DonNTU   Masters' portal

Abstract

Сontent

1.General description of work

1.1. Background studies

Fluxes are the most important type of natural non-metallic raw material used for the smelting of ferrous metallurgy of iron. Currently, the production of steel to speed up slag formation and desulfurization of the metal as a thinning supplements are widely used bauxite and fluorspar. Here is a short supply fluorspar raw material, partly imported from abroad. Studies performed Makeevskij steel plant, it was found that an alternative source of bauxite and fluorspar is staurolite [6].

There is a need to study the features of the spatial distribution of staurolite in the producing horizons Osipenko area due to the fact that:

1.2. Communication with the scientific programs, plans, themes

Theme of work is associated with directions of scientific research department of natural resources and ecological geology.

1.3. The purpose of the work

The purpose of this paper is to study the characteristics of the spatial distribution of staurolite in the producing horizons Osipenko area to improve the efficiency of extraction of resources.

1.4. Objectives of research

In accordance with the intended purpose of the following tasks were identified research:

  1. Investigation of the issue (the analysis of previous studies).

  2. Analysis of the geological structure Osipenko prospective area.

  3. The study of the mineral composition of productive strata programs included with the methods of mathematical statistics.

  4. Establishment of the features of the spatial distribution of minerals in the rocks of the staurolite and factors affecting its raspredeleniekie.

  5. Building a graphical model of the field reflecting the distribution of minerals in the rocks.

  6. Identify the most promising areas for priority mining.

1.5. The object of study

The object of research - schists Osipenko prospective area.

1.6. Subject of research

The object of research - mineralogical and chemical composition of the productive strata of the deposit and especially its changes in space.

1.7. Research Methods

  1. Analysis of the problem as a flux material staurolite.

  2. Statistical methods using computer programs.

  3. Methods of graphical modeling using GIS - systems.

1.8 The scientific novelty

Modeling of the distribution of staurolite in the schists for the first time. For the first time found that the maximum accumulation of staurolite is typical for central regions of the producing formation. It is planned to build 3d - field model. Study Osipenko area, will provide new data that can be used in other fields of Ukraine and the world.

1.9. The practical significance

The study of spatial features in the distribution of staurolite Osipenkovskom field will find the most rational approach to his recovery. Studies contribute to the creation of the Azov reliable raw material base of the new progressive type of nonmetallic metallurgical raw materials.

1.10. Personal contribution of the author

Performing studies of mineral deposits of the producing formation based on the methods of mathematical statistics. Establishment of the features of the spatial variability of staurolite rocks. Modeling the distribution of staurolite in the schists.

1.11. Testing results

The research results were presented of the VI International Scientific and Practical Conference ДОНБАСС-2020: ПЕРСПЕКТИВЫ РАЗВИТИЯ ГЛАЗАМИ МОЛОДЫХ УЧЕНЫХ. It is planned to publish an article.

2. Review of research on this subject

In a review of the literature and source material on staurolite raw materials in Ukraine and abroad.

The analysis showed that staurolite - as a mineral, is represented by two types of geological and industrial fields [2]:

Zoning changes in rocks during regional metamorphism

Figure 2.1 - Zoning changes in rocks during regional metamorphism.
(Animation: 4 frames, 7 cycles of repetition, 120 KB)

Mineral resources of the world. Accurate and detailed information about the industrial field, resource extraction and economic resources in the world staurolite virtually none. There is a summary of its production in the United States, Australia, Brazil, Sri Lanka, etc. In particular, the U.S. produces staurolite concentrate, taking away his passing in the development of complex placers. According to DS Gursky summary of work on the aspect of staurolite in the world is unknown [2].

But certainly we know that in Russia, staurolite is distributed in the metamorphic rocks of the Kola Peninsula. At the famous Cave deposit it occurs in mica, quartz-mica and muscovite-kyanite-staurolite schists. Occurs in the southern Urals mountains in the shales Taganay [11].

All of these deposits in Russia are the same genetic type as Osipenkovskoe (shales formed during regional metamorphism of the epidote-amphibolite and amphibolite facies).

Mineral resources of Ukraine. Large deposits of indigenous staurolite schists, representing the commercial interest, discovered in the Azov megablock SHIELD (in thicker shale mezoarheyskoy Osipenko series Sorokinskoy tectonic zone, the area Gulyaypolskoy syncline). Staurolite schists Priazovsky megablock may be a reserve for the expansion of resource base of staurolite.

Staurolite occurs in the intensely metamorphosed schists of Northern and Southern Krivoi Rog. Number of staurolite varies widely and areas reaches 45%. They are especially characteristic of the mica schist beams Razdory (Annovskiy site) [2].

First sequence staurolite rocks, in which localized deposits of staurolite Osipenko described in the article Zhukov G.V. etc Терригенная формация Приазовского кристаллического массива [4]. Later studies were conducted near the geologists until the present time. Usenko I.S., Zakrutkin V.V. and others in the course of these studies examined the petrographic composition of the rocks, characteristics and conditions of metamorphism of schists Azov [5,13,14,15]. In detail features of the stratigraphy of the study area in the works Scherbak N.P. Стратиграфические разрезы Украинского щита [17] and V.V. Zakrutkin Метаморфические комплексы восточной окраины и склона Украинского щита [5]. Data on the mineralogical, chemical composition of rocks Osipenko prospective area and brief information about the features of the structure of the deposit are presented in the work of Gursky D.S., Esipchuka K.Y., Krivonos V.P., Panov B.S., Polunovskogo R.M., Lazarenko E.K. and others [2,6,7,8]. The structural-tectonic and tectonic features of the internal structure of Sorokin's tectonic zone are described in papers V.I. Alekhin [1] and Dudnik V.A. [3]. Data on physical properties and conditions of formation and paragenesis staurolite is well covered in the monograph Fedkina V.V. [16].

The first information about the possibility of staurolite concentrate in metallurgy as a flux (thinning agents) to accelerate the processes of desulphurization slag formation and the metal are found in the works Krivonosa V.P. and Panov B.S. [6,10,11].The authors have substantiated the fact that the com pared with bauxite and fluorspar spa that staurolite concentrate em With a number of advantages. As studies have shown the superiority of staurolite concentrate over other types of fluxes: improving the quality of the metal and decrease its cost. Well-studied problems of stratigraphy, chemical and mineralogical composition, physical properties, the conditions of formation and paragenesis of staurolite. Were not fully investigated geological factors affecting the spatial variability of the quality parameters of staurolite rocks.

3. Geological characteristics of study area and Osipenko field

Large deposits of staurolite schists, representing the industry considerable interest, located on the Azov area megablock Ukrainian crystalline shield (SHIELD). Here they are widely distributed in the shales thicker tsevoy Osipenko a suite of lower Proterozoic, the terms in ern Sea of Azov for large grabenovuyu structure - Sorokin tech tonic zone and the site Gulyaypolskoy syncline. The greatest prospecting vy interest Sorokin zone in the central part of which thick layers of staurolite schists exposed on the surface or lie on the minor depths from 3-5 to 30-40 m wide zone This extends from 1.5-3.5 km from the . Urzuf on the coast of the Azov Sea in the north-westerly direction for 35 km to the s. Andreyevka Berdyansk district. Structurally, Sorokin grabenovaya structure located on the border of two large blocks. South-Western bloc composed of Archean rocks zapadnopriazovskoy series, and the north-east - tsentralnopriazovskoy series of the Lower Proterozoic.

The incision Osipenko Formation within the zone represented by Sorokin biotite, two-mica, amphibole, garnet, graphite, garnet, amphibole, garnet, staurolite, biotite, staurolite, sillimanite-garnet, staurolite-andalusite-mica schists and other, marbles and calciphyres, monomineral, micaceous and amphibole-magnetite quartzites, and metagravelitami metakonglomeratami. Unlike glubokometamorfizovannyh formations West and tsentralnopriazovskoy series (granulite and amphibolite facies) rocks metamorphosed suite osipenkovsky weaker (epidote-amphibolite facies) and did not migmatized. In sections Formation shale formation natural, often rhythmically interbedded. Usually they form lenticular beds ranging from 2 - 10 50 - 600 m along strike to the aged 1.2 - 2.5 and at least 3 - 5 km. Staurolite and garnet-staurolite-mica schist, usually confined to the lower and middle parts of the section Osipenko suite Sorokin zone. Visually they are a breed of gray or dark gray, medium-go fine-grained, schistose well. Against the background of gray quartz-feldspar-mica mass is usually clearly distinguished staurolite porphyroblasts in the form of rhombic prisms in length from 0.1 to 4 cm, and aggregates of crystals [6].

4. Short results

To calculate the statistical indicators in the thickness distribution of staurolite schists OSIPENKO field of data processing used the package SPSS. As a result of the calculation of key indicators for the sample obtained by the following characteristics of the distribution of staurolite Osipenko sequences (Table 4.1).

Table 4.1. Statistical characteristics of the content of staurolite in rocks Osipenko thickness,%

Name of rock Average Minimum Maximum Standard
deviation
Variation
schist garnet-muscovite-biotite 0,13 0,00 2,26 0,47 360
garnet-biotite schist 0,65 0,00 3,01 1,43 220
biotite-garnet schist 0,04 0,00 0,90 0,20 460
schist staurolite-garnet-biotite 9,18 0,00 31,7 7,38 80
schist garnet-staurolite-biotite 8,79 0,08 24,01 4,70 53
garnet-staurolite schist 11,19 0,71 23,51 5,37 48
schist biotite-muscovite-staurolite 8,89 0,12 24,01 4,45 50
chist staurolite-biotite-muscovite 8,27 0,38 17,85 3,91 47

The table shows that the maximum content of staurolite (24%) are typical for the garnet-staurolite-biotite, garnet-staurolite and staurolite-biotite-muscovite schist. On average content of the most promising shale staurolite-garnet-biotite and garnet-staurolite, staurolite, where the content of 9.18% and 11.2% respectively. The most uniform distribution of staurolite is observed in the garnet-staurolite and staurolite-biotite-muscovite schists, as indicated by the value of the variation does not exceed 50%.

In order to establish the main features and geological factors of the spatial variability of the staurolite and identify the most promising areas for the primary mining, special sections have been constructed. In this case, use of GIS - the system of Surfer. With this program, data were obtained on the distribution of staurolite in the plane of the section shown in the concentration isolines. This method allowed us to identify the main trends of its distribution in the rocks. An example of one of the sections shown in Figure 4.1.

Schematic section Osipenko field of staurolite

Fig. 4.1. Schematic section Osipenko field of staurolite
1 - overburden (sand, loam), 2 - Slates garnet-biotite, garnet-biotite, garnet-two-mica, 3 - two-mica schist, 4 - Slates staurolite, staurolite-biotite, biotite-staurolite, garnet-staurolite-biotite, staurolite two-mica-, 5 - Slates biotite, muscovite-biotite, two-mica with staurolite, 6,7,8,9 - layers with different content of staurolite according to calculated data: 6 -> 10%, 7 - 5.10%, 8 - 1 - 5%, 9 - <1%, respectively, 10 - axis of the wells.

It is established that the ore-bearing formations highest content of staurolite gravitate towards their central parts. This is well illustrated by the example presented by the section. At the same ore bodies are composed of alternating layers of shale as staurolite, staurolite-biotite, biotite-staurolite, garnet-staurolite-biotite and staurolite-two-mica. This geological feature gives reason to conclude that the distribution of staurolite structure controlled by the lithological column.

We study the relation of staurolite with garnet, otrobotka which in combination with staurolite will increase the profitability of the deposit. Garnet can be used as an abrasive that is defined by its high hardness, the ability to crack during grinding to particles with sharply angled cutting edges [9].

As a result of the calculation of basic statistics for the sample, the following characteristics of the distribution of garnet Osipenko sequences (Table 4.2).

Tab. 4.2. Statistical characteristics of the content of garnet in the rocks Osipenko thickness,%

Name of rock Average Minimum Maximum Standard
deviation
Variation
schist garnet-muscovite-biotite 3,06 0,97 6,52 1,48 48
garnet-biotite schist 8,99 0,00 49,13 9,88 110
biotite-garnet schist 0,81 0,00 3,62 1,19 23
schist staurolite-garnet-biotite 5,30 0,18 22,48 5,15 97
schist garnet-staurolite-biotite 1,26 0,03 13,96 2,07 164
garnet-staurolite schist 2,02 0,00 15,06 3,35 166
schist biotite-muscovite-staurolite 0,96 0,00 13,96 1,86 194
chist staurolite-biotite-muscovite 0,18 0,00 1,21 0,3 165

The table shows that the maximum and the average content of garnet are the most promising of garnet-biotite and staurolite-garnet-biotite schists.

To illustrate the results of statistical analysis using the package Surfer geological sections have been rebuilt. Based on an analysis which showed that the distribution of garnet for the same lithological differences highly variable (Fig. 4.2).

Schematic section Osipenko field of staurolite

Fig. 4.2. Schematic section Osipenko field of staurolite
1 - overburden (sand, loam), 2 - Slates garnet-biotite, garnet-biotite, garnet-two-mica, 3 - two-mica schist, 4 - Slates staurolite, staurolite-biotite, biotite-staurolite, garnet-staurolite-biotite, staurolite two-mica-, 5 - Slates biotite, muscovite-biotite, two-mica with staurolite, 6, 7, 8, 9 - layers with different content of garnet in the calculated data: 6 -> 15%, 7 - 5-15%, 8 - 1 - 5%, 9 - <1%, respectively, 10 - axis of the wells.

For example, in the garnet - mica schists in the southwest part of the section the content exceeds 15% garnet, and in the same shales in the north-eastern part - does not exceed 3%.

The analysis of correlations between the content of staurolite and garnet: the correlation coefficient is calculated using the package SPSS, ranging from 0.456 to mark - in the garnet-staurolite schist, up to 0.477 + sign in the garnet-muscovite-biotite schists.

Conclusions

As a result, studies of the mineralogical composition of the rocks it was found that most are rich in staurolite schist: staurolite-garnet-biotite, garnet-staurolite and staurolite two-mica.

The simulation productive strata showed that the highest content of staurolite gravitate towards the central parts of the ore-bearing strata: staurolite, staurolite-biotite, biotite-staurolite, staurolite-garnet-biotite and staurolite-two-mica. Studies of the distribution of garnet in the schists Osipenko column indicate the possibility of an integrated mining of ore-bearing formations with pomegranate extract. As a result, studies have revealed stable correlation between the contents of garnet and staurolite. It is established that the distribution of garnet for the same lithological differences rather heterogeneous. The most promising of the contents of garnet are garnet-biotite and staurolite-garnet-biotite schists.

References

  1. Алёхин В.И. Структурно-тектонические и тектонофизические особенности рудных объектов Сорокинской тектонической зоны (на примере месторождений Сурожское и Крутая балка) / В.И. Алёхин // Наукові праці ДонНТУ, серія Гірничо-геологічна. – Донецьк, 2005. – № 96. – С. 96-104.
  2. Гурський Д. С. Металічні і неметалічні корисні копалини України [Текст]. Т. 2. Неметалічні корисні копалини / Д. С. Гурський, К.Ю. Єсипчук, В.І. Калінін та інш. – Київ-Львів: Центр Європи, 2006. – 552 с.
  3. Дудник В.А. Особенности внутренней структуры Сорокинской тектонической зоны (Западное приазовье) / В.А. Дудник, В. А. Корчемагин, Б.С. Панов // Наукові праці Донецького державного технічного університету: присвячується 80-річчю ДонНТУ. – Донецьк, 2001. – С.53-57.
  4. Жуков Г.В. Терригенная формация Приазовского кристаллического массива / Г.В. Жуков, Е.Б. Глевасский // Геол.журн. АН УССР. – 1968. – № 28 (26) – С. 102 – 103.
  5. Закруткин В.В. Метаморфические комплексы восточной окраины и склона Украинского щита [текст] / В.В. Закруткин, Е.А. Кулиш, А.В. Зайцев и др. // Ин-т геохимии и физики минералов. – Киев: Наукова думка, 1990. – 252 с.
  6. Кривонос В.П. Новая сырьевая база ставролита в Украине / В.П. Кривонос, Б.С. Панов, Р.М. Полуновский, В.Н. Чурочкин // Разведка и охрана недр. – 1987. – №12 – С. 28-32.
  7. Лавриненко Л.A. Метаморфизованные обломочные породы в разрезе осипенковской свиты приазовского кристаллического массива / Л.A. Лавриненко, О.И. Лунева, P.M. Полуновский // Литология и осадачная литология докембрия. X Всесоюзное литологическое совещане. – М., 1973. – С. 56-57.
  8. Лазаренко Е.К. Минералогия Приазовья [текст] / Е.К. Лазаренко, Л.Ф. Лавриненко, Н.И. Бучинская и др. – Киев: Наукова думка, 1981. – C. 197 – 200.
  9. Михайлов В.А. Неметалічні корисні копалини України [текст]: Підручник / В.А. Михайлов, Г.Ф. Виноградов, М.В. Курило. – К.: ВЦ Київський університет, 2007.
  10. Панов Б.С. Актуальні питання мінералогії Донбасу та Приазов'я / Б.С. Панов //Записки Українського мінералогічного товариства. – Київ: Логос, 2006. – C. 134– 136.
  11. Панов Б.С. Перспективы развития минерально-сырьевой базы черной металлургии Украины и Донецкой области / Б.С. Панов // Геолого-мінералогічний вісник. – 2006. – №2(16). – С. 79-81.
  12. Панов Б.С. Современное состояние и некоторые перспективы развития минерально-сырьевого комплекса Донецкой области на период до 2020г. / Б.С. Панов, Ю.Б. Панов [Электронный ресурс]. – Режим доступа: http://masters.donntu.ru... .
  13. Усенко И.С. Метаморфизм Украинского щита [текст] / И.С. Усенко, И.Б. Щербаков, Р.И. Сироштан и др. – Киев: Наукова думка, 1982. – 308 с.
  14. Усенко И.С. Об условиях метаморфизма кристаллических сланцев р. Берды (Приазовье) / И.С. Усенко, Т.Г. Хмарчук и др. // Геохимия и рудообразование. – 1973. – № 2. – С. 21-31.
  15. Усенко И.С. Справочник по петрографи Украины (магматические и метаморфические породы [текст] / И.С. Усенко, К.Е. Есипчук. и др. – Киев: Наукова думка, 1975.
  16. Федькин В.В. Ставролит [Текст] / В.В. Федькин. – М.: Наука, 1975.
  17. Щербак Н.П. Стратиграфические разрезы докембрия Украинского щита [текст] / Н.П. Щербак, К.Е. Есипчук и др. – Киев: Наукова думка, 1985. – С. 143-150.