
As expected, both perform much better than the standard Hough transform. In
addition, Xu states that RHT cannot be used for ”curves expressed by equations
which are nonlinear with respect to parameters,” which includes ellipses. Robert
McLaughlin [2] experimented with RHT and compared it against the standard HT
and Probabilistic Hough Transform (PHT is similar to HT but only a small portion
α of the pixels in the image, where 2% < α < 15%), are transformed.

McLaughlin achieved good results with RHT vs PHT and HT. He found RHT
had ”higher accuracy that both HT and PHT, in noise free images with multiple
ellipses” . Also, RHT was ”less subject to false alarms in both noise-free and
noisy images. Moreover, RHT proved to be faster than either SHT or PHT ... [and
required] substantially less memory” [2]. These results help verify Xu’s state-
ments on RHT. However, contrary to Xu, McLaughlin performed all experiments
with ellipses, which Xu states cannot be found by RHT. McLaughlin does this by
deriving a linear equation for ellipses.

The author’s goal was to implement the Randomized Hough Transform de-
scribed and implemented by McLaughlin [2]. In addition, Andrew Schuler’s
implementation[3] of McLaughlin’s work served as a reference for this project.
Both papers contain high level information, and a few equations, on parameteriz-
ing an ellipse and find it with a RHT, however, they leave many of the implementa-
tion details to the reader. This caused difficulty to the author in implementing the
RHT because much research was required to determine the correct ellipse equa-
tions and their application to this problem. These equations and implementation
are described below.

2 Algorithm

2.1 High Level Detail

The overall Randomized Hough Transform algorithm implemented is described
below:

1 while(we find ellipses OR not reached the maximum epoch) {
2 for(a fixed number of iterations) {
3 Find a potential ellipse.
4
5 If(the ellipse is similar to an ellipse in the
6 accumulator) average the two ellipses and replace the

4

Оригинал статьи: http://www.saminverso.com/res/vision/EllipseDetection.pdf
Автор: Samuel A. Inverso

7 one in the accumulator. Add 1 to the score.
8
9 Else insert the ellipse into an empty position in the
10 accumulator with a score of 1.
11 }
12 Select the ellipse with the best score and save it in a
13 best ellipse table.
14 Remove the best ellipse’s pixels from the image.
15 Clear the accumulator.
16 }

The algorithm executes for a number of epochs, where an epoch is the process-
ing that occurs to find ellipses through accumulation. The algorithm completes
when the maximum number of epochs is reached or it does not find ellipses for a
specified number of epochs. This allows the user to specify a large epoch maxi-
mum and still not waste computing time if the algorithm stops finding ellipses.

The main body of processing occurs in the for loop starting on line 2. During
the loop, ellipses found are accumulated and given scores. The larger the number
of iterations the more likely multiple similar ellipses will be accumulated into a
single ellipse and given a higher score. At the end of the for loop the accumulator
is searched for ellipses with high scores, which are placed in a best ellipse table.
To reduce redundant work, the best ellipses found are removed from the image.
Because these best ellipses should no longer exist the accumulator is cleared. In
this way, previously found ellipses will not generate high scores in the accumula-
tor overshadowing ellipses not found.

2.2 Ellipse Dissection
As can be seen from the High Level Algorithm Details previously described the
algorithm it self is fairly straight forward. The difficulty arises in actually param-
eterizing the ellipse such that it can be accumulated. This section describes in
detail what is necessary to accomplish this.

Ellipse Equation: A(x− p)2 + 2B(x− p)(y− q)+C(y− q)2 = 1
With restriction: B2 < 4AC
An ellipse can be described in two ways, either by its center coordinate, semi-

major axis length, semiminor axis length, and orientation (p,q,a,b,θ), or by its
center coordinate, radius out from the foci 1, radius out from foci 2, and orien-
tation (p,q,r1,r2,θ). The quin-tuple definition (p,q,a,b) was used in this imple-

5

Figure 1: Ellipse Anatomy

mentation because it followed from the equations derived to find the ellipse in an
image. The orientation, θ, was not used because no suitable equations could be
found to derive it with the information in the image. This is also the reason the
second form, i.e. using the radii, was not used.

It is worthing noting, McLaughlin [2] and Schuler [3] use the second form be-
cause it seemed to uniformally distribute the ellipse parameters across the hough
space. The equations to produce the second form were not forth coming from
those papers, and the author could not find or derive them elsewhere. Because the
orientation was not saved, this implementation only detects ellipses with major
axis 0o and 90o from the x axis. However, this limitation was considered minor in
respect to the overall problem.

Ellipse 4-tuple definition (p,q,a,b)

• p = x coordinate of ellipse center

• q = y coordinate of ellipse center

• a = semimajor axis length

• b = semiminor axis length

6

2.2.1 Determining Ellipse Center

There are five steps to determine an ellipse’s parameters from an image starting
from finding the center coordinates of the ellipse to determining the semimajor
axis’ length (a), semiminor axis’ length (b), and half the distance between the foci
(c).

Figure 2: Determining an ellipse center, which is located at the intersection of the
bisections of the three tangents to the ellipse.

1. Select three points, X1,X2, and X3
Three points are randomly selected from the image such that each point has

an equal opportunity to be chosen. Three times the number of iterations random
numbers were generated from 1 to the length of the image in subindicies to form
sets of three points for each iteration. A subindex is the number of a cell in a
matrix and ranges from 1 to the number of cells in the matrix. This is an alternative
form for specifying a matrix cell from the normal row, column form.

Only unique random numbers generated for subindicies were kept to better
cover the image, because each iteration requires three random points. If, after
throwing away duplicate points, there were not enough points for all iterations
specified, random numbers were generated until there were enough. All numbers
were kept from this second generation, even if they duplicated the first sets.

2. Determine the equation of the line for each point where the

7

Figure 3: Selecting three points to check for an ellipse.

line’s slope is the gradient at the point: y = mx +b. This is done by
checking the pixels around the point and performing a least squares
line fit to them.

Figure 4: Determine the slope and y-intercept of the line passing through the
selected point based on its neighbor pixels represented by the gridded pixels.

Determining the point’s line equation is easy with MATLAB. Roipoly was
used to select points in a seven by seven region around the point of interest. From
the coordinates of these points we use the polyfit to find the slope m1 and y-
intercept b1 for the point of interest.

3. Determine the intersection of the tangents passing through
point pairs (X1,X2) and (X2,X3)

8

Figure 5: Tangents to the ellipse at points X1,X2, and X3. The ellipse’s center is
located where the bisectors of the tangent intersections cross.

The tangent intersection points t12 and t23 are found by solving these systems
of linear equations for the x and y coordinates:

Tangents X1 and X2 for t12:[
m1x + b1 − y = 0
m2x + b2 − y = 0

]
Tangents X2 and X3 for t23:[

m2x + b2 − y = 0
m3x + b3 − y = 0

]
4. Calculate the bisector of the tangent intersection points. This

is a line from the tangent’s intersection, t, to the midpoint of the two
points, m.

The midpoint coordinate m12 equals half the distance from X1 to X2. The
midpoint coordinate and bisection coordinate t12 are used to get the bisection line
equation. This is found by solving the following equation to find the slope:

slope =
my − ty
mx − tx

9

Figure 6: The line bisecting a tangent is found using the point slope line equation,
the midpoint between the two points of interest, m, and the intersection of the
points of interest’s tangents, t.

and using the slope in the line equation to find the y-intercept:

b = slope∗ x− y = slope∗ tx − ty

the bisection line is then: y = slope∗ x−b
5. Find the bisectors intersection to give the ellipse’s center, O
The ellipse’s center is located at the intersection of the bisectors. The intersec-

tion coordinates are found using the bisectors line equations determined in step 4
in the following system of linear equations.

Ellipse center located at (x,y) derived from:

[
m1x + b1 − y = 0
m2x + b2 − y = 0

]
2.2.2 Determining semimajor (a) and semiminor axis’ (b))

Now that the ellipse’s center (p,q) has been determined (in the previous section)
the remaining ellipse parameters:

• a - semimajor axis length

• b - semiminor axis length

10

Figure 7: The tangents, bisectors, and center of ellipse found by the implemented
algorithm.

can be found from the ellipse equation: A(x− p)2+2B(x− p)(y−q)+C(y−q)2 =
1 using the three points randomly selected to create three linear equations with
respect to A, B, and C. First, the ellipse is translated to the origin to reduce the
ellipse equation to: Ax2 + 2Bxy +Cy2 = 1. This is done by subtracting p from x
and q from y for the three points selected in the beginning X1,X2, and X3.

Once the ellipse is translated to the origin, the following system of linear equa-
tions is solved to find the coefficients A, B, and C:

 Ax2
1 + 2Bx1y1 + Cy2

1 = 1
Ax2

2 + 2Bx2y2 + Cy2
2 = 1

Ax2
3 + 2Bx3y3 + Cy2

3 = 1

Next next solve the following equations for the semimajor axis (a) and semimi-

nor axis(b):
semima joraxis(a) =

√
|A−1|

semiminor (b) =
√
|C−1|

11

2.2.3 Verifying the Ellipse Exists in the Image

Even though at this point the ellipse parameters (p,q,a,b,c) were found it is pos-
sible the ellipse does not exist in the image. Two checks occur to verify the ellipse
exists. First, because the ellipse is defined by the general equation for a conic
section:

Ax2 +Bxy+Cy2 +Dx+Ey+F = 0

Figure 8: Example of different two-dimensional shapes derived from passing a
plane through a conic section [1].

The sign of 4AC−B2 determines the type of conic section [1]:

> 0 Ellipse or Circle
= 0 Parabola
< 0 Hyperbola

If the sign is positive then it is an ellipse. Even though the ellipse equation is
satisfied as we see from Figure 9 it is possible the ellipse does not have enough
pixels in the image.

To determine if the ellipse exists in the image the equation of the ellipse is
used to generate points in the image on the perimeter to the ellipse. The number
of points generated is equal to the circumference of the ellipse, which is found
with the equation: π ∗ semima jor axis ∗ semiminor axis. These points are used
to generate a mask of the ellipse, which is ’anded’ with the image. The number
of pixels in the new image are counted and divided by the circumference of the
ellipse. This yields a ratio of pixels to circumference. If the ratio is greater than a
threshold specified by the user the ellipse exists in the image.

12

Figure 9: The black ellipse is in the image. The blue ellipse is verified by the
ellipse equation, however, it does not actually exist in the image because its ratio
of pixels to circumference is to low.

p q a b score
98.8937 99.5075 25.9742 47.2827 3.0000
100.5589 99.2206 25.5182 37.1271 2.0000
105.9815 82.0521 28.4240 56.8710 1.0000
115.0860 86.8599 38.8704 58.1393 1.0000
109.0266 102.1437 45.7310 43.1455 1.0000
103.0161 95.9755 20.9283 51.6607 1.0000
89.7838 122.2568 11.4692 19.6179 1.0000

Figure 10: Example accumulator.

2.3 Accumulating
At this stage the ellipse’s parameters were found and it was verified to exist in the
image. Now the ellipse is added to the accumulator.

The accumulator stores the (p,q,a,b,score) of an ellipse. The half distance
between the foci, c, is not stored because it is not needed to generate ellipse points.
Ellipse points are generated by solving the following equations for φ = 0 to 2∗π:

x = a∗ cos(φ)
y = b∗ sin(φ)

The number of points generated are equal to the number of values used be-
tween [0 and 2 ∗π], in this algorithm the number of values generated is equal to
the circumference of the ellipse.

Below is an example accumulator. The best ellipse has a score of 3.0, is cen-
tered at (98.9,99.5), has semimajor axis of length 25.97 and semiminor axis length
47.3. Figure 11 shows the best ellipse found over the original image.

The following three steps occur to accumulate a new ellipse’s center coordi-
nates (p,q), semimajor axis (a), and semiminor axis (b).

1. For all (pi,qi,ai,bi) ellipses in the accumulator test:

• If the distance between the new ellipse center is within a threshold.√
(pi − p)2 +(qi −q)2 > distance threshold

• |ai −a| > semimajor axis threshold.
• |bi −b| > semiminor axis threshold.

13

2. For any ellipse in the accumulator where the above conditions hold, perform
a weighted average between each of the ellipse parameters (use the score as
the weight) and replace the ellipse in the accumulator with the new weighted
ellipse, then increase the score for this ellipse by one.

Example weighted average of semimajor axis length:

ai ∗ score+a
score+1

3. If there are no ellipses in the accumulator that satisfy this condition place
the new ellipse in the accumulator with a score of 1.

Figure 11: Best ellipse with score 3.0 from the example accumulator shown in
blue over the black ellipse image.

2.4 Storing Best Ellipses and Repeating

After the for loop to accumulate ellipses completes the algorithm finds the best
ellipses in the accumulator and stores them in a matrix of the same form as the
accumulator (p,q,a,b,score). Ellipses are added to the best ellipses matrix the
same way they are stored in the accumulator described in the previous section.

14

Each ellipse is compared to the new ellipse and if they are similar they are
weight averaged together based on their scores. This prevents duplicate ellipses
from occurring in the best ellipse table if they are found during different epochs.

When an ellipse is placed into the best ellipse matrix it is removed from the
image to increase the likelihood other ellipses in the image will be found. Fig-
ure 18 shows an example of the found ellipses removed from the image.

Once all the best ellipses are added to the matrix and removed from the image
the accumulator is cleared for the next epoch and the process repeats.

3 Results

Figure 12: Ellipse found in blue with score seven after 5 epochs 10 iterations per
epoch.

Figure 12 illustrates the result of running the program on an ellipse with ori-
entation 0o to the x-axis. The program ran for 5 epochs at 10 iterations per epoch.
The best ellipse found scored seven. The ellipse does fit perfectly on the ellipse
in the image, the non-overlapping area is a product of stretching the image in
MATLAB.

To determine if the ellipse program discriminates against non-ellipse objects
the ellipse program was run with non-ellipse object images. Figure 13 exemplifies

15

