
Echo State Networks: Appeal and Challenges
Danil Prokhorov

Ford Research and Advanced Engineering
Dearborn, MI 48124

Abstract— The echo state network (ESN) has recently been
proposed for modeling complex dynamic systems. The ESN is
a sparsely connected recurrent neural network with most of
its weights fixed a priori to randomly chosen values. The only
trainable weights are those on links connected to the outputs. The
ESN can demonstrate remarkable performance after seemingly
effortless training. This brief paper discusses ESN in a broader
context of applications of recurrent neural networks (RNN) and
highlights challenges on the road to practical applications.

I. INTRODUCTION

The ESN is a special case of fully connected one-hidden-
layer RNN in which only a small fraction of recurrent connec-
tions in the hidden layer is active (this imitates biologically
plausible sparsity), and only weights W of the connections
from hidden nodes to the outputs are trainable:

z(t + 1) = f(Wstz(t) + Winx(t))
y(t + 1) = Wz(t + 1) (1)

where f consists of bipolar sigmoids or tanh, and Win

are weights from the network inputs x(t). The hidden layer
z with its connections is termed the reservoir in [1]. It is
proposed to choose all reservoir weights Wst at random,
following a simple prescription in [1]. In addition, randomly
chosen are the weights Win which may serve not only the
input connections but also the feedback connections from the
outputs y and the bias connections. ESN augmented with
squares of the reservoir nodes as well as direct (sometimes
squared) connections from the inputs to the outputs are also
proposed (see [2]) to enhance the ESN approximation basis
by additional trainable connections.

The main ESN appeal is simplicity of its training. Indeed,
its output weights can be trained by any suitable method
(recursive least squares, etc.) in one-shot fashion, i.e., without
repetitive passes through the training set which are usually re-
quired for training other RNN architectures. Backpropagation
through time is not required either.

One could call RNN like ESN sparsely connected partially
trained RNN, but we adopt the ESN as a generic name for all
such networks. In retrospect, one can probably recognize these
networks in published literature. For example, [4] discussed
what amounts to a network of coupled oscillators with most
of the weights fixed a priori.

II. DISCUSSION

Among several ESN demonstrations in [1],[2],[3] long-
term (iterated) predictions of several chaotic time series are

especially interesting because they seem to be the best in terms
of accuracy as compared with competitive techniques.

With our own implementation (following Jaeger’s work
closely, though using C language) we can basically confirm
remarkable accuracy of long-term iterative predictions on
the Mackey-Glass series of τ = 17, as well as the one-
step predictions on a set of non-trivial NARMA models as
discussed in [2]. For the Mackey-Glass problem, we observe
that only a small fraction of all solutions (which differ by
randomly initialized weights Wst and Win) achieved the
accuracy quoted (or better than) in [1] and [3]. Figure 1
illustrates our histogram for the maximum number of steps of
the iterated predictions till the divergence between the target
and the ESN prediction becomes visible (this occurs when
the running squared error exceeds the threshold of 0.01). The
majority of our solutions are capable of about 600 to 700
steps of iterated predictions till visible divergence. One of the
solutions (0.1%) is excellent to about 2100 steps.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

50

100

150

200

250

300

350

N
um

be
r 

of
 tr

ia
ls

Number of steps till divergence

Fig. 1. The histogram of the Mackey-Glass series (τ = 17) results for
1000 trials. It shows a distribution of the maximum number of the iterated
prediction steps till the visible divergence between the target and the ESN
prediction.

Figure 2 shows little correlation between the maximum
number of the iterated prediction steps till the visible diver-
gence and the training RMS error. Likewise, the length of
iterated predictions till divergence and the absolute value of
the maximum eigenvalue of the reservoir weight matrix Wst

are not correlated (Figure 3). (Controlling the maximum eigen-
value is proposed in [1] as a suitable ESN design parameter.)

The Mackey-Glass problem of τ = 30 (sampling of 1



3 4 5 6 7 8 9 10

x 10
−6

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Training RMS error

N
um

be
r 

of
 s

te
ps

 ti
ll 

di
ve

rg
en

ce

Fig. 2. The plot of the maximum number of the iterated prediction steps
till the visible divergence vs. the training RMS error corresponding to the
histogram of Figure 1. The statistically significant correlation coefficient is
−0.23.

0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

N
um

be
r 

of
 s

te
ps

 ti
ll 

di
ve

rg
en

ce

|λ
max

|

Fig. 3. The plot of the maximum number of the iterated prediction steps till
the visible divergence vs. the absolute value of the maximum eigenvalue of
the reservoir weight matrix for the same experiment as illustrated in the two
previous figures. The statistically significant correlation coefficient is 0.07.

second) is known to be substantially harder than that of
τ = 17. The fine tracking to nearly 500 time steps quoted
in [1, page 30] seems remarkable, but we have not been able
to confirm this result using our implementation yet. Our best
result is good to about 200 time steps.

When the Mackey-Glass series of τ = 30 is subsampled
every 6 seconds, the best results in [3] are about 120 steps
of iterated predictions. Figure 4 shows our histogram for the
maximum number of steps of the iterated predictions till the
divergence between the target and the ESN prediction becomes
visible. The majority of the solutions are capable of from 40 to
80 steps of iterated predictions till visible divergence. As in the
case of the time series with τ = 17, there is little correlation
between the training RMS error and the test RMS error (or
between other quantities of relevance).

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

Number of steps till divergence

N
um

be
r 

of
 tr

ia
ls

Fig. 4. The histogram of the Mackey-Glass series (τ = 30) results for
1000 trials. It shows a distribution of the maximum number of the iterated
prediction steps till the visible divergence between the target and the ESN
prediction.

We believe that, at least, a part of the blame for our mixed
success in the Mackey-Glass experiments may be ascribed to
difficulties with creating a rich enough reservoir. It is our
observation that an effective recipe for creating a reservoir
adequate to a problem at hand may be not as simple as
the one recommended in [1]. We also seem to be able to
employ successfully functions other than tanh as f in (1)
(e.g., sin and cos), reservoirs with the absolute value of
the maximum eigenvalue outside the unit circle (watch out
for chaotic oscillations in the reservoir!), or delays chosen
randomly from {1, 2, ..., dmax} on connections between the
nodes of the reservoir.

Of special interest for us are problems which can be
handled well by more traditional RNN such as recurrent
multilayer perceptrons (RMLP) etc., especially those for which
good solutions have already been obtained by application
of the backpropagation through time and extended Kalman
filter (BPTT-EKF) methodology [5]. One problem of serious
practical importance is the engine misfire detection problem
introduced in [6] (its simplified version and data are available
at http://www.geocities.com/challenge.html). It is representa-
tive of a class of problems featuring very heterogeneous and
long time series (∼ 100 K points or longer). All our attempts to
solve the simplified version of the misfire detection problem
with ESN failed. We think that the primary reason for our
failure is the inability to obtain the adequate reservoir. It
appears that, at least for the basic ESN design, training only
output weights W just is not enough to compete with our
previous (non-ESN) solutions. These solutions can be obtained
readily, and they are much more compact than potential ESN
solutions.

This brings us to the bigger question of computational
complexity. Suppose that the ESN based solution features the
same number of output weights as our current misfire detection
RNN (about 500 weights). It is important to keep in mind that



this is an on-board (in-vehicle) application, and that the RNN
is to be executed in real time (on the order of milliseconds).
The RNN compactness does matter, and the current (and
even projected) capabilities of in-vehicle computers are not
adequate to run the ESN because this would have to employ
a much larger number of total connections than the RNN.

A set of problems to which application of ESN apparently
runs into serious obstacles is known as adaptive behavior
with fixed weights [7]. RNN with weights fixed after training
by methods based on the BPTT-EKF turn out to acquire
properties that may only be attributed to conventional adaptive
systems. Our attempts to train ESN for either the problem
of learning all quadratic functions discussed in [7] or the
problem of conditioned adaptive behavior [8] have achieved
levels of performance noncompetitive with those obtained by
our standard method. Yet, these problems admit solutions
by relatively modest RNN. As for the quadratic function
problem, our latest results indicate that 3-25R-1L RMLP (751
weights) is sufficient to obtain approximately the same level
of performance as that of our previous solution. The previous
best result was obtained by the significantly larger 3-30R-
10R-1L RMLP (1440 trainable weights), as discussed in [7].
The 3-25R-1L stands for an RMLP with three inputs, one
fully connected recurrent hidden layer of 25 nodes and one
linear output. In fact, this network has the same architecture as
(1) except that its “reservoir” is fully connected and trained.
Presumably, an ESN with 751-weight W should be able to
match the RMLP performance on this task, as implied by
the results of comparative experiments in [2], but in our
experiments even much larger 1000- or 2000-node ESN could
not come close to the RMLP performance.

Interestingly, the RNN training by methods based on the
BPTT-EKF is seldom very sensitive to initial (random) weights
of the network. It is true that the BPTT-EKF implementation
cost is higher than that of the ESN, and it can indeed take a
few training sessions before the optimal values of the training
parameters are found. However, we are confident that even
ESN training can benefit from training the entire network,
e.g., within the BPTT-EKF framework, although in such a
case the preference could be given to training methods with
O(N) computational complexity (N is the number of trainable
parameters).

Though the ESN (with a lucky reservoir!) for iterated
predictions of chaotic time series exhibits impressive perfor-
mance, we should emphasize that these demonstrations are
made with noiseless time series (neither measurement nor
process noise). Real time series are never noiseless. The pres-
ence of noise also limits fundamentally our ability to predict
sufficiently far into the future. In the real world high-accuracy
iterated predictions good to several hundred of time steps, as
in the case of the Mackey-Glass series, are simply not feasible.
Furthermore, time series data may be limited to a fixed and
rather small number of points (e.g., see the challenging time
series competition problem in [9]), precluding the use of
humongous ESN and forcing to be creative in the network
design. Interestingly, when the ESN iterated predictions are

attempted for the well known 1000-point laser time series, the
ESN performance advantage becomes more modest than the
performance of other competitive techniques [3].

A. Applications of ESN to control

We are aware of only two papers discussing applications of
ESN to control [10], [11]. In both of these papers, the ESN
controller is trained on target control values utgt explicitly
provided by a teacher, thereby reducing the control problem
setting to that of the standard modeling. For example, when
the plant function x(t + 1) = F (u(t), x(t)) and the state x
are available, F (·) can possibly be inverted to yield the target
controls: utgt = I(xtgt, x(t)), where x(t+1) = xtgt (the target
state value). The usual ESN training can then be initiated,
as detailed in [1, page 14]. Though in some applications
inference of utgt can be done (perhaps, with the help of model
predictive control methods), in many others such inference is
either infeasible or unreliable.

The generality of model based (indirect) control with ESN
is lower than that of the method for neurocontrol described
in [12]. Indeed, the only requirement for application of the
method [12] is the ability to compute sensitivities of plant
model outputs to changes of its controls. This can efficiently be
done by carrying out BPTT through both the plant model and
the controller. Clearly, computational expenses would be very
significant if we were to carry out BPTT through an ESN based
controller of even modest size. This additional complexity may
all but nullify the main appealing advantage of the ESN. To
avoid this burden, we must either ignore the backpropagation
pathways through the ESN or resort to the well known but
less general neurocontrol methods of [13]. (In the latter case,
the ESN could first model the plant represented in a simplified
form called affine in controls, then the controller is synthesized
as a simple function of the ESN outputs.) In either case, the
neurocontrol quality might not be the best, especially if various
disturbances and uncertainties are present.

We sketch an alternative scheme of indirect control with
ESN. We assume the plant model affine in controls u:

x(t + 1) = F(x(t),u(t))
= H(x(t)) + G(x(t))u(t) (2)

where H is a vector function, G is a control matrix. If the
instantaneous performance measure U(t) = xT (t)Qx(t) +
uT (t)Ru(t), Q > 0, R > 0, then implementable parameteri-
zation of the optimal controller for our infinite horizon control
problem may be expressed using the ESN with output vector
λ as the following product

u(t) = −R−1GT (x(t))λ(x(t),W) (3)

Such ESN can thus be used within the derivative adaptive critic
framework [14]. We first run the closed-loop system forward
with the sequence of controls {u}t=tk

t=t0 provided by the ESN
with constant weights W from (3). To train ESN, we then
employ the dual equations

λtgt(t) = Qx(t) + (∂F(t))/∂x(t))T λtgt(x(t + 1)) (4)



by going backwards from t = tk to t = t0 (set λtgt(x(t+1)) =
0 for t = tk). The ESN training errors are

λtgt(t)− λ(x(t),W) (5)

which are minimized in the usual way. This procedure (going
forward, going backward, then updating W with errors (5))
is repeated till convergence of W. Preliminary experiments
indicate that the ESN based derivative adaptive critic is viable,
especially for control of distributed parameter systems such as
in [15] (the same ESN can be used to control as many nodes of
the distributed system as needed by connecting all controller
outputs to the same reservoir), but it remains to be seen how
competitive it is in comparison with other approaches for
control with RNN. It is still an interesting possibility that the
same ESN with a sufficiently rich reservoir could be used
to control (or model) many dynamic systems by employing
its different outputs and an algorithm for switching between
different sets of W.

In principle, control without a plant model (direct control) is
realizable with ESN, just as with any suitable and less complex
controller parameterization [16]. For some applications one
can train an inverse ESN controller using the well known ap-
proaches of [17] and [18]. Our experiments in direct adaptive
ESN control suggest that simultaneous perturbation stochastic
approximation (SPSA) [19] can successfully be used to adapt
ESN controllers, but this (and other derivative-free approaches
and Q-learning) can also be used to adapt parameters of
any controller. The main issue here is the added significant
complexity vs. realized gains in performance. Furthermore,
direct adaptive approaches are often much slower than model
based control methods. It is worth mentioning that industries
often invest significant resources to obtain high-fidelity models
of plants and create effective controllers using such models
and other problem specific knowledge, which explains why
there exists a significant bias in favor of model based control.
Imposing uncertainties on parameters of plant models does not
prevent us from training robust RNN controllers on instances
of plant models, as detailed in [12].

III. CONCLUSION

With this brief paper, we hope to encourage a constructive
dialogue about the merits of ESN from a broad prospective of
applications. The ESN is especially remarkable when applied
to iterated predictions of noiseless chaotic time series (with
due reservations about the academic nature of such exercises).
The ESN is also appealing to applications in which quick
adaptation is crucial. Yet, on-board or embedded applications
(which put the premium on computational complexity and
require high utilization of all available resources) are likely
to remain limited to networks other than ESN.

Increasingly powerful computers create opportunities for
applications of large RNN such as ESN. In our opinion, even
with modern computers the basic ESN design recipe is not
sufficient to create a successful ESN for a variety of important
applications, as discussed in this paper. Clearly, improved ESN

design/training procedures are needed to increase the chances
of getting a successful ESN in a reasonable number of trials.

ACKNOWLEDGMENT

The author would like to thank Drs. Lee Feldkamp and
Herbert Jaeger for useful discussions.

REFERENCES

[1] H. Jaeger, The “echo state” approach to analysing and training recurrent
neural networks. GMD Report 148, German National Research Center
for Information Technology, 2001.

[2] H. Jaeger, “Adaptive nonlinear system identification with echo state
networks,” NIPS 2002.

[3] H. Jaeger and H. Haas, “Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless telecommunications,” Science,
April 2, 2004, pp. 78–80.

[4] P. Baldi and K. Hornik, “Universal approximation and learning of
trajectories using oscillators,” NIPS 1995.

[5] L. A. Feldkamp, D. V. Prokhorov, C. F. Eagen, and F. Yuan, “Enhanced
multi-stream Kalman filter training for recurrent networks,” in [9], pp.
29–53.

[6] Marko, K., James, J., Feldkamp, T., Puskorius, G., Feldkamp, L., and
D. Prokhorov. “Training recurrent neural networks for classification:
realization of automotive engine diagnostics,” Proceedings of the World
Congress on Neural Networks (WCNN), San Diego, CA, September 1996,
pp. 845–850.

[7] D. Prokhorov, L. Feldkamp, and I. Tyukin, “Adaptive behavior with
fixed weights in RNN: Overview.” Proceedings of International Joint
Conference on Neural Networks ’02, Hawaii, 2002.

[8] L. Feldkamp, D. Prokhorov, and T. Feldkamp, “Simple and conditioned
adaptive behavior from Kalman filter trained recurrent neural network,”
Neural Networks, vol. 16, pp. 683–689, 2003.

[9] J. Suykens and J. Vandewalle (eds), Nonlinear Modeling: Advanced
Black-Box Techniques, Kluwer Academic Publishers, 1998.

[10] J. Hertzberg, H. Jaeger, and F. Schönherr, “Learning to ground fact
symbols in behavior-based robots,” Proceedings of the 15th European
Conference on Artificial Intelligence, Lyon, France, July 2002, pp. 708–
712.

[11] P. Joshi and W. Maas, “Movement generation with circuits of spiking
neurons,” Neural Computation, 2004.

[12] D. V. Prokhorov, G. V. Puskorius, and L. A. Feldkamp, “Dynamical
neural networks for control,” see in A Field Guide to Dynamical Recurrent
Networks, J. Kolen and S. Kremer (Eds.), IEEE Press, 2001, pp. 257–289.

[13] K. S. Narendra and S. Mukhopadhyay, “Adaptive control of nonlinear
multivariable systems using neural networks,” Neural Networks, vol. 7,
no. 5, 1994, pp. 737–752.

[14] D. Prokhorov, “Backpropagation through time and derivative adaptive
critics: a common framework for comparison,” see Chapter 15 in Learning
and Approximate Dynamic Programming, J. Si et al. (eds), IEEE Press,
2004.

[15] D. V. Prokhorov, “Optimal Neurocontrollers for discretized distributed
parameter systems,” in Proceedings of the American Control Conference,
Denver, CO, 2003, pp. 549–554.

[16] R. M. Sanner and J. E. Slotine, “Gaussian networks for direct adaptive
control,” IEEE Trans. Neural Networks, vol. 3, 1992, pp. 837–863.

[17] M. Kawato, Y. Uno, M. Isobe, and R. Suzuki, “Hierarchical neural
network model for voluntary movement with application to robotics,”
IEEE Control Systems Magazine, vol. 8, no. 2, April 1988, pp. 8–15.

[18] B. Widrow and E. Walach. Adaptive Inverse Control. Prentice-Hall,
1994.

[19] J. C. Spall and J. A. Cristion, “Model-free control of nonlinear stochas-
tic systems with discrete-time measurements,” IEEE Trans. Automatic
Control, vol. 43, no. 9, September 1998, pp. 1198–1210.


