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On the loss of orthogonality in the Gram-Schmidt orthogonalization
process

Abstract. In this paper we study numerical behavior of several computational variants of the Gram-Schmidt orthogo-
nalization process. We focus on the orthogonality of computed vectors which may be significantly lost in the classical
or modified Gram-Schmidt algorithm, while the Gram-Schmidt algorithm with reorthogonalization has been shown to
compute vectors which are orthogonal to machine precision level. The implications for practical implementation and
its impact on the efficiency in the parallel computer environment are considered.
AMS Subject Classification : 65F25, 65G50, 15A23.

1. Introduction

Scientific computing and mathematical models in engineering are becoming increasingly dependent upon
development and implementation of efficient parallel algorithms on modern high performance computers.
Numerical methods and in particular algorithms of numerical linear algebra represent the most widely used
computational tools in such area. Matrix computations such as the solution of systems of linear equations,
least squares problems, singular value decomposition and algebraic eigenvalue problems, govern the per-
formance of many applications on vector and parallel computers. In almost all of them one can frequently
meet as a fundamental subproblem the orthogonal basis problem, i.e. the problem to construct or to com-
pute an orthogonal basis of some linear subspace or a space generated by column vectors of an associated
rectangular matrix.

In this paper we consider the Gram-Schmidt orthogonalization process, the most widely known and
used representative of a broad class of orthogonalization techniques and strategies (for a deep survey we
refer to [3,9,11]). In particular, we consider its classical and modified variant together with their variants
with reorthogonalization. We will examine the level of orthogonality among the computed basis vectors
produced by these schemes in connection with some characteristics of the initial column matrix A such
as its dimensions or condition number κ(A). We then use these results in the context of Arnoldi process
for constructing an orthogonal basis of a sequence of associated Krylov subspaces. Presented results will
lead to important conclusions about parallel implementation and efficiency of computational variants of the
Gram-Schmidt algorithm.

The organization of the paper is as follows. Section 2 briefly recalls the Gram-Schmidt algorithm for
a rectangular matrix A and gives an overview of basic results on the orthogonality of computed vectors
developed for its different variants. In particular we focus on recent roundoff analysis of the Gram-Schmidt
algorithm with reorthogonalization. In Section 3 we consider the Arnoldi process based on four different
orthogonalization schemes, namely the classical and modified Gram-Schmidt orthogonalizations and their
variants with reorthogonalization. Theoretical results are illustrated by numerical experiments on a real-
world problem from the Harwell-Boeing collection. Throughout this paper, ‖X‖ denotes the 2-norm (spec-
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tral norm) of the matrix X , σmin(X) stands for its minimal singular value and ‖x‖ denotes the Euclidean norm
of the vector x. The condition number of X is denoted by κ(X) and it is defined as κ(X) = ‖X‖/σmin(X).

2. Loss of orthogonality in QR factorization

Let A = (a1, . . . ,an) be a real m×n matrix (m≥ n) with full column rank (rank(A) = n). The Gram-Schmidt
(GS) orthogonalization process [17] produces an orthogonal basis Q = (q1, . . . ,qn) of span(A) such that
A = QR, where R is upper triangular matrix of order n. The orthogonal matrix Q is constructed succes-
sively column-by-column so that for each j = 1, . . . ,n we have Q j = (q1, . . .q j) and span(q1, . . . ,q j) =
span(a1, . . . ,a j). For the purpose of QR factorization of a matrix, many orthogonalization algorithms and
techniques have been proposed and are widely used, including those based on Householder transformations
or Givens rotations (see e.g. [3,9,11]). Also several computational variants of the Gram-Schmidt process
have been proposed and analyzed. Considerably less attention, however, has been paid to their numerical
stability. Indeed, their numerical behavior can significantly differ leading sometimes to a severe loss of
orthogonality or even to the loss of linear independence of computed vectors.

One of the first methods for successive orthogonalization is the classical Gram-Schmidt algorithm
(CGS) [3]. It was confirmed by many numerical experiments, that this technique may produce a set of vec-
tors which is far from orthogonal and sometimes the orthogonality can be lost completely [2]. Nevertheless,
despite its weakness, this technique is frequently considered and implemented, probably due to its simplic-
ity and potential parallelism, which will be discussed later. The brief sketch of the classical Gram-Schmidt
algorithm can be found on Figure 2.1.

A simple change in the loop of the CGS scheme leads to the modified Gram-Schmidt algorithm (MGS)
with better numerical properties which are also much better understood (see the MGS algorithm on Figure
2.1 and/or [3,11]). Indeed, Björck [2] and later Björck and Paige [4] have shown that at iteration step
j = 1, . . . ,n the loss of orthogonality of vectors Q̄ j computed in the modified Gram-Schmidt process can be
bounded as

‖I− Q̄T
j Q̄ j‖ ≤ ζ1(m, j)εκ(A j), (2.1)

where ζ1(m, j) is a low degree polynomial in m and j depending only on details of computer arithmetic, ε
is the machine precision and κ(A j) is the condition number of the matrix A j = (a1, . . .a j). The bound on
the loss of orthogonality of computed vectors in (2.1) is proportional κ(A j). Actually, for ill-conditioned
matrices, the computed vectors can be very far from orthogonal.

In several application areas, however, it is important to compute the vectors Q̄ j so that their orthogo-
nality is close to the machine precision level. As an example of such problem we will consider the Arnoldi
process for computing the basis of Krylov subspaces which is used for solving nonsymmetric eigenvalue
problem. In the framework of the Arnoldi method, the orthogonality of the computed vectors is essential
for obtaining an accurate projection onto the corresponding space [3,9]. In such cases the orthogonal basis
problem is solved usually with Gram-Schmidt process with reorthogonalization. Reorthogonalization could
be in principle applied several times, but as we will show later, one reorthogonalization step is enough
for preserving the orthogonality of computed vectors close to machine precision level. Therefore we con-
sider just algorithms where the orthogonalization of a current vector against the previously computed set is
performed exactly twice.

At each orthogonalization step j = 1, . . . ,n we start with the vector a j and we generate successively
the vectors

a(1)
j = (I −Q j−1QT

j−1)a j, a(2)
j = (I −Q j−1QT

j−1)a
(1)
j , (2.2)

where the new basis vector is given as q j = a(2)
j /‖a(2)

j ‖. The orthogonalization (2.2) is done with CGS, an
analogous formula can be derived for MGS. This leads to the CGS and MGS algorithms with reorthogonal-

ization, respectively (see Figure 2.2), where we initially set a(0)
j = a j.
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Classical GS algorithm: Modified GS algorithm:
for j = 1, . . . ,n for j = 1, . . . ,n

a(1)
j = a j a(1)

j = a j

for k = 1, . . . , j−1 for k = 1, . . . , j−1

a(1)
j = a(1)

j − (a j,qk)qk a(1)
j = a(1)

j − (a(1)
j ,qk)qk

end end

q j = a(1)
j /‖a(1)

j ‖ q j = a(1)
j /‖a(1)

j ‖

end end

Fig. 2.1. The classical and modified Gram-Schmidt algorithms

Classical GS with reorthogonalization: Modified GS with reorthogonalization:
for j = 1, . . . ,n for j = 1, . . . ,n

for i = 1,2 for i = 1,2

a(i)
j = a(i−1)

j a(i)
j = a(i−1)

j
for k = 1, . . . , j−1 for k = 1, . . . , j−1

a(i)
j = a(i)

j − (a(i−1)
j ,qk)qk a(i)

j = a(i)
j − (a(i)

j ,qk)qk

end end
end end

q j = a(i)
j /‖a(i)

j ‖ q j = a(i)
j /‖a(i)

j ‖

end end

Fig. 2.2. The classical and modified Gram-Schmidt algorithms with reorthogonalization

It is clear from (2.2) that in exact arithmetic we have QT
j−1a(1)

j = 0 and a(2)
j = a(1)

j . The situation in
finite precision arithmetic is more complicated and it was up to now less understood. Theoretical analysis
of the situation with two vectors was given by Parlett in his book [15]. Parlett - who attributes this result to
Kahan - showed that for n = 2 two steps are enough for obtaining the orthogonality level prescribed by a
small multiple of machine precision ε. The result of Parlett and Kahan can be generalized for the case of n
vectors. It was shown in [8] that under assumption on numerical nonsingularity of the matrix A j in the form
ζ2(m, j)εκ(A j) < 1, the loss of orthogonality of vectors Q̄ j computed by the CGS or MGS algorithm with
reorthogonalization can be bounded as

‖I− Q̄T
j Q̄ j‖ ≤ ζ3(m, j)ε. (2.3)

The terms ζ2(m, j) and ζ3(m, j) are low degree polynomials in m and j. Indeed, this result shows that two
steps are enough for ensuring the orthogonality on the level of a small multiple of machine precision, when
we apply the CGS (or MGS) orthogonalization process on a set of numerically nonsingular vectors. The

proof of this fact is based on the observation that even the norm of the computed projection ‖ ā(1)
j ‖ cannot

be infinitely small and essentially it is bounded from below by the minimal singular value σmin(A j). This
approach is similar to the analysis of Abdelmalek [1] which is based on the criterion expected to hold in
most practical cases and which can be shown to hold using the results in [8]. All details can be found also
in [13].

The operation count for the CGS or MGS algorithm with reorthogonalization is 2mn2 flops (twice as
much as CGS or MGS). This is comparable to the operation count for the Householder orthogonalization
process which requires 2(mn2−n3/3) flops. However it is clear that the CGS algorithm with reorthogonal-
ization is a better candidate than MGS algorithm with reorthogonalization for parallel implementation (see
the algorithms in Figure 2.2). This aspect could not be neglected in certain computing environments.
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Fig. 2.3. The loss of orthogonality in the QR factorization for different Gram-Schmidt orthogonalization variants: CGS
algorithm (dashed line), MGS algorithm (dotted line), CGS algorithm with reorthogonalization (solid line) and MGS
algorithm with reorthogonalization (dotted-solid line)

Different behaviors of the CGS, MGS algorithms and their variants with reorthogonalization can be
demonstrated by numerical example with the matrix FS1836 from the Harwell-Boeing collection. The di-
mension of the (square) matrix is m = 183, the condition number is κ(A) = 1.7×1011 with ‖A‖= 1.2×109.
Our experiment was performed in MATLAB, where ε = 2.2× 10−16. Figure 2.3 illustrates the loss of or-
thogonality of a computed set of vectors measured by Frobenius norm as ‖I − Q̄T

j Q̄ j‖F at each orthogo-
nalization step j = 1, . . . ,m. Dashed line and dotted lines represent the loss of orthogonality in the CGS
and MGS algorithm, respectively. It is easy to see that after some initial phase there is a gradual loss of
orthogonality of computed vectors in both algorithms leading to its complete loss - we even observe the
loss of linear independence - for CGS, while the loss of orthogonality for MGS remains on the level given
by the bound (2.1). Almost identical solid line and dotted-solid line in Figure 2.3 correspond to the loss
of orthogonality in the MGS and CGS algorithm with reorthogonalization. Clearly the orthogonality of
computed vectors remains close to the machine precision level and it agrees very well with the theoretical
results of [8] and [13].

We point out here that the orthogonal basis problem is of the primary interest in this paper. The situation
could be completely different in applications, where the orthogonality of computed vectors does not play a
crucial role and where the MGS algorithm performs very well. Examples of this type are the solution of the
least squares problems using MGS [3] or the MGS-GMRES method [10].

3. Loss of orthogonality in Arnoldi process

The results on the general QR factorization of a rectangular matrix can be also used in the context of the
Arnoldi process for constructing an orthogonal basis of the Krylov subspace. If we assume that A is a square
nonsingular m -by- m matrix and v1 an m-dimensional vector with ‖v1‖= 1, then let us define K j(A,v1) the
j-th Krylov subspace generated by the matrix A and vector v1 by

K j(A,v1) = span{v1,Av1, . . . ,A
j−1v1}. (3.1)
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Classical way to construct a basis of the Krylov subspaces is the Arnoldi orthogonalization process. The
orthonormal basis V j+1 = [v1, . . . ,v j+1] of the Krylov subspace K j+1(A,v1), called the Arnoldi basis, is
computed via the recurrences

[v1,AVj] = V j+1[e1,H j+1, j], V T
j+1Vj+1 = I j+1, (3.2)

where H j+1, j is the upper Hessenberg j +1 by j matrix with the orthogonalization and normalization coef-
ficients for entries. For more detailed description of the algorithm we refer to [16].

In exact arithmetic the Arnoldi vectors are orthogonal. However, in finite precision computation the
orthogonality is lost and the behavior of Gram-Schmidt variants for computing the Arnoldi basis may differ
significantly. Similarly to the previous section, now we shall consider classical (CGS) and modified Gram-
Schmidt (MGS) algorithms and their variants with reorthogonalization.

The Arnoldi process can be conceived as a column-oriented QR factorization (3.2). For the CGS vari-
ant, the loss of orthogonality in the CGS can be analogously expected to be much worse than in the MGS
version. For the MGS variant, there is a very important relation between the loss of orthogonality among
the computed vectors and the residual norm of an associated least squares problem. This relation has been
described in [10]. It was shown that, the loss of orthogonality of vectors V̄j+1 computed in the modified
Gram-Schmidt implementation of the Arnoldi process is bounded by

‖I− V̄T
j+1V̄j+1‖ ≤ ζ5(m, j)ε

κ(A)

miny ‖ v̄1 −AV̄jy‖
, (3.3)

where the quantity miny ‖ v̄1 −AV̄jy‖ is the norm of the residual of the associated least squares problem
v̄1 ∼ AV̄j. Consequently,the Arnoldi vectors will loose their orthogonality completely only after the residual

miny ‖ v̄1 −AV̄jy‖ is reduced close to the level, which is proportional to the machine precision multiplied
by the condition number κ(A). This suggests that for numerically nonsingular matrix A the loss of orthog-
onality in the modified Gram-Schmidt Arnoldi process occurs in a predictable way and it depends on the
convergence of the residual miny ‖ v̄1 −AV̄jy‖. The details and connection to the GMRES method for the
solution of linear systems can be found in [10].

If we want to keep the computed orthogonality as close to the machine precision as possible, we
need to use the Gram-Schmidt orthogonalization scheme with reorthogonalization. Applying the results
of [8] for the QR decomposition (3.2), it can be shown either for the CGS or MGS Arnoldi process with
reorthogonalization that the loss of orthogonality of the computed vectors V̄j+1 is bounded independently
of the system parameters and we have

‖I− V̄T
j+1V̄j+1‖ ≤ ζ6(m, j)ε. (3.4)

where ζ6(m, j) is a moderate degree polynomial in m and j independent of ε and of other system parameters.
The price for preserving the orthogonality near the machine precision is rather high, it is actually

doubled in comparison to the simple CGS or MGS algorithm. In the parallel computational environment,
however, the CGS algorithm with reorthogonalization can be the method of choice. Several experiments
are reporting that even if performing twice as many operations as MGS, the CGS algorithm with reorthog-
onalization may be faster in some cases because it takes advantage of BLAS 2 or parallel facilities. In the
Arnoldi context we refer to [6] or [14] (see also experiments with the GCR method in [7]).

In the following we illustrate the behavior of the Gram-Schmidt implementations of the Arnoldi pro-
cess. We have used the same matrix FS1836 from the Harwell-Boeing collection with v1 set as the nor-
malized result of a multiplication A(1, . . . ,1)T . In Figure 3.1 we have plotted the loss of orthogonality
of computed vectors of different implementations of the Arnoldi method. Solid line represents the loss of
orthogonality ‖I−V̄T

j V̄j‖F for the Arnoldi using the CGS with reorthogonalization, almost identical dotted-
solid line represents the loss of orthogonality for the MGS with reorthogonalization. Dashed line and dotted
line is the loss of orthogonality for the CGS and MGS Arnoldi implementation, respectively. Numerical
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Fig. 3.1. The loss of orthogonality in different Gram-Schmidt implementations of the Arnoldi process: CGS (dashed
line), MGS (dotted line), CGS algorithm with reorthogonalization (solid line) and MGS algorithm with reorthogonal-
ization (dotted-solid line)

experiment clearly shows that their actual behavior corresponds to the theory developed in [8]. We note
that the loss of orthogonality in CGS leads to a very poor limiting accuracy of the related GMRES method.
In this case the reorthogonalization is mandatory to obtain more accurate approximate solution. Concern-
ing the MGS implementation of GMRES, the loss of orthogonality does not influence the convergence as
predicted by the theory developed in [10].

4. Conclusion and acknowledgment

In this paper we have reviewed the most important theoretical results on the orthogonality of vectors com-
puted by several computational variants of the Gram-Schmidt orthogonalization process. We have stressed
that exactly two iteration-steps are already enough when full precision is wanted in the orthogonal basis
problem and when the CGS or MGS algorithm is applied to (numerically) nonsingular initial set of column
vectors. These results which fulfilled the theoretical gap in understanding the Gram-Schmidt process with
reorthogonalization have been illustrated by a numerical example which comes from a real-world applica-
tion.

The work of the third author was supported by the GA CR under the grant No. 201/02/0595 and by the
GA AS CR under the grant No. A1030103.
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