Gram-Schmidt Projections

- The orthogonal vectors produced by Gram-Schmidt can be written in terms of projectors

$$
q_{1}=\frac{P_{1} a_{1}}{\left\|P_{1} a_{1}\right\|}, \quad q_{2}=\frac{P_{2} a_{2}}{\left\|P_{2} a_{2}\right\|}, \quad \ldots, \quad q_{n}=\frac{P_{n} a_{n}}{\left\|P_{n} a_{n}\right\|}
$$

where

$$
P_{j}=I-\hat{Q}_{j-1} \hat{Q}_{j-1}^{*} \text { with } \hat{Q}_{j-1}=\left[\begin{array}{l|l|l|l}
q_{1} & q_{2} & \cdots & q_{j-1}
\end{array}\right]
$$

- P_{j} projects orthogonally onto the space orthogonal to $\left\langle q_{1}, \ldots, q_{j-1}\right\rangle$, and $\operatorname{rank}\left(P_{j}\right)=m-(j-1)$

2

The Modified Gram-Schmidt Algorithm

- The projection P_{j} can equivalently be written as

$$
P_{j}=P_{\perp q_{j-1}} \cdots P_{\perp q_{2}} P_{\perp q_{1}}
$$

where (last lecture)

$$
P_{\perp q}=I-q q^{*}
$$

- $P_{\perp_{q}}$ projects orthogonally onto the space orthogonal to q, and $\operatorname{rank}\left(P_{\perp q}\right)=m-1$
- The Classical Gram-Schmidt algorithm computes an orthogonal vector by

$$
v_{j}=P_{j} a_{j}
$$

while the Modified Gram-Schmidt algorithm uses

$$
v_{j}=P_{\perp q_{j-1}} \cdots P_{\perp q_{2}} P_{\perp q_{1}} a_{j}
$$

Classical vs. Modified Gram-Schmidt

- Small modification of classical G-S gives modified G-S (but see next slide)
- Modified G-S is numerically stable (less sensitive to rounding errors)

$$
\begin{align*}
& \text { Classical/Modifi ed Gram-Schmidt } \\
& \text { for } j=1 \text { to } n \\
& \qquad \begin{array}{c}
v_{j}=a_{j} \\
\text { for } i=1 \text { to } j-1 \\
\left\{\begin{array}{l}
r_{i j}=q_{i}^{*} a_{j} \quad \text { (CGS) } \\
r_{i j}=q_{i}^{*} v_{j} \quad \text { (MGS) } \\
v_{j}=v_{j}-r_{i j} q_{i} \\
r_{j j}=\left\|v_{j}\right\|_{2} \\
q_{j}=v_{j} / r_{j j}
\end{array}\right.
\end{array} . \begin{array}{l}
\\
\hline
\end{array} \\
& \hline
\end{align*}
$$

Implementation of Modified Gram-Schmidt

- In modified G-S, $P_{\perp q_{i}}$ can be applied to all v_{j} as soon as q_{i} is known
- Makes the inner loop iterations independent (like in classical G-S)

Classical Gram-Schmidt

for $j=1$ to n
$v_{j}=a_{j}$
for $i=1$ to $j-1$
$r_{i j}=q_{i}^{*} a_{j}$
$v_{j}=v_{j}-r_{i j} q_{i}$
$r_{j j}=\left\|v_{j}\right\|_{2}$
$q_{j}=v_{j} / r_{j j}$

Modified Gram-Schmidt

$$
\text { for } i=1 \text { to } n
$$

$$
v_{i}=a_{i}
$$

for $i=1$ to n
$r_{i i}=\left\|v_{i}\right\|$
$q_{i}=v_{i} / r_{i i}$ for $j=i+1$ to n
$r_{i j}=q_{i}^{*} v_{j}$
$v_{j}=v_{j}-r_{i j} q_{i}$

Example: Classical vs. Modified Gram-Schmidt

- Compare classical and modified G-S for the vectors

$$
a_{1}=(1, \epsilon, 0,0)^{T}, \quad a_{2}=(1,0, \epsilon, 0)^{T}, \quad a_{3}=(1,0,0, \epsilon)^{T}
$$

making the approximation $1+\epsilon^{2} \approx 1$

- Classical:
$v_{1} \leftarrow(1, \epsilon, 0,0)^{T}, \quad r_{11}=\sqrt{1+\epsilon^{2}} \approx 1, \quad q_{1}=v_{1} / 1=(1, \epsilon, 0,0)^{T}$ $v_{2} \leftarrow(1,0, \epsilon, 0)^{T}, \quad r_{12}=q_{1}^{T} a_{2}=1, \quad v_{2} \leftarrow v_{2}-1 q_{1}=(0,-\epsilon, \epsilon, 0)^{7}$ $r_{22}=\sqrt{2} \epsilon, \quad q_{2}=v_{2} / r_{22}=(0,-1,1,0)^{T} / \sqrt{2}$
$v_{3} \leftarrow(1,0,0, \epsilon)^{T}, \quad r_{13}=q_{1}^{T} a_{3}=1, \quad v_{3} \leftarrow v_{3}-1 q_{1}=(0,-\epsilon, 0, \epsilon)^{\mathfrak{q}}$

$$
r_{23}=q_{2}^{T} a_{3}=0, \quad v_{3} \leftarrow v_{3}-0 q_{2}=(0,-\epsilon, 0, \epsilon)^{T}
$$

$r_{33}=\sqrt{2} \epsilon, \quad q_{3}=v_{3} / r_{33}=(0,-1,0,1)^{T} / \sqrt{2}$

Example: Classical vs. Modified Gram-Schmidt

- Modified

$$
\begin{gathered}
v_{1} \leftarrow(1, \epsilon, 0,0)^{T}, \quad r_{11}=\sqrt{1+\epsilon^{2}} \approx 1, \quad q_{1}=v_{1} / 1=(1, \epsilon, 0,0)^{T} \\
v_{2} \leftarrow(1,0, \epsilon, 0)^{T}, \quad r_{12}=q_{1}^{T} v_{2}=1, \quad v_{2} \leftarrow v_{2}-1 q_{1}=(0,-\epsilon, \epsilon, 0)^{T} \\
r_{22}=\sqrt{2} \epsilon, \quad q_{2}=v_{2} / r_{22}=(0,-1,1,0)^{T} / \sqrt{2} \\
v_{3} \leftarrow(1,0,0, \epsilon)^{T}, \quad r_{13}=q_{1}^{T} v_{3}=1, \quad v_{3} \leftarrow v_{3}-1 q_{1}=(0,-\epsilon, 0, \epsilon)^{T} \\
r_{23}=q_{2}^{T} v_{3}=\epsilon / \sqrt{2}, \quad v_{3} \leftarrow v_{3}-r_{23} q_{2}=(0,-\epsilon / 2,-\epsilon / 2, \epsilon)^{T} \\
r_{33}=\sqrt{6} \epsilon / 2, \quad q_{3}=v_{3} / r_{33}=(0,-1,-1,2)^{T} / \sqrt{6}
\end{gathered}
$$

- Check Orthogonality:
- Classical: $q_{2}^{T} q_{3}=(0,-1,1,0)(0,-1,0,1)^{T} / 2=1 / 2$
- Modified: $q_{2}^{T} q_{3}=(0,-1,1,0)(0,-1,-1,2)^{T} / \sqrt{12}=0$

Operation Count

- Count number of floating points operations - "flops" - in an algorithm
- Each $+,-, *, /$, or $\sqrt{ }$ counts as one flop
- No distinction between real and complex
- No consideration of memory accesses or other performance aspects

Operation Count - Modified G-S

- Example: Count all $+,-, *, /$ in the Modified Gram-Schmidt algorithm (not just the leading term)
(1) $\boldsymbol{f o r} i=1$ to n
(2) $\quad v_{i}=a_{i}$
(3) for $i=1$ to n

(4)	$r_{i i}=\left\\|v_{i}\right\\|$	m multiplications, $m-1$ additions
(5)	$q_{i}=v_{i} / r_{i i}$	m divisions
(6)	for $j=i+1$ to n	
(7)	$r_{i j}=q_{i}^{*} v_{j}$	m multiplications, $m-1$ additions
(8)	$v_{j}=v_{j}-r_{i j} q_{i}$	m multiplications, m subtractions

Operation Count - Modified G-S

- The total for each operation is

$$
\begin{aligned}
\# A & =\sum_{i=1}^{n}\left(m-1+\sum_{j=i+1}^{n} m-1\right)=n(m-1)+\sum_{i=1}^{n}(m-1)(n-i)= \\
& =n(m-1)+\frac{n(n-1)(m-1)}{2}=\frac{1}{2} n(n+1)(m-1) \\
\# S & =\sum_{i=1}^{n} \sum_{j=i+1}^{n} m=\sum_{i=1}^{n} m(n-i)=\frac{1}{2} m n(n-1) \\
\# M & =\sum_{i=1}^{n}\left(m+\sum_{j=i+1}^{n} 2 m\right)=m n+\sum_{i=1}^{n} 2 m(n-i)= \\
& =m n+\frac{2 m n(n-1)}{2}=m n^{2} \\
\# D & =\sum_{i=1}^{n} m=m n
\end{aligned}
$$

Operation Count - Modified G-S

and the total flop count is

$$
\begin{aligned}
& \frac{1}{2} n(n+1)(m-1)+\frac{1}{2} m n(n-1)+m n^{2}+m n= \\
& 2 m n^{2}+m n-\frac{1}{2} n^{2}-\frac{1}{2} n \sim 2 m n^{2}
\end{aligned}
$$

- The symbol \sim indicates asymptotic value as $m, n \rightarrow \infty$ (leading term)
- Easier to find just the leading term:
- Most work done in lines (7) and (8), with $4 m$ flops per iteration
- Including the loops, the total becomes

$$
\sum_{i=1}^{n} \sum_{j=i+1}^{n} 4 m=4 m \sum_{i=1}^{n}(n-i) \sim 4 m \sum_{i=1}^{n} i=2 m n^{2}
$$

