DonNTU   Masters' portal

Abstract

Contents

Introduction

Continuous casting of steel has become a very essential process phase in steel production because of it's strong influence on the final quality of the steel products. An industrial application of continuous casting machines (CCM) is a significant achievement in metallurgy. It provides high slab quality, energy saving, reduces steel production cycle, increases the yield on average by 7-10%, improves the labor conditions, prevents dangerous operations and allows to combine the steel-teeming and rolling processes.

Stability and efficiency of continuous casting, as well as the quality of the slab are influenced by the character of heat transfer processes. Temperature of molten steel has a significant impact on the quality of the ingot. Unlike the traditional technology of pouring steel into forms, violation of temperature conditions during the continuous casting may cause not only complete loss of smelting and total defect of ingots, but even serious accidents. Therefore, the requirements for temperature control of continuous casting must be extremely high.

However, the thermal processes in steel casting are very complex and can not be solved analytically because of the large number of variables affecting changes of the temperature. Experimental method of solving such problems is very expensive, and requires a very complex equipment for physical simulation of real conditions. Progress in development of numerical simulation tools and huge growth of computing performance makes numerical approach the most attractive in solving thermal problems for continuous casting.

1. Theme urgency

When analysing large amounts of data it's often needed to visualize it. Graphical representation of information simplifies the perception and understanding of the simulated processes.

For now there is some software designed to simulate the dynamics of thermal processes in continuous casting machines. Despite this, it is often necessary to develop a new software due to the inability to upgrade existing programs, unsuitability of implemented algorithms etc. Also, most of the existing software can simulate the processes of solidification of ingot only in the 2D form. Mathematical modela of steel crystallization processes are also improving. Thus, the problem of mathematical and graphical simulation of solidification of the ingot remains actual.

Master's work is dedicated to the problem of design and analysis of the algorithm for constructing three-dimensional model of a continuous ingot solidification in real-time.

2. Goal and tasks of the research

Research object: crystallization of steel ingot in CCM.

Research subject: methods of calculation and visualization of temperature field in steel slab.

The purpose of the Master's work is to develop the algorithm of system to build three-dimensional models of heat transfer and crystallization processes in steel ingot during continuous casting.

Conclusion

Following tasks were solved in this work:

In future results of this work will be used for product development, which will implement calculation and construction of 3D model of the temperature field in the ingot in continuous casting machine.

This master's work is not completed yet. Final completion: December 2012. The full text of the work and materials on the topic can be obtained from the author or his head after this date.

References

  1. Дюдкин Д.А. Производство стали. Том 4. Непрерывная разливка металла / Д.А. Дюдкин, В.В. Кисиленко, А.Н. Смирнов. – М. : Теплотехник, 2009. – 528 с.
  2. Буланов Л.В. Машины непрерывного литья заготовок / Л.В. Буланов, Е.П. Парфенов, Н.А. Юровский, В.Ю. Авдонин. – Екатеринбург: Уральский центр ПР и рекламы, 2003. – 320 с.
  3. Соболев В.В. Теплофизика затвердевания металла при непрерывном литье / В.В. Соболев, П.М. Трефилов. – М. : Металлургия, 1988. – 160 с.
  4. Андерсон Д. Вычислительная гидромеханика и теплообмен / Д. Андерсон, Дж. Танненхилл, Р. Плетчер. – М. : Мир, 1990. – 384 с.
  5. Скворцов А.А. Теплопередача и затвердевание стали в установках непрерывной разливки / А.А. Скворцов, А.Д. Акименко. – М. : Металлургия, 1966. – 191 с.
  6. Григорьев В.П. Конструкции и проектирование агрегатов сталеплавильного производства / В.П. Григорьев, Ю.М. Нечкин, А.В. Егоров, Л.Е. Никольский. – М. : МИСИС, 1995. – 512 с.
  7. Смирнов А.Н., Куберский С.В., Штепан Е.В. Непрерывная разливка стали [Электронный ресурс]. – Режим доступа: http://uas.su/books/mnlz/mnlz.php
  8. Авдонин Н.А. Математическое описание процессов кристаллизации / Авдонин Н.А. – Рига : Зинатне, 1980. – 180 с.
  9. Цаплин А.И. Теплофизика в металлургии: учебное пособие / Цаплин А.И. – Пермь : ПГТУ, 2008. – 230 с.
  10. Иванова А.А. Исследование температурных градиентов непрерывного слитка / Иванова А.А. // Труды ИПММ НАН Украины. – Донецк : ИПММ, 2008. – С. 93-102
  11. Валуев Д.В. Технологический процесс разливки стали / Валуев Д.В. – Томск, ЮТИ ТПУ, 2011. – 256 с.
  12. Рутес В.С. Теория непрерывной разливки / В.С. Рутес, В.И. Аскольдов, В.П. Евтеев, В.Я. Генкин, М.Г. Чигринов, А.И. Манохин. – М. : Металлургия, 1971. – 296 с.
  13. Бровман М.Я. Непрерывная разливка металлов / Бровман М.Я. – М. : Экомет, 2007. – 484 с.
  14. Огурцов А.П. Непрерывное литье стали / А.П. Огурцов, А.В. Гресс. – Днепропетровск : Системные технологии, 2002. – 675 с.
  15. Мастрюков Б.С. Теплофизика металлургических процессов / Мастрюков Б.С. – М. : МИСИС, 1996. – 268 с.