11.4 Path planning in a mobile robot environment

Navigation is the sclence (or art] of directing the course of & mobils robot a:
it traverses the envircnment Inherent in any navigation scheme is the desire to
reach a destination without getting lost or crashing inte any ohjects.

Often, & path 18 planned off-hne for the robot to follow, which can lead
the robot to its destination assuming that the environment is perfectly known
st statiorary and the robot can track perfectly. Farly path planners were
puch off-line planners or were ooly suitable for such off-line planning (e.g.,
[2d8, 218, 206)), However, the limitations of off-line planning lad researchers

to study on=line planning, which relies on knowledge acquired from sensing the
local environment [222] to handle unknown obstiacles ss the robot traverses the
environment,

The evolution program that we describe here, Le,, the Evolutionary Naviga-
tor (EN), unifies off-line and on-line planning with a simple map of high fidelity
and an efficient planning algorithm [243, 244]. The first part of the algorithm
(off-line planner} searches for the optimal global path from the start to the des-
tination, whereas the second part (on-line planner) is responsible for handling
passible collisions or previously unknown objects by replacing & part of the orig-
inal global path by the optimal subtour. It is important to point out that both
parts of the EN use the same evolutionary algorithm, just with different values
of various parameters,

During the last five years other researchers have been experimenting with
evolutionary computation techniques for the path planning problem. Davidor
[69] used dynamic structures of chromosomes and a medified crossover opera-
tor to optimize some real world processes (including robot paths applications).
In [355] o genetic algorithm to the path planning problem is described, and in
[356] a genetic algorithm for the development of real-time multi-heuristic search
strategies is presented. Both approaches assume a predefined map consisting of
knot points. Other researchers used classifier systems [414] or genetic program-
ming paradigm [176] to approach the path planning problem, Our approach is
unigque in the sense that the Evolutionary Navigator (1} operates in the entire
free space and does not make any a priord assumptions about feasible kmot points
of a path, and (2) it combines together off-line and on-line planning algorithms.

Beafore we explain the algorithm in detail, let us first explain the map strue-
ture. In order to support path search in the entire, continuous free space, vertex
graphs are used to represent objects in the environment. Currently, we restrict
the environment to be two-dimensional with polygonal objects only and motions
of the robot to be translational only, Therefore, the robot can be shrunk to a
point while the objects in the environment “grow” accordingly [248], A mobile
robot equipped with ultrasonic sensors (e.g., a Denning robot) is assumed for
the EN. A known object is represented by the ordered list {clockwise fashion)
of its vertices, On-line encountered unknown obstacles are modeled by pieces of
“wall", where each piece of “wall” is a straight-line and represented by the list
of its two end points. This representation is consistent with the representation
of known objects, while it also accommodates the fact that only partial infor-
mation about an unknown obstacle can be obtained from sensing at u particular
location. Finally, the entive environment is defined as a rectangular area.

Now it is important to define paths that the EN generates, A path consists of
one or more straight-line segments, with the starting location, the goal location,
and (possibly) the intersection locations of two adjacent segments defining the
nodes. A fersible path consists of feasible nodes; an infeasible path contains at
least one infeasible node. Assume there is & path p = (my, ma.. ..,) (02 2),
where m; and my, denote start and goal nodes, respectively. A node my (1 =
1,...,n—1} is infeasible if it is either not connectable to the next node myy dus

to obstncles, or it is located lnside (or too close to) some obstacle. We assume
that the start and goal nodes are located outside the obstacles, and nob Lo
close to them. Note, however, that the start node need not be feasible (it may
e not connectable to the next node), whereas the goal node is always feasible.
Note also that different paths may have different numbers of nodes.

Now we are ready to go through the EN procedure (Figure 11.1).

procedure Evolutionary Navigator
hegin
begin (off-line planner)
get map
obtain the task
perform planning:
current path := FEG(start, goal)
end (off-line planner)
if current path is feasible then
begin (on-line planner)
repeatl
move along the current path while
sensing the environment
if too close to any object then
begin
localstart := current location
local goal ;= next node on the current path
if the object is new
then update the object map
else virtually grow the object
i the closest spot
perform planning;
local_path := NEG(local start, local goal)
uplate current path
end
until (at goal) or {failure condition)
end {(on-line planner)
end

Fig. 11.1. The structure of the Evolutionary Navigator

The EN first reads the map and obtain the start and goal locations of the
task. Then the oFf-line Evolutionary alGorithm (FEG) generates a near-optimal
global path, a piece-wise straight-line path consisting of feasible knot points or
nodes. Figure 11.2 shows such a global path generated by FEG. (The filled circle
gimulates the robot).

As the robot starts to follow the path to move towards the goal, it senses
the environment for its proximity to nearby objects, and the oN-line Evolution-
ary alGorithm (NEG) is used to generate local paths to deal with unexpected

Fig. 11.2. An enwvironment and a global path

collisions and objects. To simulate the effect of unknown objects in the environ-
ment, additional data files were ereated to represent such obstacles (like pieces
of “wall” ss explained esrlier). We experimented with five differemt sets of un-
known objects; Figure 11,38 presents the actions of the robat on one of these
sels,

When the robot moved too close to the lower left corner of the nearby object
‘A’ the NEG virtually “grew”™ *A’ at the spot and generated a loenl path to
steer awny from ‘A’ which was also & piece-wise straight-line path. The robot
then followed the current path suceessfully to reach the point ‘a’. While the
robot moved from ‘a' to ‘b, it detected an unknown or new object ‘B'. Now the
EN updated the map, and again, the NEG gonerated a local path with the knot
point 'd’ (Figure 11.3a). As the robot moved from ‘d' towards ‘b', it became
too close to the object ‘B comsequently, another local path was generated as
represented by the koot point ‘e’ (Figure 11.3b), The robot then moved from
‘d' to ‘e’ and finally reached the subgonl ‘b, The next step was to move from
‘b’ towards the goal; as shown in Figure 11.3c, the path segment was too close
to the lower right corner of the objeet *C'. Therefore, another local path was
generated as represented by the lmot point ‘" and then to the ‘geal’. Figure
11.3d shows the original global path and the actual path traveled. Note that
the navigation process terminates when the rohot arrives at the goal or a failure
condition is reported, ie., when the EN fails to find a feasible path in certain
timne period (i, within specified number of generations of the NEG)

As we already mentioned, the EN combines off-line and on-line planning
with the same data structure and the same planning algorithm, That is, the
only difference between FEG and NEG is in the parameters they use: population
Bige pop_sizeg, number of generations Ty, maximum lengih of a chromosome n,
etc, for FEG, and pop_size;, Ti, ny, ete. for NEG. Note that both FEG and
NEG do global planning, even if NEG usually generates a local path, it operates
on the updated globel map, Moreover, if no cbject is initially known in the
environment, or no nitially known object is between the start location and the
goal location, then FEG will generate o straight-line path with just two nodes:

{a)

(b)

() (d)

Fig. 11.8. An actual path travelad

the start and the goal locations. 1t will solely depend on the NEG to fead the
robat towards the goal while avoiding unknown obstacles.
In the following, we discuss components of FEG and NEG in detail.
Chromosomes are ordered lists of path nodes a8 shown in Figure 11.4. Each
of the path nodes, apart from the pointer to the next node, consists of £ and
y voordinates of an intermediate knot point along the path, and a Boolenn
varinble b, which indicates whether the given node is feasible or not.

!K" Yy b1 S —.|3':,1 rﬂ;bn |

Fig. 11.4. Chromasomo representing s path

The length of the chromosomes (the number of the path nodes represented
in & chromosome) is variable. In offi-line planning, the maximum lemgth of o
chromosome is 26t to be the number ny of vertices representing ktmv‘.'n objects
in the environment. It ts nnlikely that all feasible paths would require a lorge
aumber of (e.g., n,) intermediate nodes: even in complex environments a feasible

path might be quite simple, Therefore, we maoke the length of the chromosomes
virinbile to deal with such situations grocefully,

During the on-line planning, the local path for getting around un obstacle
is likely to contain only & small number of nodes, consequently, the parameter
ny, as the maximum length of the chromosome in this phase, is relatively small
at the beginning of the local search. However, if the evolution process fails to
find & feasible path after some number of generations, the maximum length of
the chromosome should grow: in such situation it is quite likely that feasible
paths have more complex structures. In the EN svstem we sssumed that the
pa;?meter iy was a function of the current generation number ¢, more precisely,
nilt] =t

The initial populations of (pop_size, for FEG, and pop_size, for NEG) chro-
mosomes were generated randomly. For each chromosome, a random number
was generated from the range 2.maz(2,n,) (for the off-line planner) to deter-
mine its length. The coordinates = and y were created randomly for each node
of such a chromosome (the values of coordinates wers reatncted to be within
the confine of the environment, of course),

For each node of each chromosome, the value of the Boolean variable b is
determined (feasibility check). If the node is feasible, its b value is set to TRUE,
otherwise, it is set to FALSE. The methods for checking the feasibility of a
node (Le., location validity, clearance from nearby objects, and connectivity)
are relatively simple and are based on algorithms described by Pavlidis [310].

The fitness (the total path cost) of a chromosome p = {my, TRy s o o T

is determined by two separate evaluation functions {for feasible and infeasible
individuals):

& for a feasible path p
Path_Cost(p) = wy - dist(p) + w;, - smocth(p) + w,. - dear(p),
whers the weights wy, w,, and w, normalize the total cost of a path, and
— dist(p) = T d{m, miy), where d{my, m,) is the distance be

tween koot points my and rmyqq; e, the function dist(p) returns the
total length of the path p.

— smooth(p) = maxP} s(my), where

5'-
min{d(my_y, my), d{myg, my)}

a{my) =

i.e., the function smooth(p) returns the largest curvature of p at a
knot point.
= clear{p) = max{=} ¢;, where

&= di — if I'.-"i -:-_" T
| alr—d;) otherwise,

ey 15 the minlmum distancs between the segment (e, g) of the
path and all known objects, 7 defined a pfe distanes, and o 8o co-
efficient: i.e., the function elear(p) returns the largest number which
measures cleprance between all segments of p and the objects.

s for an infeasible path p:
Path Cost(p) = o + F 47,

where o is the number of intersections of the path p with all walls of the
objects, # is the average number of intersections per infeasible segment,
and + provides the cost of the warst feasible path in the current popula-
tion: because of thiz last variable, any feasible path in the population s
better than any infeasible one (see also section 15.3, part C).

Several operators (crossover, two mutations, insertion, deletion, smooth,
and swap) were included in the FEG and NEG. We discuss them in turn.

Crossover. This operator is similar to the classical one-point crossover widely
used in genetic algorithms. It recombines “good” parts of the paths present
in both parents to produce hopefully better path represented by the offspring.
Two selected chromosomes are cut in some positions and glued together: the first
part of the first chromosome with the second part of the second chromosome,
and the first part of the second chromosome with the second part of the first
chromosome. However, the crossing points in both chromosomes are not selected
randomly: if infeasible nodes are present in the chromosome, the crossing points
fall after one of them,

Mutation_1. This mutation is responsible for fine tuning values of coordinates
of the nodes listed in the chromosome. If a node of a chromosome is selected
for this mutation, its coordinates are modified. For example, the coordinate
z € {a, b} {as well as coordinate y) is changed in the following way:

i Jz=é(t,z—a) if r=20
F= z+6(tb—a), if r=1

where T is a randem bit, and the function 8¢, &) returns a value in the range
of [0..z] such that the probability of &(t,z) being close to zero increases as |
increases (¢ is the current generation number of the evolution process), The
aperator is modeled on non-uniform mutation used in evolutionary systems for
nonlinear optimization {Chapter 7). This mutation is responsible for “smoothing
over” the shape of the path.

Mutation_2. This mutation is useful in cases when a larger change in a value
is required {this situation cecurs often during the on-line planning phase, when
an obstacle is blocking the path). If a node of a chromosorme s selected for this
mutation, its eoordinates are modified. For example, the coordinate x € (a,b)
(a= well as coordinate y) is changed in the following way:

260 11, Evolution Programs for Varlous Disceate Problome

v | z—Alt,z—a), if r=0
Tz Altb=-2), if r=1

where r is a random bit, and the function A{t, z) returns a value in the range of
{0..z] such that the probability of A(¢, z) being close to = increases as generation
number { increases.

Insertion. This operator inserts a new node into the existing path; every place
between two nodes has the same probability of such insertion.

Deletion. This operator deletes a node from the path; every node has the same
probability for such deletion.

Smooth. This operator smooths a part of the path by cutting sharp turns, For
selected knot point ey (with a high curvature), the operator selects two new
knot points k; and ky (from segments {ry_y, my) and (my, myy), respectively),

inserts them into the path, removes my; so it creates a new path p';
g= LG TR (P Y IR L PRSI Wy

Swap. This operator splits the selected chromosome into two parts {the sI-:]it.ting
point is determined at random) and swaps these parts.

Based on the preliminary experimental results, the EN has proved to be ef-
ficient and effective in comparison with navigators using traditional approaches
{e.g., [130]). Results of the current version of the system on two different envi-
ronments are presented in Figures 11.5 and 11.6.

Fig. 11.5. Results of the EN on two environments

Of course, there is a need to explore the EN's potential by conducting
more tests under different environments, most importantly, by implementation
of the EN on a real robot. At the same time, several issues of such evolutionary
navigators remain to be resolved; these include {1) design of smarter termination
conditions for FEG and NEG to better realize the optimization goals (currently
the algorithms terminate either when a feasible path is found or some Fxed
number of generations have elapsed), (2) introduction of adaptive frequencies

11.6 Remurks 141

Start

Fig. 11.68. Results of the EN an another two environments

of the genetic operators, as opposed to the constants in the current version of
the system (this modification should enhance the performance of the system and
it based on the simple observation that different operators may play different
roles at different stages of the evolution process), (3) extension of the EN to
uperate in an environment with noo-polyhedral objects, (4) incorporation of the
knowledge of the current stage of the search into workings of operators (e, it
might be more meaningful to cross two paths at infeasible knot points), and (5)
exploration of some learning mechanism so that the EN can take advantage of
st eXperiences,

Despite its efficlency and effectiveness in many cases, however, the EN has
i major limitation: it assumes that a feasible and sufficiently good actual path
enn be obtained by minor perturbation from the current best path; the system
i not designed to be able to replace the current global path, at some stage of
the traversal, by another (possibly better) global path entirely. Thus it might
lwr worthwhile to experiment with other solutions; for example, an adaptive
navigator { AN} is currently under construction. Unlike the EN, which consists of
ulf-line and on-line planners, an adaptive navigator would be an on-line planner
vompletely; it would constantly adapt the path connecting the current location
of the robot and the goal based on newly gathered sensing information.

11.5 Remarks

In this final section we discuss briefly a few relatively recent applications of
evolutionary techniques, which, for various reasons, are interesting (from the
prerspective of constructing an evolution program}, We discuss them in turn,

There are some applications (e.g., network design problems), in which a
solution is a graph. The problem of representing graphs in genetic algorithms (s
(uite interesting as such. Recently, Palmer and Kershenbaum [304] reported on
experiments with various ways of ropresenting trees, They identified destrable
propertles for ugood reprosentadion; thess inelode

