of T2 can be either the one scheduled

at 0.51, or the one invoked by the first occurence of T1 at 0.17 + 0.39 = 0.56, or the one invoked

by the second occurence of T1 at 0.37 + 0.42 = 0.78. Clearly, the first occurence of T2 m ust be

at /(T 2 i) = 0.51, and the second occurrence of T2 m ust be at / (T 22) = 0.17 + 0.39 = 0.56, etc.

Since T l i -► T 22 with /(T 2 i) < / (T 22) and T2i —► T I 3 with / (T l i) < / (T I 3), T l i and T2i do not

interfere with each other and can therefore be simulated independently (T l; —► T2j denotes the

direct scheduling causality of the i —th occurrence of T1 onto the j —th occurrence of T2).

As was seen, the model th a t we consider in Figure 7 provides inherent model parallelism.

In order to exploit this model parallelism in a CMB simulation, the PN model is decomposed

into two regions R \ and R%, which are assigned to two LPs LPi and L P 2, such th a t GLP =

({L Pi, L P 2}, {ch it2, c/^2,1 }), where the channels ch \^ and c^ 2,i are supposed to substitu te the PN

arcs (T 1 ,P 2) and (T 2 ,P 1) respectively. Both ch\p and c^ 2,i carry messages containing tokens

th a t were generated by the firing of a transition in a rem ote LP. Consequently, ch\p propagates a

message of the form m = (1 ,P 2 ,/) from LP\ to L P 2 on the occurrence of a firing of T l , in order

to deposit 1 (first component of m) token into place P2 (second component of m) at tim e t (third

component). The tim estam p t is produced as a copy of the LVT of LPi at the instant of th a t firing

of T l , th a t produced the token.

A CMB parallel execution of the LP simulation model developed above, since operating in a

21

mailto:Tl@0.17
mailto:Tl@0.37
mailto:T2@0.51
mailto:Tl@0.17
mailto:Tl@0.37
mailto:T2@0.51
mailto:Tl@0.37
mailto:T2@0.51
mailto:T2@0.51
mailto:T2@0.56
mailto:T2@0.51
mailto:T2@0.56
mailto:T2@0.79
mailto:T2@0.56
mailto:T2@1.79
mailto:Tl@0.73
mailto:T2@0.79
mailto:Tl@0.73
mailto:Tl@0.90
mailto:T2@0.79
mailto:Tl@0.90
mailto:T2@0.79

synchronous way in two phases (first simulate one event locally, then transm it messages), generates

the trace in Table 2. In step 0, both LPs use precom puted random variates from their individual

future lists and schedule events. In step 1, no event processing can happen due to LVTH = 0.0,

LPs are blocked (see indication in B column. Generally in such a situation every LP; computes its

lookahead la (ch ij) imposed on the individual outputchannels j . In the example we have

la (ch ij) = min{ (LVT; - m in k=i„Si{stk)) , m in k=1^ M _Si) f l k)

where s tk is the scheduled occurrence tim e of the k -th entry in EVL, f l k is the k -th free variate in

the future list, and M is the maximum enabling degree (tokens in the PN model). For example, the

lookahead in LPi in the sta te of step 1 imposed on the channel to L P 2 is /a (c /iij2) = 0.17, whereas

/a(c/i2,i) = 0.39. la is now attached to the L P ’s LVT, giving the tim estam ps for the nullmessage (0;

P 2 ; 0.17) sent from LPi to L P2, and (0; P I; 0.39) sent from L P 2 to L P i. The la tte r, when arriving

at L P i, unblocks the SEi, such th a t the first event out of EVLi can be processed, generating the

event message (1; P I; 0.17). This message, however, as received by L P 2 still cannot unblock L P 2

since it carries the same tim estam p as the previous nullmessage; also the local lookahead cannot be

improved and (0; P I; 0.51) is resent. It takes another iteration to finally unblock L P2, which can

then process its first event in step 5, etc. It is easy seen from the example, th a t the CMB protocol

(for the particular example) forces a ‘logical’ barrier synchronization whenever the sequential DES

(see trace in Table 1) switches from processing a T1 related event to a T2 related one and vice

versa (at VT 0.17, 0.51, 0.73, etc.). In the diagram in Figure 8 , this is at points where the arrow

denoting a token move from T1 (T2) to T2 (T l) has the opposite direction th a t the previous one.

3 .1 .3 D ead lock D e te c t io n /R e c o v e r y

An alternative to the Chandy-M isra-Bryant protocol avoiding nullmessages has also been proposed

by Chandy and M isra [13], allowing deadlocks to occur, but providing a mechanism to detect it

and recover from it. Their algorithm runs in two phases: (i) parallel phase, in which the simulation

runs until it deadlocks, and (ii) phase interface, which initiates a com putation allowing some LP

to advance LVT. They prove, th a t in every parallel phase at least one event will be processed

generating at least one event message, which will also be propagated before the next deadlock. A

central controller is assumed in their algorithm , thus violating a distributed computing principle.

To avoid a single resource (controller) to become a communication performance bottleneck during

deadlock detection, any general distributed term ination detection algorithm [44] or distributed

deadlock detection algorithm [14] could be used instead.

22

In an algorithm described by M isra [46], a special message called marker circulates through

GLP to detect and correct deadlock. A cyclic pa th for traversing all ch ij £ C H is precom puted

and LPs are initially colored white. An LP th a t received the m arker takes the color white and is

supposed to route it along the cycle in finite time. Once an LP has either received or sent an event

message since passing the m arker, it turns to red. The m arker identifies deadlock if the last N LPs

visited were all white. Deadlock is properly detected as long as for any ch ij £ C H all messages

sent over ch ij arrive at LPj in the tim e order as sent by LP;. If the m arker also carries the next

event times of visited white LPs, it knows upon detection of deadlock the smallest next event time

as well as the LP in which this event is supposed to occur. To recover from deadlock, this LP is

invoked to process its first event. Obviously message lengths in this algorithm grow proportionally

to the num ber of nodes in GLP.

Bain and Scott [5] propose an algorithm for demand driven deadlock free synchronization in

conservative LP simulation th a t avoids message lengths to grow with the size of GLP. If an LP

wants to process an event with tim estam p /, but is prohibited to do so because CC[j] < t for

some j , then it sends time requests containing the sender’s process id and the requested tim e t to

all predecessor LPs with this property. (The predecessors, however, may have already advanced

their LVT in the mean tim e.) Predecessors are supposed to inform the sender LP when they can

guarantee th a t they will not emit an event message at a tim e lower than the requested tim e t. Three

types of reply types are used to avoid repeated polling in the presence of cycles: a yes indicates

th a t the predecessor has reached the requested tim e, a no indicates th a t it has not (in which case

another request m ust be m ade), and a ryes (“reflected yes”) indicates th a t it has conditionally

reached t. Ryes replys, together with a request queue m aintained in every LP, essentially have the

purpose to detect cycles and to minimize the num ber of subsequent requests sent to predecessors.

If the process id and tim e of a request received m atch any request already in the request queue, a

cycle is detected and ryes is replied. Otherwise, if the L P ’s LVT equals or exceeds the requested

tim e a yes is replied, whereas if the L P ’s LVT is less the requested tim e the request is enqueued in

the request queue, and request copies are recursively sent to the receiver’s predecessors with CC[i]’s

< /, etc. The request is complete when all channels have responded, and the request reached the

head of the request queue. At this tim e the request is removed from the request queue and a reply

is sent to the requesting LP. The reply to the successor from which the request was received is no

{ryes), if any request to a predecessor was answered with no (ryes), otherwise yes is sent. If no was

received in an LP initiating a request, the LP has to restart the tim e request with lower channel

23

clocks.

The time-of-next-event algorithm as proposed by Groselj and Tropper [31] assumes more than

one LP m apped onto a single physical processor, and computes the greatest lower bound of the

tim estam ps of the event messages expected to arrive next at all empty links on the LPs located at

th a t processor. It thus helps to unblock LPs within one processor, but does not prevent deadlocks

across processors. The lower bound algorithm is an instance of the single source shortest path

problem.

3 .1 .4 C on serva tive T im e W in d ow s

Conservative LP simulations as presented above are distributed in nature since LPs can operate in

a to tally asynchronous way. One way to make these algorithms more synchronous in order to gain

from the availability of fast synchronization hardw are in multiprocessors is to introduce a window

W ; in simulated tim e for each LP;, such th a t events within this time window are safe (events in W;

are independent of events in W j, i 7 ̂ j) and can be processed concurrently across all LP; [41], [48].

A conservative tim e window (CTW) parallel LP simulation synchronously operates in two

phases. In phase (i) (window identification) for every LP; a chronological set of events W; is

identified such th a t for every event e £ W ;, e is causally independent of any e' £ W j, j 7 ̂ i. Phase

(i) is accomplished by a barrier synchronization over all LPs. In phase (ii) (event processing) every

LP; processes events e £ W; sequentially in chronological order. Again, phase (ii) is accomplished

by a barrier synchronization. Since the algorithm iteratively lock-steps over the two consecutive

phases, the hope to gain speedup over a purely sequential DES heavily depends on the efficiency

of the synchronization operation on the target architecture, but also on the event structure in the

simulation model. Different windows will generally have different cardinality of the covered event

set, maybe some windows will rem ain em pty after the identification phase for one cycle. In this

case the corresponding LPs would idle for th a t cycle.

A considerable overhead can be imposed on the algorithm by the identification of when it

is safe to process an event within LP; (window identification phase). Lubachevsy [41] proposes

to reduce the complexity of this operation by restricting the lag on the LP simulation, i.e. the

difference in occurrence tim e of events being processed concurrently is bounded from above by

a know finite constant (bounded lag protocol). By this restriction, and assuming a “reasonable”

am ount of dispersion of events in space and tim e, the execution of the algorithm on N processors in

parallel will have one event processed in O (logN) tim e on average. An idealized message passing

24

architecture with a tree-structured synchronization network supporting an efficient realization of

the bounded lag restriction is assumed for the analysis.

3 .1 .5 T h e C arrier N u ll M essage P ro to co l

A nother approach to reduce the overwhelming am ount of null messages occuring with the CMB

protocol is to add more inform ation to the null messages. The carrier null message protocol [10]

uses nullmessages to advance CC[i]’s and acquire/propagate knowledge global to the participating

LPs, with the goal of improving the ability of lookahead to reduce the message traffic.

Indeed, good lookahead can reduce the num ber nullmessages as is m otivated by the example

in Figure 9, where a source process produces objects in constant tim e intervals u = 50. The

join, pass and split processes m anipulate objects, consuming 2 tim e units per object. Eventu

ally objects are released from split into sink. For the example we have la (ch ij) = 2 \ f i , j G

{source, join, pass, split, sink}, (i 7 ̂ j) , except la(chSQurcejoin) = ^0- After the first object release

into LPj0jn , all LPs except L PSOurce are blocked, and therefore s ta rt propagating local lookahead

via nullmessages. After the propagation of (overall) 4 nullmessages all LPs beyond L PSOurce have

progressed LVT’s and C C ’s to 2. It shall take further 96 nullmessages until LPj0jn can make its

first object m anipulation, and after th a t another 100 for the second object, etc. If LPj0jn could

have learned th a t it had just waited for itself, it could have immediately simulated the external

event (with VT 50). Besides the im portance of the availability of global inform ation within the LPs,

the im pact of lookahead onto LP simulation performance is now also easily seen: the smaller the

lookahead in the successor LPs, the higher the communication overhead caused by nullmessages,

the higher also the performance degrade.

To generally realize such a waiting dependency across LPs the CNM protocol employs additional

nullmessages of type (c0 ,t ,lZ , l a . i n f), where cO is an identification as a carrier nullmessage, t is

the tim estam p, 1Z is inform ation about the travelling route of the message and la . in f is lookahead

information. Once LPj0jn had received a carrier nullmessage with its id as source and sink in 1Z,

it can be sure (but only in the paricular example) not to receive an event message via th a t path ,

unless LPj0jn itself had sent an event message along th a t path . So it can - without further waiting -

after having received the first carrier nullmessage process the event message from L PSOurce5 and

thus increment the C C ’s and LVT’s of all successors on the route in 1Z considerably.

Should there be any other “source”-like LP entering event messages into the waiting dependency

loop, the argum ents above are no longer valid. For this case it is in fact not sufficient to only carry

25

Figure 9: M otivation for Lookahead Propagation using CNM

the route inform ation with the nullmessage, but also the earliest tim e of possible event messages

th a t would break the cyclic waiting dependency. Exactly this inform ation is carried by l a . i n f , the

last component in the carrier nullmessage.

3 .2 O p t im is t ic L o g ic a l P r o c e s s e s

Optimistic LP simulation strategies, in contrast to conservative ones, do not strictly adhere to the

local causality constraint lee (see Section 2.5.2), but allow the occurrence of causality errors and

provide a mechanism to recover from lee violations. In order to avoid blocking and safe-to-process

determ ination which are serious performance pitfalls in the conservative approach, an optim istic

LP progresses simulation (and by th a t advances LVT) as far into the simulated future as possible,

w ithout w arranty th a t the set of generated (internal and external) events is consistent with lee, and

regardless to the possibility of the arrival of an external event with a tim estam p in the local past.

3 .2 .1 T im e W arp

Pioneering work in optim istic LP simulation was done by Jefferson and Sowizral [34, 35] in the

definition of the Time W arp (TW) mechanism, which like the Chandy-M isra-Bryant protocol uses

the sending of messages for synchronization. Time W arp employs a rollback (in tim e) mechanism to

take care of proper synchronization with respect to lee. If an external event arrives with tim estam p

in the local past, i.e. out of chronological order (straggler message), then the Time W arp scheme

26

Communication System

Figure 10: Architecture of an Optimistic Logical Process

rolls back to the most recently saved sta te in the simulation history consistent with the tim estam p

of the arriving external event, and restarts simulation from th a t sta te on as a m atte r of lee violation

correction. Rollback, however, requires a record of the L P ’s history with respect to the simulation

of internal and external events. Hence, an L Popt has to keep sufficient internal sta te information,

say a state stack SS, which allows for restoring a past state . Furtherm ore, it has to adm inistrate an

input queue IQ and an output queue OQ for storing messages received and sent. For reasons to be

seen, this logging of the L P ’s communication history m ust be done in chronological order. Since the

arrival of event messages in increasing tim e stam p order cannot be guaranteed, two different kinds

of messages are necessary to implement the synchronization protocol: first the usual external event

messages (m + = (ee@ /,+)) , (where again ee is the external event and / is a copy of the senders

LVT at the sending instan t) which will subsequently call positive messages. Opposed to th a t are

messages of type (m~ = (ee@t, —)) called negative- or antimessages, which are transm itted among

LPs as a request to annihilate the prem aturely sent positive message containing ee, but for which

it meanwhile turned out th a t it was computed based on a causally erroneous state.

27

The basic architecture of an optim istic LP employing the Time W arp rollback mechanism is

outlined in Figure 10. External events are brought to some LP^ by the communication system in

much the same way as in the conservative protocol. Messages, however, are not required to arrive

in the sending order (FIFO) in the optim istic protocol, which weakens the hardw are requirements

for executing Time W arp. Moreover, the separation of arrival stream s is also not necessary, and

so there is only a single IB and a single OB (assuming th a t the routing path can be deduced from

the message itself). The communication related history of LP^ is kept in IQ and OQ, whereas the

sta te related history is m aintained in the SS da ta structure. All those together represent Cljt; SE^

is an event driven simulation engine equivalent to the one in L Pcons.

The triggering of Cl to SE is sketched with the basic algorithm for L Popt in Figure 11. The

LP mainly loops (S3) over four parts: (i) an input-synchronization to other LPs (S3.1), (ii) local

event processing (S 3 .2 — S3 .8), (Hi) the propagation of external effects (S3.9) and (iv) the (global)

confirmation of locally simulated events (S3.10 - S3.11). P art (ii) and (Hi) are almost the same

as was seen with L Pcons. The input synchronization (Rollback and Annihilation) and confirmation

(G V T) part however are the key mechanisms in optim istic LP simulation.

3 .2 .2 R ollback and A n n ih ila tion M ech an ism s

The input synchronization of L P 0J)< (rollback mechanism) relates arriving messages to the current

value of the L P ’s LVT and reacts accordingly (see Figure 12). A message affecting the L P ’s “local

fu tu re” is moved from the IB to the IQ respecting the tim estam p order, and the encoded external

event will be processed as soon as LVT advances to th a t time. (ee3@7, +) in the IB in Figure 10

is an example of such an unproblem atic message (LVT = 6). A message tim estam ped in the “local

pas t” however is an indicator of a causality violation due to tentative event processing. The rollback

mechanism (S3.1.1) in this case restores the most recent /cc-consistent sta te , by reconstructing S

and EVL in the simulation engine from copies attached to the SS in the communication interface.

Also LVT is warped back to the tim estam p of the straggler message. This so far has compensated

the local effects of the lee violation; the external effects are annihilated by sending an antimessage

for all previously sent outputm essages (in the example (ee6@6 , —) and (eel@7, —) are generated

and sent out, while at the same tim e (ee6@6 , +) and (eel@7, +) are removed from OQ). Finally, if

a negative message is received (e.g. (ee2@6 , —)) it is used to annihilate the dual positive message

((ee2@6, +)) in the local IQ. Two cases for the negative messages m ust be distinguished: (i) If the

dual positive message is present in the receiver IQ, then this entry is deleted as an annihilation.

28

p ro g ra m LP°pt(Jik)
51 GVT = 0; LVT = 0; EVL = {}; 5 = in itialstate();
52 for all iei caused by S do chronologicaLinsert((ie8'@occurrence_time(ie8')), EVL) od;
53 w h ile GVT < endtime do
53.1 for all m G IB do
53.1.1 if ts(ra) < LVT /* m potentially affects local past */

th en
if (positive(m) and dual(ra) ^ IQ) or (negative(m) and dual(ra) G IQ)

th en /* rollback */
restore_earliest_state_before(ts(m));
generate_and_sendout (antimessages);
LVT = earliest_state_timestamp_before(m);

endif;
endif;
/* irrespective of how m is related to LVT */

53 .1.2 if dual(m) G IQ
th en rem ove(dual(m), IQ); /* annihilate */
e lse chronological_insert(external_event(m)@ ts(m), s ign(m)) , IQ);

endif;
od;

53.2 if ts(first(EV L)) < ts(first_nonnegative(IQ))
th en e = remove_first(EVL); /* select first internal event*/
e lse e = remove_first_nonnegative(IQ); /* select first external event*/

endif;
/* now process the selected event */

53.3 LVT = ts(e);
53.4 S = modified_by_occurrence_of(e);
53.5 for all iei caused by S do chronologicaLinsert((ie8'@occurrence_time(ie8')), EVL) od;
53.6 for all iei preem pted by S do rem ove(ie8-, EVL) od;
53.7 log_new_state((LVT, S, copy_of(EVL)), SS);
53.8 for all eei caused by S do

deposit((ee8@LVT,+), OB);
chronological_insert((ie8@LVT, +), OQ);

od;
53.9 send_out_contents(OB);
53 .10 GVT = advance_GVT();
53 .11 fossiLcollection(GVT);

od while;

Figure 11: Optimistic LP Simulation Algorithm Sketch.

29

Arriving Message is of Type:
+m m

timestamp(m) >= LVT

(in the local future)

timestamp(m) < LVT

(in the local past)

Figure 12: The Time W arp Message based Synchronization Mechanism

This can be easily done if the positive message has not yet been processed, but requires rollback if

it was. (u), if a dual positive message is not present (this case can only arise if the communication

system does not deliver messages in a FIFO fashion), then the negative message is inserted in IQ

(irrespective of its relation to LVT) to be annihilated later by the (delayed) positive message still

in traffic.

As is seen now, the rollback mechanism requires a periodic saving of the states of SE (LVT, S

and EVL) in order to able to restore a past sta te (S 3 .7), and to log output messages in OQ to be

able to undo propagated external events (S3 .8). Since antimessages can also cause rollback, there

is the chance of rollback chains, even recursive rollback if the cascade unrolls sufficiently deep on a

directed cycle of GLP. The protocol however guarantees, although consuming considerable memory

and communication resources, th a t any rollback chain eventually term inates whatever its length or

recursive depth is.

Related to the possibility of rollbacks at any tim e of the simulation is the problem of term ination

detection. An alternative to the term ination criterion in statem ent S3 in the algorithm in Figure 11

is to introduce the tim estam p oo. An LP th a t completes the local simulation sets LVT= oo, and

every incoming message will induce a rollback. Once GVT has reached the tim e oo (i.e. LVT= oo

dual m exists in IQ

annihilate dual m

chronological insert (m+ , IQ)

dual m does N O T exist

dual m +exists in IQ (not yet processed)

annihilate dual m+

chronological insert (m , IQ)

dual m + does N O T exist

dual m exists in IQ

annihilate dual m

s ' rollback
chronological insert (m+ , IQ)

dual m does N O T exist

dual m + exists in IQ (already processed)

rollback
annihilate dual m+

chronological insert (m , IQ)

dual m + does N O T exist

30

S t e p L P l L P 2

IB L V T S E V L O B R B IB L V T S E V L O B R B

0 — 0.00 2 T l @ 0 . 1 7 ;

T1 @0.37
— — 0.00 1 T 2 @ 0 .5 1 —

1 — 0.17 1 T l @ 0 . 3 7 { 1; P 2 ; 0 .1 7 > — 0.51 0 — { 1; P I ; 0.51 >

2 { 1; P I ; 0.51 > 0 .37 1 T l @ 0 . 7 3 { 1; P 2 ; 0 .3 7 > { 1; P 2 ; 0 .1 7 > 0.56 0 — { 1; P I ; 0 .56 >

3 { 1; P I ; 0 .56 > 0.73 1 T l @ 0 . 9 0 { 1; P 2 ; 0 .73 > { 1; P 2 ; 0 .3 7 > 0.79 0 — { 1; P I ; 0 .79 >

4 { 1; P I ; 0 .79 > 0.90 1 T l @ 1 . 7 2 { 1; P 2 ; 0 .90 > { 1; P 2 ; 0 .73 > 0.73 2 T 2 @ 0 . 7 8 ;

T 2 @ 0 .7 9

{ -1; P I ; 0 .79 > •

5 { -1; P I ; 0 .79 > 0.90 0 • { 1; P 2 ; 0 .90 > 0.78 2 T 2 @ 0 . 7 9 ;

T 2 @ 1 .7 8

{ 1; P I ; 0 .78 >

Table 3: Parallel Optimistic LP Simulation of a PN with Model Parallelism

for every LP), term ination is detected.

Lazy C an cella tion In the original Time W arp protocol as described above, an LP receiving a

straggler message initiates sending antimessages immediately when executing the rollback proce

dure. This behavior is called aggressive cancellation. As a performance improvement over aggressive

cancellation, the lazy cancellation policy does not send an antimessage (to -) for m + immediately

upon receipt of a straggler. Instead, it delays its propagation until the resimulation after rollback

has progressed to LVT = ts(TO+) producing m +' ^ m +. If the resimulation produced m +' = to+ ,

no antimessage has to be sent all [28]. Lazy cancellation thus avoids unnecessary cancelling of

correct messages, but has the liability of additional memory and bookkeeping overhead (potential

antimessages m ust be m aintained in a rollback queue) and delaying the annihilation of actually

wrong simulations.

Lazy cancellation can also be based on the utilization of lookahead available in the simulation

model. If a straggler m + < LVT is received, than obviously antimessages do not have to be sent for

messages to with tim estam p, t s (m +) < ts (m) < t s (m +) + la. Moreover, if t s (m +) + /a > LVT even

rollback does not need to be invoked. As opposed to lookahead com putation in the CMB protocol,

lazy cancellation can exploit implicit lookahead, i.e. does not require its explicit com putation.

The traces in Figure 3 represent the behavior of the optim istic protocol with the lazy cancellation

message annihilation in a parallel LP simulation of the PN model in Figure 7. (The trace table is

to be read in the same way as the one in Figure 2, except th a t there is a rollback indicator column

RB instead of a blocking column B.) In step 2, for example, L P 2 receives the straggler (1; P I; 0.17)

at LVT = 0.51. Message annihilation and rollback can be avoided due to the exploitation of the

lookahead from the next random variate in the future list, 0.39. The effect of the straggler is in the

future of L P 2 (0.56).

31

mailto:Tl@0.17
mailto:T2@0.51
mailto:Tl@0.37
mailto:Tl@0.73
mailto:Tl@0.90
mailto:Tl@1.72
mailto:T2@0.78
mailto:T2@0.79
mailto:T2@0.79
mailto:T2@1.78

It has been shown [33] th a t Time W arp with lazy cancellation can produce so called “supercriti

cal speedup” , i.e. surpass the simulations critical pa th by the chance of having wrong com putations

produce correct results. By immediately discarding rolled back com putations this chance is lost for

the aggressive cancellation policy. A performance comparison of the two, however, is related to the

simulation model. Analysis by Reiher and Fujimoto [53] shows th a t lazy cancellation can arbitrarily

outperform aggressive cancellation and vice versa, i.e. one can construct extreme cases for lazy and

aggressive cancellation such th a t if one protocol executes in a tim e using N processors, the other

uses a N time. Nevertheless, empirical evidence is reported “slightly” in favor of lazy cancellation

for certain simulation applications.

Lazy R ééva lu ation Much like lazy cancellation delays the annihilation of external effects upon

receiving a straggler at LVT, lazy re-evaluation delays discarding entries on the sta te stack SS.

Should the recom putation after rollback to tim e t < LVT reach a sta te th a t exactly matches one

logged in SS and the IQ is the same as the one at th a t sta te , then immediately jum p forward to

LVT, the tim e before rollback occured. Thus, lazy réévaluation prevents from the unnecessary

recom putation of correct states and is therefore promising in simulation models where events do

not modify states (“read-only” events). A serious liability of this optim ization is again additional

memory and bookkeeping overhead, but also (and mainly) the considerable complication of the

Time W arp code [26]. To verify equivalence of IQ ’s the protocol m ust draw and log copies of the IQ

in every sta te saving step (S3.7). In a weaker lazy re-evaluation strategy one could allow jum ping

forward only if no message has arrived since rollback.

Lazy R ollback The difference of v irtual tim e in between the straggler m *, t s (m *), and its actual

effect at tim e ts(m*) + la(ee) > LVT can again be overjumped, saving the com putation tim e for

the resimulation of events in between [ts(m*),ts(m*) + la(ee)). la(ee) is the lookahead imposed by

the external event carried by m*.

B r e a k in g /P r e v e n tin g R ollback C hains Besides the postponing of erroneous message and

sta te annihilation until it turns out th a t they are not reproduced in the repeated simulation, other

techniques have been studied to break cascades of rollbacks as early as possible. Prakash and Sub-

ram anian [51], comparable to the carrier null message approach, a ttach a lim ited am ount of state

inform ation to messages to prevent recursive rollbacks in cyclic GLPs. This inform ation allows

LPs to filter out messages based on preem pted (obsolete) states to be eventually annihilated by

32

chasing antimessages currently in transit. Related to the (conservative) bounded lag algorithm ,

Lubachevsky, Shwartz and Weiss have developed a filtered rollback protocol [43] th a t allows opti

mistically crossing the lag bound, but only up to a tim e window upper edge. Causality violations

can only affect the tim e period in between the window edge and the lag bound, thus limiting (the

relative) length of rollback chains. The SRADS protocol by Reynolds [54, 20], although allowing

optim istic simulation progression, prohibits the propagation of uncom m itted events to other LPs.

Therefore, rollback can only be local to some LP and cascades of rollback can never occur. Madis-

e tti, W alrand and M esserschmitt with their protocol called Wolf-calls freeze the spatial spreading

of uncom m itted events in so called spheres of influence ^ (L P ; , r) , defined as the set of LPs th a t

can be influenced by a message from LP; at tim e ts (m) + r respecting com putation times a and

communication times b. The Wolf algorithm ensures th a t the effects of an uncom m itted event

generated by LP; are limited to a sphere of a com putable (or selectable) radius around LP;, and

the num ber of broadcasts necessary for a complete annihilation within the sphere is bounded by

a com putable (or chooseable) num ber of steps B (B being provably smaller than for the standard

Time W arp protocol).

3 .2 .3 O p tim istic T im e W in d ow s

A similar idea of “limiting the optim ism ” to overcome rollback overhead potentials is to advance

com putations by “windows” moving over simulated time. In the original work of Sokol, Briscoe

and W ieland [59], the moving time window (M TW) protocol, neither internal nor external events e

w ith ts(e) > / + A are allowed to be simulated in the tim e window [/, / + A), but are postponed for

the next tim e window [/ + A ,/ + 2A). Two events e and e' tim estam ped ts(e) and ts(e') respectively

therefore can only be simulated in parallel iff | ts(e) — ts(er) |< A. Naturally, the protocol is in favor

of simulation models with a low variation of event occurrence distances relative to the window size.

Com pared to a tim e-stepped simulation, M TW does not await the completion of all events e with

t < ts(e) < / + A which would cause idle processors at the end of each tim e window, but invokes an

a ttem pt to move the window as soon as the num ber of events to be executed falls below a certain

threshold. In order to keep moving the tim e window, LPs are polled for the tim estam p of their

earliest next event ti(e) (polling takes place simultaneously with event processing) and the window

is advanced to min; /4-(e), m in4- ti(e) + A. (The next section will show the equivalence of the window

lower edge determ ination to GVT com putation.) Obviously the advantage of M TW and related

protocols is the potential effective im plem entation as a parallel LP simulation, either on a SIMD

33

architecture or in a MIMD environment where the reduction operation m in8^ (e) can be computed

utilizing synchronization hardware. Points of criticism are the assum ption of approxim ately uniform

distribution of event occurrence times in space and the ignorance with respect to potentially “good”

optimism beyond the upper window edge. Furtherm ore, a na tu ra l difficulty is the determ ination of

the A adm itting enough events to make the simulation efficient.

The la tte r is addressed with the adaptive Time Warp concurrency control algorithm (ATW)

proposed by Ball and Hyot [6], allowing the window size A (t) be adapted at any point t in simulation

time. ATW aims to tem porarily suspend event processing if it has observed a certain am ount of lee

violations in the past. In this case the LP would conclude th a t it progresses LVT too fast compared

to the predecessor LPs and would therefore stop LVT advancement for a tim e period called the

blocking window (BW). BW is determined based on the minimum of a function describing wasted

com putation in term s of tim e spent in a (conservatively) blocked mode, or a fault recovery mode

as induced by the Time W arp rollback mechanism.

3 .2 .4 T h e L im ited M em ory D ilem m a

All argum ents on the execution of the Time W arp protocol so far assumed the availability of a

sufficient am ount of free memory to record internal and external effect history for pending rollbacks,

and all argum ents were related to the tim e complexity. Indeed, Time W arp with certain memory

m anagement strategies to be described in the sequel can be proven to work correctly when executed

with 0 { M seg) memory, where M seg is the num ber of memory locations utilized by the corresponding

sequential DES. Opposed to th a t, the CMB protocol may require 0 { k M seg) space, but may also use

less storage than sequential simulation, depending on the simulation model (it can even be proven

th a t simulation models exist such th a t the space complexity of CMB is 0 ({ M seq)k)). Time W arp

always consumes more memory than sequential simulation [40], and a memory lim itation imposes a

performance decrease on Time W arp: providing just the minimum of memory necessary may cause

the protocol to execute fairly slow, such th a t the m em ory/perform ance tradeoff becomes an issue.

Memory m anagement in Time W arp follows two goals: (i) to make the protocol operable on

real multiprocessors with bounded memory, and (ii) to make the execution of Time W arp perfor

mance efficient by providing “sufficient” memory. An infrequent or incremental saving of history

inform ation in some cases can prevent, maybe more effectively than one of the techniques presented

for limiting the optimism in Time W arp, aggressive memory consumption. Once, despite the ap

plication of those techniques, available memory is exhausted, fossil collection could be applied as a

34

0
State Saving Points

OO •

Straggler Q
R ollback

C oast Forw ard _ R esim ulate _

9
- ô —o -

^ C om m itted E ven t O P rocessed , U ncom m itted E ven t O E ven t being p rocessed O S cheduled E vent

Figure 13: Interleaved State Saving

technique to recover memory used for history recording th a t will definitely not be used anymore due

to an assured lower bound on the tim estam p of any possible future rollback (G V T). Finally, if even

fossil collection fails to recover enough memory to proceed with the protocol, additional memory

could be freed by returning messages from the IQ (message sendback, cancelback) or invoking an

artificial rollback reducing space used for storing the OQ.

3 .2 .5 In crem en ta l and In terleaved S ta te Saving

Minimizing the storage space required for simulation models with complex sets of sta te variables

Si C S , Si being the subset stored and m aintained by LP; th a t do not extensively change values

over LVT progression, can be accomplished effectively by just saving the variables Sj G Si affected

by a sta te change. This is mainly an im plem entation optim ization upon step S3.4 in the algorithm

in Figure 11. This incremental sta te saving can also improve the execution complexity in step S 3 .7,

since generally less d a ta has to be copied into the logrecord. Obviously the same strategy could be

followed for the EVL, or the IQ in a lazy réévaluation protocol. Alternatively, imposing a condition

upon step S 3 .7:

S3 .7 if (step.count modulo ir) = = 0 th en log_Liew_state((LVT, ,5', copy_of(EVL)), SS);

could be used to interleave the continuity of saved states and thus on the average reduce the

storage requirem ent to ^ of the noninterleaved case.

Both optim izations, however, increase the execution complexity of rollback. In increm ental state

saving protocols, desired states have to be reconstructed from increments following back a path

LVT 1

35

further into the simulated past than required by rollback itself. The same is true for interleaved

sta te saving, where the most recent saved s ta te older than the straggler m ust be searched for, a

reexecution up until the tim estam p of the straggler (coast forward) m ust be started which is a clear

waste of CPU cycles since it just reproduces states th a t have already been computed but were not

saved, and finally the straggler integration and usual reexecution are necessary (Figure 13). The

tradeoff between sta te saving costs and the coast forward overhead has been studied (as reported

by [49] in reference to Lin and Lazowska) based on expected event processing tim e (e = E[exec(e)])

and sta te saving costs (<r), giving an optim al interleaving factor ir* as

l \J (a - m < 7r* < iV (2 a +

where a is the average num ber of rollbacks with 7r = 1 and /3 = j . The result expresses th a t an

overestim ation of ir* is more severe to performance than an underestim ation by the same (absolute)

am ount. In a study of the optim al checkpointing interval explicitly considering sta te saving and

restoration costs while assuming 7r does neither affect the num ber of rollbacks nor the num ber of

rolled back events in [38], an algorithm is developed th a t, in tegrated into the protocol, “on-the-

fly” , within a few iterations, autom atically adjusts 7r to 7r*. It has been shown th a t some 7r, though

increasing the rollback overhead, can reduce overall execution time.

3 .2 .6 Fossil C o llection

Opposed to techniques th a t reclaim memory tem porarily used for storing events and messages

related to the future of some LP, fossil collection aims to retu rn space used by history records th a t

will no longer be used by the rollback synchronization mechanism. To assure from which sta te in

the history (and back) com putations can be considered fully com m itted, the determ ination of the

value of global virtual time (GVT) is necessary.

Consider the tuple

E,-(T) = (LVT8' (r) , IQ j(T), SS;(T), OQ,-(T))

to be a local snapshot of L P ; at real time T , i.e. L V T , IQ; is the input queue as seen by an

external observer at real time T , etc., and £ (T) = U ^ = i ^ i (T) U CS(T) be the global snapshot of

G L P . Further let L V T j-(T) be the local v irtual tim e in L P ; , i.e. the tim estam p of the event being

processed at the observation instant T , and U M i j (T) the set of external events imposed by L P ;

upon L P j encoded as messages m in the snapshot S . This means m is either in transit on channel

36

ch ij in CS or stored in some IQ j, but not yet processed at tim e T. Then the GVT at real tim e T

is defined to be:

G V T(T) = m in(min LVT8' (r) , min ts (m))
i

It should be clear even by intuition, th a t at any (real tim e) T , G V T (T) represents the maximum

lower bound to which any rollback could ever backdate LVT; (Vi). An obvious consequence is th a t

any processed event e with ts(e) < G V T (T) can never (at no instant T) be rolled back, and can

therefore be considered as (irrevocably) committed [40] (Figure 13). Further consequences (for all

LPj) are that:

(i) messages m £ IQ; with ts (m) < G V T(T), as well as messages m £ OQ; with ts (m) < G V T (T)

are obsolete and can be discarded (from IQ, OQ) after real tim e T.

(ii) sta te variables s £ Si stored in SS; as with t s (s) < G V T (T) are obsolete and can be discarded

after real tim e T.

Making use of these possibilities, i.e. getting rid of external event history according to (i) and

of internal event history according to (ii) th a t is no longer needed to reclaim memory space is the

idea behind fossil collection. It is called as a procedure in the abstracted Time W arp algorithm

(Figure 11) in step S3.11. The idea of reclaiming memory for history earlier than GVT is also

expressed in Figure 10, which shows IQ and OQ sections for entries with tim estam p later than

GVT only, and copies of EVL in SS if not older than GVT (also the rest of SS beyond GVT could

be purged as irrelevant for Time W arp, but we assume here th a t the sta te trace is required for a

post-sim ulation analysis).

Generally, a combination of fossil collection with any of the increm ental/interleaved sta te saving

schemes is recommended. Related to interleaving, however, rollback might be induced to events

beyond the m om entary com m itted GVT, with an average overhead directly proportional 7r. Not

only th a t the interleaving of sta te recording is prohibiting fossil collection for states tim estam ped

in the gap between GVT and the most recent saved sta te chronologically before GVT, it is also

contraproductive to GVT com putation which is comparably more expensive than sta te saving as

will be seen soon.

3 .2 .7 Freeing M em ory by R etu rn in g M essages

Previous strategies (interleaved, increm ental sta te saving as well as fossil collection) are merely

able to reduce the chance of memory exhaustion, but cannot actually prevent such situations from

37

occurring. In cases where memory is already completely allocated, only additional techniques,

m ostly based on returning messages to senders or artificially initiating rollback, can help to escape

from deadlocks due to waiting for free memory:

M essage Sendback The first approach to recover from memory overflow in Time W arp was

proposed by the message sendback mechanism by Jefferson [35]. Here, whenever the system runs

out of memory on the occasion of an arriving message, part or all af the space used for saving

the input history is used to recover free memory by returning unprocessed input messages (not

necessarily including the one just received) back to the sender and relocating the freed (local)

memory. By intuition, input messages with the highest send tim estam ps are returned first, since

it is more likely th a t they carry incorrect inform ation compared to “older” input messages, and

since the annihilation of their effects can be expected not to disperse as much in v irtual time,

thus restriciting annihilation influence spheres. Related to the original definition of the Time

W arp protocol which distinguishes the send time (ST) and receive time (RT) (ST(ra) < RT(ra)) of

messages, only messages with ST(ra) > LVT (local future messages) are considered for returning.

An indirect effect of the sendback could also be storage release in rem ote LPs due to annihilation

of messages triggered by the original sender’s rollback procedure.

G afn i’s P ro to co l In a message traffic study of aggressive and lazy cancellation, Gafni [28] notes

th a t past (RT(ra) < GVT) and present messages (ST(ra) < GVT < RT(ra)) and events accumu

late in IQ, OQ, SS for the two annihilation mechanisms at the same rate , pointing out also the

interweaving of messages and events in memory consumption. Past messages and events can be

fossil collected as soon as a new value of GVT is available. The am ount of “present” messages

and events present in LP; reflects the difference of LVT; to the global GVT directly expressing

the asynchrony or “im balance” of LVT progression. This fact gives an intuitive explanation of the

message sendbactfs a ttem pt to balance LVT progression across LPs, i.e. intentionally rollback those

LPs th a t have progressed LVT ahead of others. Gafni, considering this asynchrony to be exactly

the source from which Time W arp can gain real execution speedup, states th a t LVT progression

balancing is does not solve the storage overflow problem. His algorithm reclaims memory by re

locating space used for saving the input or state or output history in the following way: W hether

the overflow condition is raised by an arriving input message, the request to log a new sta te or the

creation of a new output message, the element (message or event) with the largest tim estam p is

selected irrespective of its type.

38

• If it is an output message, a corresponding antimessage is sent, the element is removed from

OQ and the sta te before sending the original message is restored. The antimessage arriving

at the receiver will find its annihilation partner in the receiver’s IQ upon arrival (at least in

FIFO CSs), so memory is also reclaimed in the receiver LP.

• If it is an input message, it is removed from IQ and returned to the original sender to be

annihilated with its dual in the OQ, perhaps invoking rollback there. Again also the receiver

LP relocates memory.

• If it is a state in SS, it is discarded (and will be recom puted in case of local rollback).

The desirable property of both message sendback and Gafni’s protocol is th a t LPs th a t ran

out of memory can be relieved without shifting the overflow condition to another LP. So, given a

certain minimum but lim ited am ount of memory, both protocols make Time W arp “operable” .

C ancelback An LP simulation memory m anagement scheme is considered to be storage optimal

iff it consumes 0 { M seg) constant bounded memory [40]. The worst case space complexity of Gafni’s

protocol is 0 (N M seq) = 0 (N 2) (irrespective of whether memory is shared or d istributed), the

reason for this being th a t it can only cancel elements within the individual LPs. Cancelback is the

first optim al memory m anagem ent protocol [32], and was developed targeting Time W arp imple

m entations on shared memory systems. As opposed to Gafni’s protocol, in Cancelback elements

can be canceled in any LP; (not necessarily in the one th a t observed memory overflow), whereas

the element selection scheme is the same. Cancelback thus allows to selectively reclaim those mem

ory spaces th a t are used for the very m ost recent (globally seen) input-, state- or output-history

records, whichever LP m aintains this data. An obvious im plem entation of Cancelback is therefore

for shared memory environments and making use of system level in terrupts. A Markov chain model

of Cancelback [1] predicting speedup as the am ount of available memory beyond M seq is varied,

revealed th a t even with small fractions of additional memory the protocol performs about as well

as with unlim ited memory. The model assumes to tally symmetric workload and a constant number

of messages, but is verified with empirical observations.

A rtificia l R ollback Although Cancelback theoretically solves the memory m anagement dilemma

of Time W arp since it produces correct simulations in real, lim ited memory environments with the

same order of storage requirem ent as the sequential DES, it has been criticized for its im plem enta

tion not being straightforw ard, especially in distributed memory environments. Lin [40] describes

39

a Time W arp m anagem ent scheme th a t is in tu rn memory optimal (there exists a shared memory

im plem entation of Time W arp with space complexity 0 { M seq) x), but has a simpler im plem enta

tion. Lin’s protocol is called artificial rollback for provoking the rollback procedure not only for the

purpose of /cc-violation restoration, but also for its side effect of reclaiming memory (since rollback

as such does not affect operational correctness of Time W arp, it can also be invoked artificially,

i.e. even in the absence of a straggler). Equivalent to Cancelback in effect (cancelling an element

generated by LPj from IQ; is equivalent to a rollback in L P j, whereas cancelling an element from

OQi or SSi is equivalent to a rollback in LP8), artificial rollback has a simpler im plem entation since

the rollback procedure already available can be used together with an artificial rollback trigger

causing only very little overhead. Determining, however, in which LP; to invoke artificial rollback,

to what LVT to rollback and at what instant of real tim e T to trigger it is not trivial (except the

triggering, which can be related to the overflow condition and the failure of fossil collection). In the

im plem entation proposed by Lin and Preiss [40], the two other issues are coupled to a processor

scheduling policy in order to guarantee a certain am ount of free memory (called salvage parameter

in [49]), while following the “cancel-furthest-ahead” principle.

A d a p tiv e M em ory M an agem en t The adaptive memory management (AMM) scheme pro

posed by Das and Fujimoto [18] a ttem pts a combination of controling optimism in Time W arp and

an automatic adjustm ent of the am ount of memory in order to optimize fossil collection, Cancel-

back and rollback overheads. Analytical performance models of Time W arp with Cancelback [1] for

homogeneous (artificial) workloads have shown th a t at a certain am ount of available free memory

fossil collection is sufficient to allocate enough memory. W ith a decreasing am ount of available

memory, absolute execution performance decreases due to more frequent cancelbacks until it be

comes frozen at some point. Strong empirical evidence has been given as a support to this analytical

observations. The m otivation now for an adaptive mechanism to control memory is twofold: (i)

absolute performance is supposed to have negative increments after reducing memory even further.

Indeed, one would like to run Time W arp in the area of the “knee-point” of absolute performance.

A successive adaptation to th a t performance optim al point is desired, (ii) the location of the knee

might vary during the course of simulation due to the underlying simulation model. A runtim e

adaptation to follow movements of the knee is desired.

1For im plem entations in d is tribu ted m em ory environm ents, T im e W arp w ith artificial rollback cannot guaran tee a

space com plexity of 0 (M ' seq). Cancelback and A rtificial Rollback in achieving the sequential DES storage com plexity

bound rely on th e availability of a global, shared pool of (free) memory.

40

free m em ory

Figure 14: “Flow of buffers” in the AMM protocol

The AMM protocol for autom atic adjustm ent of available storage uses a memory flow model

th a t divides the available (limited) memory space M into three “pools” , M = M c + M uc + .

M c is the set of all memory locations used to store com m itted elements (/(e) < GV T), M uc is its

analogy for uncom m itted events (in IQ, OQ, or SS with /(e) > GVT) and holds tem porarily

unused (free) memory. The behavior of Time W arp can now be described in term s of flows of

(fixed sized) memory buffers (able to record one message or event for simplicity) from one pool

into the other (Figure 14): Free memory m ust be allocated for every message created /sen t, every

sta te logged or any future event scheduled, causing buffer moves from to M uc. Fossil collection

011 the other hand returns buffers from M c as invoked upon exhaustion of , whereas M c is

being supplied by the progression of GVT. Buffers move from M uc to with each message

annihilation, either incurred by rollback or by Cancelback. A Cancelback cycle is defined by two

consecutive invocations of cancelback. A cycle s tarts where Cancelback was called due to failure of

fossil collection to reclaim memory; at this point there are 110 buffers in M c. Progression of LVT

will move buffers to M “c, rollback of LVT will occasionally return free memory, progression of GVT

will deposit into M c to be depleted again by fossil collection, but tendentially the free pool will be

drained, thus necessitating a new cancelback.

Time W arp can now be controlled by two (m utually dependent) param eters: (i) a , the am ount of

processed but uncom m itted buffers left behind after cancelback, as a param eter to control optimism;

and (■/■/) /3, the am ount fo buffers freed by Cancelback, as a param eter to control the cycle length.

Obviously, a has to be chosen small enough to avoid rollback thrashing and overly aggressive

memory consumption, but not too small in order to prevent rollbacks of states th a t are most likely

41

to be confirmed (events on the critical path). /3 should be chosen in such a way as to minimize the

overhead caused by unnecessary frequent cancelback (and fossil collection) calls. The AMM protocol

now by m onitoring the Time W arp execution behavior during one cycle, a ttem pts to simultaneously

minimize the values of a and /3, but respecting the constraints above. It assumes Cancelback (and

fossil collection) overhead to be directly proportional to the Cancelback invocation frequency. Let

ojVf“c = eco™mHtedN — QpC be the ra te of growth of M “c, where ecommm ed is the fraction of processed
-Lprocess

events also com m itted during the last cycle, Tprocess is the average (real) tim e to process an event

and Qpc is the ra te of depletion of M uc due to fossil collection. (Estim ates for the right hand side

are generated from m onitoring the simulation execution.) /3 is then approxim ated by

/3 = (Tcyde ~ T c b ,f c)q m uc

where T c b ,f c is the overhead incurred by Cancelback and fossil collection in real tim e units,

and Tcycie is the current invocation interval. Indeed, ci is a param eter to control the upper tolerable

bound for the progression of LVT. To set a appropriately, AMM records by a marking mechanism

whether an event was rolled-back by Cancelback. A global (across all LPs) counting mechanism lets

AMM determine the num ber f t (e cp) of events th a t should not have been rolled back by Cancelback,

since they were located on the critical pa th , and by th a t causing a definitive performance degrade2.

S tarting now with a high param eter value for a (which will give an observation f t (e cp) ~ 0), a is

continuously reduced as long as f t (e cp) remains negligible. Rollback thrashing is explicitly tackled

by a th ird mechanism th a t m onitors ecommitted and reduces a and /3 to their halves when the

decrease of ecommitted hits a predefined threshold.

Experim ents with the AMM protcol have shown th a t both the claimed needs can be achieved:

Limiting optimism in Time W arp indirectly by controlling the ra te of drain of free memory can be

accomplished effectively by a dynamically adaptive mechanism. AMM adapts this ra te towards the

performance knee-point autom atically, and adjusts it to follow dynamical movements of th a t point

due to workloads varying (linearly) over time.

2T he Critical Path of a DES is com puted in te rm s of the (real) processing tim e on a certa in ta rg e t arch itec tu re

respecting lee. T raditionally , critical path analysis has been used to study the perform ance of d is tribu ted DES as

reference to an “ideal” , fas test possible asynchronous d is tribu ted execution of th e sim ulation m odel. Indeed, it has

been shown th a t th e leng th of th e critical p a th is a lower bound on th e execution tim e of any conservative protocol,

bu t some optim istic protocols do exist (T im e W arp w ith lazy cancellation, T im e W arp w ith lazy rollback, T im e W arp

w ith phase decom position, and th e C handy-Sherm an Space-T im e M ethod [33], which can surpass the critical pa th .

T he resulting possibility of so called supercritical speedup, and as a consequence its nonsu itab ility as an absolute lower

bound reference, however, has m ade critical p a th less a ttrac tive .

42

3 .2 .8 A lgor ith m s for G V T C om p u ta tion

So far, global virtual time has been assumed to be available at any instant of real tim e T in any

LP i, e.g. for fossil collection (S3.11) or in the simulation stopping criterion (S3). The definition of

G V T(T) has been given in Section 3.2.6. An essential property of G V T (T) not m entioned yet is

th a t it is nondecreasing over (real tim e) T and therefore can guarantee th a t Time W arp eventually

progresses the simulation by com m itting interm ediate simulation work. Efficient algorithms to

compute GVT therefore are another foundational issue to make Time W arp “operable” .

The com putation of G V T (T) (S3.10) generally is hard, such th a t in practice only estim ates

G V T(T) > G V T(T) are attem pted . Estim ates G V T(T), however, (as a necessity to be practically

useful) are guaranteed to not overestim ate the actual G V T (T) and to eventually improve past

estim ates.

G V T C om p u ta tion s E m p loy in g a C en tra l G V T M anager Basically G V T(T) can be com

puted by a central GVT m anager broadcasting a request to all LPs for their current LVT and

while collecting those values perform a ram-reduction. Clearly, the two main problems are th a t

(i) messages in transit potentially rolling back a reported LVT are not taken into consideration,

and (ii) all reported LVTj-(Tj-) values were drawn at different real times Ti. (i) can be tackled

by message acknowledging and FIFO message passing in the CS, (ii) is generally approached by

computing GVT using real tim e intervals [T> ,T<] for every LP; such th a t T f < Ti = T* < for

all LP;. T * , thus is an instant of real tim e th a t happens to lie within every L P ’s interval.

S am ad i’s a lgorith m [56] follows the idea of GVT triggering via a central GVT m anager

sending out a GVT-start message to announce a new GVT com putation epoch. After all LPs have

prom pted the request, the m anager computes and broadcasts the new GVT value and completes

the GVT epoch. The “m essage-in-transit” problem is solved by acknowledging every message, and

reporting the minimum over all tim estam ps of unacknowledged messages in one LP’s OQ, together

with the tim estam p of first (EVL) (as the LP’s local GVT estim ate, LGVT;(T;)) to the GVT m aster.

An improvement of Sam adi’s algorithm by Lin and Lazow ska [39] does not acknowledge every

single message. Instead, to every message a sequence num ber is piggybacked, such th a t LP; can

identify missing messages as gaps in the arriving sequence numbers. Upon receipt of a control

message, the protocol sends out to (all) LPj the smallest sequence num ber still demanded from

LPj as an implicit acknowledgement of all the previous messages with a smaller sequence number.

LPj receiving smallest sequence numbers from other LPs can determine the messages still in transit

43

and compute a lower bound on their tim estam ps.

To reduce communication complexity, B e lle n o t’s a lgorith m [7] embeds GLP in a Message

Routing Graph MRG, which is mainly a composition of two binary trees with arcs interconnecting

their leaves. The MRG for a GLP with N = 10 LPs e.g. would be a three level binary tree mirrored

along its four node leaf base (a MRG construction procedure for arb itrary N is given in [7]). The

algorithm efficiently utilizes the static MRG topology and operates in three steps:

(1) (M R G forw ard phase) LPo (GVT m anager) sends a GVT-start to the (one or) two succes

sor LPs on the MRG. Once an LP; has received GVT-starts from each successors, it sends a

GVT-start in the way as LPo did. Every GVT-start in this phase defines for the traversed

LP*.

(2) (M R G backw ard phase) The arrival of GVT-start messages at the last node in MRG

(LPjv) defines T}y = T*. Now, starting from LPjv, GVT-lvt messages are propagated to

LPo traversing MRG in the opposite direction; is defined for every LP;. Note th a t LP;

propagates “back” as an estim ate the minimum of LVT; and the estim ates received. W hen

LPo receives GVT-lvts from its child LPs in the MRG, it can, with LVTo, determine the new

estim ate GVT(T*) as the minimum over all received estim ates and LVTo-

(3) (broadcast G V T phase) G V T (T*) is now propagated along the MRG.

Bellenot’s algorithm sends less than 4N messages and uses overall 0{ lo g (N)) tim e per GVT

prediction epoch after an 0{ lo g (N)) tim e for the initial MRG embedding. It requires a FIFO , fault

free CS.

The p assive resp on se GVT (p G V T) algorithm [21] copes with faulty communication chan

nels, while at the same tim e relaxing (i) the FIFO requirement to CS and (n) the “centralized

invocation” of the GVT com putation. The la tte r is im portan t since if GVT advancement is made

only upon the invocation by the GVT m anager, GVT cycles due to message propagation delays can

become unnecessarily long in real time. Moreover, frequent invocations can make GVT com puta

tions a severe performance bottleneck due to overwhelming communication load, whereas (argued

in term s of simulated tim e) infrequent invocations causing lags in event comm itm ent bears the

danger of memory exhaustion due to delaying fossil collection overly long. An LP-initiated GVT

estim ation is proposed, th a t leaves it to individual LPs to determine when to report new GVT

inform ation to the GVT m anager. Every LP in one GVT epoch holds the GVT estim ate from

the previous epoch as broadcasted by the GVT m aster. Besides this, it locally m aintains a GVT

44

progress history, th a t allows each LP to individually determine when a new local GVT estim ate

(LGVT) should be reported to the m anager. The algorithms executed by the GVT m anager and

L P 8, independently of all L P;, i ^ I
(1) recalculate th e local G V T estim ate

L G V T = m in (LVTi , t s (mj) 6 OQ^)

w here ts^rrij) is an unacknowledged o u tp u t m es

sage, and

(2) estim ate K, th e num ber of A g y ^ p cycles the

reporting should be delayed, as th e real tim e

^s+ack necessary to send a message to and have

acknowledged it from th e m anager divided by

th e £;-sample average real tim e in betw een two

consecutive tup le arrivals from th e m anager as

jr _ _____^s+ack_____

Ar t ,
and

(3) send th e new L G V T inform ation to th e G V T

m anager w henever G V T + K A g y ^ p exceeds

th e local G V T estim ate L G V T 8.

It is clearly seen th a t a linear predictor of the GVT increment per unit of real tim e is used

to trigger the reporting to the m anager. The receipt of a straggler in LP; with ts (m) < L G V T

naturally requires im m ediate reporting to the m anager, even before the straggler is acknowledged

itself.

A key performance improvement of pGV T is th a t LPs simulating along the critical pa th will

more frequently report GVT inform ation than others (which do not have as great of a chance to

improve GVT), i.e. communication resources are consumed for the targeted purpose ra ther than

wasted for weak contributions to GVT progression.

D istr ib u ted G V T C o m p u ta tion A distributed GVT estim ation procedure does not rely on the

availability of common memory shared among LPs, neither is a centralized GVT m anager required.

Although distributed snapshot algorithms [11] find a straightforw ard application, solutions more

efficient than message ackowledging, the delaying of sending event messages while awaiting control

messages or piggybacking control inform ation onto event messages are desired. M attern [45] uses a

the respective LPj-’s are described as follows:

G V T m a m a n g er

(1) U pon receipt of L G V T 8 determ ine new estim ate

G V T . If G V T > G V T then

(2) recom pute th e £;-sample average G V T incre

m ent as

1 71
A G V T = jfc m A G V T j

j = n — k

w here A q y ^ ^ is th e j - th G V T increm ent out

of a h isto ry of k observations, and

(3) b roadcast th e tup le (G V T , A g y ^ p) to all L P 8.

45

C
P ast o f C Future o f C

£ Event C Consistent Cut

O Cut Event (Invisible to Simulation) C Inconsistent Cut

Figure 15: M atterns GVT Approxim ation Using 2 Contiguous Cuts C and C

“parallel” distributed snapshot algorithm to approxim ate GVT, th a t is not related to any specific

control topology like a ring or the MRG topology. Moreover, it does not rely on FIFO channels.

To describe the basics of M atte rn ’s algorithm distinguish external events ee; £ E E as either

being send events sei £ S E or receive events rei £ R E . The set of events E in the distributed

simulation is thus the union of the set of internal events I E and the set of external events E E =

S E U R E . Both internal (*e; £ I E) and external events (ee; £ E E) can potentially change the

sta te of the Cl in some LP (IQ, OQ, SS, etc.), but only events ee; can change the sta te of C'S,

i.e. the num ber of messages in transit. Let further be ‘ —’ L am port’s happens before relation [36]

defining a partial ordering of e £ E as follows:

(1) if e, e' £ I E C E E and e' is the next after e, then e — e ',

(2) if e £ S E and e' £ R E is the corresponding receive event, the e — e'

(3) if e — e' and e' — e" then e — e"

A consistent cut is now defined as C C E such th a t

(e' £ C) A (e - e') =}► (e £ C).

This means th a t a consistent cut separates event occurrences in LPs to belong either to the

simulations past or its future. Figure 15 illustrates a consistent cut C , whereas C is inconsistent

due to e' £ C , e — e' but e C (cut events are pseudo events representing the instants where a

cut crosses the tim e line of an LP and have no correspondence in the simulation). A cut C is later

46

than a cut C if C C C ' , i.e. the cut line of C can be drawn right to the one for C. The global state

of a cut can now be seen as the local state of every LP;, i.e. all the event occurrences recorded in

IQ, OQ, and SS up until the cut line, and the state of the channels c h i j , (i 7 ̂ j) for which there

exist messages in transit from the past of LP; into the future of LPj at the tim e instant of the

corresponding cut event (note th a t a consistent cut can always be drawn as a vertical (straight)

line after rearranging the events without changing their relative positions).

M atterns GVT approxim ation is based on the com putation of two cuts C and C', C being later

than C. For the com putation of a single cut C the following snapshot algorithm is proposed:

(1) Every LP is colored white initially, and one LPjn^ initiates the snapshot algorithm by broad

casting red control messages to all other LPj (i ^ j) . LPjn^ immediately turns to red. For all

further steps, white (red) LPs can only send white (red) messages, and a white (red) message

received by a white (red) LP does not change the L P ’s color.

(2) Once a white LP; receives a red message it takes a local snapshot Y<i(Cr) representing its state

right before the receipt of th a t message, and turns to red.

(3) W henever a red LP; receives a white message, it sends a copy of it, together with its local

snapshot Y<i(Cr) (containing L V T ^C ')) to LPjn^ . (White messages received by a red LP are

exactly the ones considered as “in tra n s it” .)

(4) After LPjn^ has received all Y<i(Cr) (including the respective LVT;’s) and the last copy of

all “in tra n s it” messages, it can determine C (i.e. the union of all £ ;(C '/)). (Determ ination

of when the last copy of “in tra n s it” messages has been received itself requires the use of

distributed termination algorithm.)

Note th a t the notion of a local snapshot Y<i(Cr) here is related to the cut C ' , as opposed to its

relation to real tim e in Section 3.2.6. All £;(C '/) ’s are drawn at different real times by the LPs,

but are all related to the same cut. We can therefore also not follow the idea of constructing a

global snapshot as £ (T) = U £ i ^ i (T) U CS(T) by combining all S ;(T) and identifying CS(T), wich

would then trivially let us compute G V T (T). Nevertheless, M atte rn ’s algorithm can be seen as an

analogy: all local snapshots Y<i(Cr) are related to C and the m otivation is to determine a global

snapshot S(C '/) related to C ' , however the sta te of the communication system CS(C'/) related to

C is not known. Some additional reasoning about the messages “in tra n s it” at cut C is necessary.

The algorithm avoids an explicit com putation of CS(C'/), by assuming the availability of a previous

47

cut C (C is later than C) th a t isolates an epoch (of v irtual tim e) between C and C th a t guarantees

certain conditions on the sta te of CS(C'/).

Algorithmically this means, th a t for the com putation of a new GVT estim ate along a “fu ture”

cut C given the current cut C, C has to be computed following the algorithm above. Determining

the minimum of all local LVTj-’s from the Uj (C ')s is trivial. To determinine the minimum tim estam p

of all the message “in tra n s it”-copies at C (i.e. messages crossing C in forward direction; messages

crossing C in backward direction can simply be ignored since they do not harm GVT com putation),

C is moved forward as far to the right of C as is necessary to guarantee th a t no message crossing C

originates before C, i.e. no message crosses C and C (illustrated by dashed arrows in Figure 15). A

lower bound on the tim estam p of all messages crossing C can now be easily derived by the minimum

of tim estam ps of all messages sent in between C and C . Obviously, the closer C and C ' , the better

the derived bound and the better the resulting GVT approxim ation. The “parallel” snapshot and

GVT com putation based on the ideas above (coloring messages and LPs, and establishing a GVT

estim ate based on the distributed com putation of two snapshots) is sketched in [45].

3 .2 .9 L im iting th e O p tim ism to T im e B u ck ets

Quite similar to the optim istic tim e windows approach, the Breathing Time Bucket (BTB) protocol

addresses the antimessage dilemma which exhibits instabilities in the performance of Time W arp.

BTB is an optim istic windowing mechanism with a pessimistic message sendout policy to avoid the

necessity of any antimessage by restricting potential rollback to affect only local history records (as

in SRADS [20]). BTB basically processes events in time buckets of different size as determined by

the event horizon (Figure 16). Each bucket contains the maximum am ount of causally independent

events which can be executed concurrently. The local event horizon is the minimum tim estam p of

any new scheduled event as the consequence of the execution of events in the current bucket in some

LP. The (global) event horizon EH then is the minimum over all local event horizons and defines

the lower tim e edge of the next event bucket. Events are executed optimistically, but messages are

sent out in a “risk free” way, i.e. only if they conform to EH.

Two m ethods have been proposed to determine when the last event in one bucket has been pro

cessed, and distribution/collection of event messages generated within th a t bucket can be started ,

but both lacking an efficient (pure) software im plem entation: (i) (multiple) asynchronous broadcast

can be employed to exchange local estim ates of EH in order to locally determine the global EH.

This operation can overlap the bucket com putation during which the CS is guaranteed to be free

48

© © © ©

0 Committed Event O Processed, Uncommitted Event O Scheduled Event

Figure 16: Event Horizons in the Breathing Time Buckets Protocol

of event message traffic. (■/■/) a system wide nonblocking sync operation can be released by every

LP as soon as it surpasses the local EH estim ate, not hindering the LP to continue optimistically

progressing com putations. Once the last LP has issued the nonblocking sync, all the other LPs are

in terrupted and requested to send their event messages. Clearly, BTB can only work efficiently if

a sufficient am ount of events is processed 011 average in one bucket.

The Breathing Time Warp (BTW) [60] combines features of Time W arp with BTB aiming

to eliminate shortcomings of the two protocols. The underlying idea again is the belief th a t the

likelihood of an optimistically processed event being subject to a future correction decreases with

the distance of its tim estam p to GVT. The consequence for the protocol design is thus to release

event messages with tim estam ps close to GVT, but delay the sendout of messages ‘d istan t’ from

GVT. The BTB protocol operates in two modes. Every bucket cycle s tarts in the Time Warp mode,

sending up to M outputm essages aggressively with the hope th a t none of them will eventually be

rolled back. M is the num ber of consecutive messages with tim estam ps right after GVT. If the

LP has the chance to optimistically produce more than M outputm essages in the current bucket

cycle, then BTW switches to the B T B mode, i.e. event processing continues according to BTB,

but message sendout is suppressed. Should the EH be crossed in the BTB mode, then a GVT

com putation is triggered, followed by the invocation of fossil collection. If GVT can be improved,

M is adjusted accordingly.

Depending 011 M (and the simulation model), BTW will perform somewhere between Time

W arp and BTB: For simulation models with very small EH BTW will mostly rem ain in Time

W arp mode. Frequent GVT improvements will frequently adjust M and rarely allow it to be

49

