•••• •••, •••, •••, •••, •••,

[1]. , , , ( ) [2].

> **1.** 1860 «

> > $n(r) = 4/(1 + \tilde{r}^2)^2$ ,  $\varepsilon'$ ,  $\tilde{r} = r/a$ , a - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r - , r -

 $n(r) = \sqrt{s^{2}(r)} = \sqrt{2 - \tilde{r}^{2}}$  1  $e^{\frac{r}{2}} e^{\frac{r}{2}} e^{\frac{r}{2$ 

ε' L . ε' . L+1 –

».



| σ                   | $2a = 4\lambda_0$                     |                                          |                             |
|---------------------|---------------------------------------|------------------------------------------|-----------------------------|
|                     | $\operatorname{Im}' \mathcal{L}' = 0$ | $\operatorname{Im}(\mathcal{L}') = 0.01$ | $\operatorname{Im}(c')=0.1$ |
| C <sub>s</sub>      | 1.765                                 | 1.624                                    | 1.004                       |
| $\sigma_a$          | 0                                     | 0.139                                    | 0.765                       |
| $\sigma(0,0;0,0)$   | 0.104 (-9.83 dB)                      | 0.07 (-11.55 dB)                         | 0.006 (-22.218 dB)          |
| $\sigma(\pi,0;0,0)$ | 123.084 (20.902 dB)                   | 122.376 (20.877 dB)                      | 118.315 (20.730 dB)         |

arepsilon'

,

[3].

र्ड र्ड.

. – .: , 1973. – 855 .

, ,

«

2. Luneburg R.K. The mathematical theory of optics. Providence, RI: Brown Univ. Press, 1944.

3. Fuchs B., Le Coq L., Lafond O., Rondineau S. Design optimization of multishell Luneburg Lenses // IEEE Trans. AP. 2007. V. 55. 2. pp. 283-289.

:

4. . ., . .

.

•

•

••

1.

», 2007.88 .