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An adaptive dynamic balance scheme was
implemented and tested on an experimental biped.
The control scheme used pre-planned but adaptive
motion sequences. CMAC neural networks were
responsible for the adaptive control of side-to-side and
front-to-back balance, as well as for maintaining good
foot contact. Qualitative and quantitative test results
show that the biped performance improved with
neural network training. The biped is able to start
and stop on demand, and to walk with continuous
motion on flat surfaces at a rate of up to 100 steps per
minute, with up to 6 cm long step.

1. Introduction
The first successful walking controllers for experimental
bipeds emphasized walking with static balance, passing
through a succession of states of static equilibrium. When
walking with dynamic balance, the projected center of
mass is allowed outside of the area inscribed by the feet,
and the walker may be falling during parts of the gait
cycle. A foot must be moved so as to catch the biped at
the proper instant, breaking the fall and achieving a
desired net translational acceleration or deceleration. The
control problems for dynamic walking are more
complicated than for walking with static balance, but
dynamic walking promises to provide higher walking
speeds and greater efficiency with more versatile walking
structures.

The control of the dynamic balance of two-legged
walking machines is difficult for several reasons:

• The control goals (translating without falling) are
not easily decomposed in terms of the actions of
individual actuators.

• The system is unstable, or only marginally stable
(depending on foot design).

• Time delays in the control loop amplify stability
problems.

• The system nonlinear dynamics and kinematics are
difficult to model accurately, and simplified models
are generally not adequate.

• Other significant properties are difficult to model
accurately (gear stiction, gear play, foot flex, etc.).

• Since the robot has no direct connection to an
inertial frame of reference, the controller must rely
on often noisy sensors (foot-force sensors and
accelerometers, for example) to represent the
relationship between the robot and the external
environment.

Largely as the result of these difficulties, practical biped
robots have not yet been developed in research or
industrial settings. In research at the University of New
Hampshire, the following general strategies were
proposed to deal with these problems:

• Use simplified frontal and lateral plane kinematics to
translate logical “posture” commands (e.g. body
angles relative to floor, foot motion relative to body)
to joint commands.

• Depend primarily on pre-planned, but adaptive,
smooth posture motion sequences with sensory
triggers, rather than reactive closed-loop control.

• Utilize the concept of phase-locked central pattern
generators to conform to and make use of the natural
dynamics.

• Depend on on-line adaptation of the posture motion
sequences during sequentially more-difficult tasks,
rather than on accurate dynamic models.

The UNH biped was designed and implemented using
these strategies, in order to test their validity.

2. Background
As a result of walking with static balance early bipeds
had serious constraints on both the biped structure and
walking efficiency. Generally, static bipedal walkers had
large feet and moved slowly. When using reasonably
small feet, even walking slowly with static balance is
difficult, since it requires a very accurate model of the
robot kinematics and of the distribution of mass within
the robot. Summary discussions of the early history of
biped walking machines have been presented by Raibert
[1] and others.

Numerous investigators have discussed specific
theoretical results relevant to the dynamic modeling and
control of biped robots. Extensive considerations of the
major issues in walking with dynamic balance have been
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presented by Raibert [1], among others. Several
investigators have studied walking with dynamic balance
using experimental bipeds. Miura and Shimoyama [2]
used inverted pendulum dynamics and linearized
equations of motion to control the three degree-of-
freedom BIPER-3 and seven degree-of-freedom BIPER-4
robots. Furusho and Masubuchi [3] used a reduced order
nonlinear dynamic model of an experimental biped
structure to determine reference signals for steady
walking. Raibert [1] extended his work with monoped
hopping machines to consider biped running. They used
a dynamic model of the multi-link structure to perform
foot placement planning, and developed decoupled
control systems for body attitude, body height, and foot
placement. Zheng et al.[4,5] studied dynamic walking
using an eight degree-of-freedom biped (the SD-2). He
developed an explicit model for the multi-link biped
dynamics, and designed a feedback controller which
optimized the trajectory of the center of mass using
stability margin criteria. Furusho and Sano [6] used
independent control models for sagittal and lateral plane
motions of an experimental biped robot (the BLR-G2).
Their work focused on the role of force/torque control of
the sole and ankle during dynamic walking. Kajita et al.
[7] developed simple linear differential equations for an
ideal biped with massless legs, assuming that the body
mass was restricted to horizontal motions. This simple
model was used to control a four degree-of-freedom biped
with low-mass legs. Recently, Grishin et al. [8] presented
results of walking experiments using a simple two
degree-of-freedom biped constrained to motion in a
single plane. Their approach emphasized the use of
nominal actuator trajectories computed off-line using a
dynamic model of the biped, augmented by linear
adaptive terms in the on-line controller. These systems
all exhibited some success on horizontal surfaces. In
addition, the SD-2 robot was able to walk on modest
slopes [5]. However, none of these systems represented a
general purpose solution to the problems of walking with
dynamic balance, in the sense of being able to achieve a
variety of stepping rates and lengths, starting and
stopping at arbitrary times, walking on various grades,
and so forth.

The problems in achieving good performance under
varying conditions have led several investigators to the
study of on-line gait adaptation. Wagner et al. [9]
reported a rule-based strategy for switching on-line
between predefined gait controllers. The same group also
investigated the use of a linear adaptive model for step
length control as a function of body attitude and velocity,
using on-line least squares adaptation [10]. Igarashi and

Nogai [11] reported a technique for adaptively combining
members of a set of predefined gaits in order to handle
variations in walking command parameters (such as step
length) and walking environments. The above studies
involved at least partial control system evaluation using
experimental bipeds. Other investigators have studied the
use of neural network learning for on-line gait
modification. This approach makes possible the learning
of new gaits which are not weighted combinations of
predefined gaits. Kitamura et al. [12] proposed a walking
controller based on a Hopfield neural network in
combination with an inverted pendulum dynamic model.
The optimization function for the Hopfield network was
derived using a detailed model of the biped kinematics.
Salatian and Zheng [13] studied both off-line and on-line
reinforcement learning techniques for adapting a gait
designed for horizontal surfaces, in order to walk on
sloping surfaces. All of the above neural network
algorithms were evaluated using dynamic simulations.

In our initial research concerning two-legged walking,
we combined standard supervised learning and temporal
difference learning [14] in order to achieve gait
adaptation for a simulated two-dimensional biped with
massless legs [15]. This work focused on learning
appropriate gait adaptations for achieving sudden body
translational accelerations and decelerations, and for
recovering from unexpected disturbance forces, starting
from a model of steady walking. Similar issues were
subsequently studied in our laboratory by Latham [16],
using a more realistic two-dimensional biped simulation
which accounted for leg masses and foot/floor impact
forces. His approach emphasized adapting gaits derived
from an inverted pendulum model, in order to
accommodate the unmodeled (in the controller) aspects
of the biped dynamics. The adaptive walking control
strategies developed initially in simulation were then
tested and extended in a series of studies using two
generations of experimental bipeds [17,18,19].

3. The UNH Biped Robot System Description
The biped hardware developed in this research is shown
in Figure 1. The biped is approximately 61 cm tall from
foot to hip, and 43 cm tall from hip to the top of the body.
The separation between the legs is 20 cm. Each foot (a
flat metal plate) is 7 cm wide and 12 cm long, with the
ankle attached near the center-rear corner of the foot.
The biped weighs approximately 11 kg. Each hip and
ankle is actuated by two gearmotors, one for rotation of
the leg towards the front of the biped and one for rotation
towards the side. Each knee is actuated by a single
gearmotor. The ten gearmotors are driven by 12 V pulse-
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width-modulated (PWM) motor drivers. The positions of
the ten joints are sensed by optical position encoders on
the gearmotors. Polymer thick film force sensing resistors
are mounted on the underside of each foot, near each
corner (four 1" diameter sensors per foot). Each sensor is
sandwiched between the upper metal foot plate and a thin
disc of rubber, which in turn is bonded to a semi-rigid
Plexiglas and rubber bottom plate. Two piezoresistive
accelerometers oriented along orthogonal horizontal axes
are mounted near the top of the body in order to provide
two-dimensional body acceleration sensing (it is assumed
that the vertical body acceleration is dominated by the
constant gravitational term). All PWM and sensor
circuits are interfaced to a single Siemens 20 MHz
80C166 16-bit microcontroller. This microcontroller
performs sensor and actuator management, low level PD
actuator control, and communicates with the host
processor over a 57.6 Kbaud serial communications line.

High level control computations are carried out on a
single 66 MHz 486 personal computer running the MS
Windows NT real-time multi-threaded operating system.
This processor is responsible for communications with
the biped microcontroller, for gait and balance control
computations, for neural network computations, and for
the user command and status interface.

12 Volt Lead-Acid Battery

80C166 Microcontroller and
Motor Drive Electronics

12 Volt Power
and 57.6K Baud

RS-232
Communications

66 MHz 80486
Windows NT
Workstation

+/- 2G Accelerometers on Side
and Rear Surfaces

Optical Position Encoders on
Each Motor

4 Force Sensing Resistors in
the Sole of Each Foot

Figure 1.  The biped hardware

4. Adaptive Control of Dynamic Balance Walking
Figure 2 shows the basic walking gait of the biped robot.
As a result of the distribution of mass within the
structure, the biped cannot simply lift a foot without
falling. In order to move a foot, it is necessary to first
generate a lateral momentum toward the opposite side.
The foot can then be lifted and moved to a new location.
The resulting gravitational force when the foot is lifted
breaks the momentum and allows the biped to fall back
on to the lifted foot.

Figure 3 gives the outline of the control architecture.
Variables in angle brackets are sampled physical
measurements. Variables depicted in capital letters are

parameters set by the user. Variables in lower case letters
represent results of control calculations. The side-to-side
and foot movement motions in the walking process are
initiated by the gait generator, based on simple heuristics
and an approximate model of the biped kinematics.
CMAC neural networks [20,21,22] are used to modulate
the gait generator as a function of desired step
parameters (step length and step rate) and immediate
sensor feedback. These CMAC neural networks are
responsible for the control of front-to-back and side-to-
side balance, as well as for maintaining good foot
contact. The control strategy uses pre-planned (but
adaptive) smooth motion sequences with sensory triggers,
rather than reactive closed-loop control. In the case of
biped walking, the sensory triggers are the instances of
each foot contacting or breaking contact with the ground,
as detected via the foot force sensors. The closed loop
system forms a phase-locked-loop which synchronizes
the gait generator and the biped dynamics. This way the
central pattern generator conforms to, and makes use of,
the natural dynamics. The phase error is derived from the
sensory triggers, and the period of the natural dynamics
is regulated by modifying the magnitude and velocity of
the commanded side-to-side lean.

Single-Support

Double-Support

Time

Single-Support

Figure 2.  The basic walking gait. The arrows indicate
the direction of motion of the body.

In Figure 3 CMAC 1 is used to control the instantaneous
front/back position of the hips relative to the feet. Let us
define a variable called the Front-Back Center of Force
(FBCF). Let FR1, FR2, FL1, and FL2, be the readings
from the pressure sensors in the front of the two feet (the
“toes”), and FR3, FR4, FL3, and FL4 the readings from
the pressure sensors in the back of the two feet (the
“heels”). The FBCF is then calculated as:
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The FBCF is in the [-40, 40] range. It reaches its
maximum when all the force on the biped feet is on the
“toes” of the feet, and it reaches its minimum when all
the force is on the “heels”. CMAC 1 provides
adjustments to the relative body position in order to
achieve a value of FBCF close to zero. In other words the
output of CMAC 1 is used to achieve an equal overall
distribution of force between the toes and the heels of the
feet during the stepping motions. This has the effect of
preventing the biped from falling forward or backward.
The neural net is trained using the FBCF as the training
error signal. A state of imbalance at a given time during
walking generally results from incorrect postures at
earlier times, rather than from an incorrect current
posture. Thus, the general technique of temporal
difference learning [15] is used to distribute the
information from the delayed supervised learning over
sequential time steps.

CMAC 2 is used to predict the correct amplitude and
velocity of side-to-side lean during each step. An
insufficient lean causes the foot to lift for too short a
duration (or not at all), while too much lean causes the
foot to lift for too long a duration (or for the robot to fall
over laterally). The proper amplitude of lean is dependent
on the state of the robot at the beginning of the step, and
varies somewhat from step to step. It varies significantly
for different desired step lengths and rates. CMAC 2 is
trained after each step, based on the difference between
the desired and observed foot lift durations for that step.

CMAC 1

Front/Back
Balance

Gait Generator

CMAC 2

Right/Left
Balance

Simple
Kinematics

CMAC 3

Closed Chain
Kinematics

Relative Body Front/Back
Offset

∆

∆

Posture
Parameters

Hip
Hip_Y
Knee
Ankle
Ankle_Y

∆

∆

<x-direction acceleration>

<y-direction acceleration>

Gait Phase

STEP LENGTH

SINGLE-SUPPORT DURATION

DOUBLE-SUPPORT DURATION

<Foot Forces>

<x-direction acceleration>

<y-direction acceleration>

Gait Phase

Ankle
Corrections
During Both
Double-Support
and Single-
Support Phases

Gait Phase

Right/Left
Lean Offset
and Sway
Magnitude

Gait Phase

STEP PARAMS.

Figure 3.  Biped learning control architecture

CMAC 3 is used to learn kinematically consistent robot
postures. Whenever it is desired that both feet be in solid
contact with the floor (double-support phases), the
closed-chain kinematics of the structure have to be
addressed. Target positions for all ten motors cannot be
specified independently. In our current controller, hip
and knee angles are produced directly by the gait
controller. CMAC 3 then predicts ankle position
corrections in order to keep the biped feet parallel to the
floor with the force balanced in the middle of each foot.

5. Neural Network Training and Qualitative Results
Training of the biped typically proceeds as follows. The
three CMAC neural networks are first trained during
repetitive foot lift motions similar to marching in place
(i.e. no attempt is made to translate the lifted foot). This
is typically carried out for five minutes, with different
settings for desired foot lift height (in the range 0.5 to 2.5
cm). Frequent human support is required to keep the
biped from falling during the first half of this training,
and occasional support is required during the second
half. Then, training of the three CMAC neural networks
is carried out during attempts at walking (translating the
lifted foot forward), for increasing step lengths, and/or
for various step rates. Again, frequent human support is
required during early training for each new parameter
setting, while less frequent support is required after 2 or
3 minutes of training at a given setting. After about 60
minutes of total training time, the biped is able to shift
body weight from side-to-side while maintaining good
foot contact, and to lift a foot off of the floor for a desired
length of time, during which the foot can be moved to a
new location relative to the body. Using these skills, the
biped is able to start and stop on demand, and to walk
with continuous motion on flat surfaces at a rate of up to
100 steps per minute, with step lengths of up to 6 cm per
step (corresponding to 12 cm stride lengths). Mpeg
movies of the biped walking can be seen on the UNH
Robotics Lab home page at http://www.ece.unh.edu
/robots/rbt_home.htm.

6. Quantitative Results
All data about the state of the biped was taken using a
function of the high level control program. Data was
logged after every execution of the high level control
thread, that is every 28 ms. Desired values logged this
way represent the complete set of values created by the
high level digital controller during the logging period.
The recorded measured values represent the sampled
feedback about biped states received by the high level
controller, since the low level software performs
measurements every 2.8 ms.

Two important parameters used in the high level
controller are the desired distance of the feet from the
ground (foot lift), and the right-left center of force
(RLCF). The RLCF holds information about the relative
magnitude of forces between the feet and ground, as
measured by the foot pressure sensors. If FRi (i=1,...,4)
are the forces measured by the four force sensors on the
right foot, and FLi (i=1,...,4) are the forces measured by
the four force sensors on the left foot then the RLCF is:



5

RLCF
FR FL

FR FL

i i
ii

i i
ii

=
−

+
⋅==

==

∑∑

∑∑
1

4

1

4

1

4

1

4 40

The RLCF is in the [-40, 40] range. It reaches its
maximum when the weight of the biped is on the right
foot, and its minimum the weight is on the left foot.

Figure 4 shows the relationship between the desired lift
of the feet and RLCF at the beginning of training, and
Figure 5 shows these variables after sixty minutes of
training. The desired lifts of the two feet are combined
into a single variable (desired right-left variable) by
subtracting the desired lift of the left foot from the
desired lift of the right foot. This way the desired right-
left lift is positive when the right lift is greater than zero,
and it is negative when the desired left lift is greater than
zero. Note that the two desired lift values can never be
greater than zero at the same time, since that would
mean that the biped is in the air.
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Figure 4.  Desired Right-Left Lift and Measured Right-
Left Center of Force at the Beginning of Training
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Figure 5.  Desired Right-Left Lift and Measured Right-
Left Center of Force After Sixty Minutes of Training

The high level controller uses another variable called the
Front-Back Center of Force (FBCF), introduced in
Section 4. Figure 6 shows the relationship between the
FBCF and the RLCF at the beginning of training, and
Figure 7 shows this relationship after sixty minutes of
training.
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Figure 6.  Right-Left and Front-Back Center of Force at
the Beginning of Training
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Figure 7.  Right-Left and Front-Back Center of Force
After Sixty Minutes of Training

7. Discussion
Figure 4 shows the desired lift of the feet, and the
measured RLCF, at the beginning of training. From the
desired right-left lift in Figure 4 we can see that the feet
are commanded to be in the air for the same amount of
time. However at the beginning of training they spend
unequal time in the air. Figure 5 shows the RLCF and the
desired right-left lift after sixty minutes of training. We
can see that the feet are roughly spending equal time in
the air, as desired. This shows that the neural nets were
trained to augment the pre-planned motion control.
Figure 6 shows the relationship between RLCF and
FBCF at the beginning of training. Ideally we would like
the front-back center of force to be close to zero, however
the value of FBCF oscillates and makes excursions as far
as -25 and +30. Figure 7 shows the right-left and the
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front-back centers of force after sixty minutes of training.
Notice that the excursions of the front-back center of
force around zero are smaller than they were at the
beginning of training, which means that the biped front-
back balance has improved with training.

8. Conclusion
The above results demonstrate that the general strategies
listed in Section 1 can be used in creating a controller for
dynamic bipedal walking. However the biped required
human supervision, as failures occurred every few
minutes, and the biped would fall without support. The
lowest attainable walking speed was determined by the
system dynamics: the biped could not walk at speeds that
required sideways swinging at frequencies below the
natural frequency. The top speed was limited by the
highest possible swinging frequency, which in turn was
limited by the available motor torques, and the
bandwidth of the serial communication link between the
high and low level controllers. Step length was limited by
the masses of the motors at the knee and ankle joints.
Reaction forces resulting from the acceleration and
deceleration of these masses during steps increased the
coupling between the frontal and sagittal plane balancing
problems, causing the controller to fail.
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