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Fig. 1.5 (a) A rectangular function of time with the t = 0 axis so chosen that the func-
tion is an even function. The duration of the signal is 2T0. (b) Fourier transform of the 
function. 

The Fourier transform of this time function is given by 
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The first term in the Fourier transform is a phase shift factor and has been 
omitted from the plot in Figure 1.5b for convenience. If the rectangular wave 
is centered at the origin, t1 = �T0/2, and the phase shift factor vanishes. This is 
also in keeping with Property 2 of the Fourier transform given above, which 
states that the Fourier transform of a real even function must be real and even 
function of frequency. 

 

Sampled data from input signals are the starting point of digital signal proc-
essing. The computation of phasors of voltages and currents begins with sam-
ples of the waveform taken at uniform intervals k T, (k = 0, 1, 2, 3, 

4,······ }. Consider an input signal x(t) which is being sampled, yielding sam-
pled data x(k T). We may view the sampled data as a time function x (t) con-
sisting of uniformly spaced impulses, each with a magnitude x(k T): 
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It is interesting to determine the Fourier transform of the sampled data 
function given by Eq. (1.11). Note that the sampled data function is a product 
of the function x(t) and the sampling function (t � k T), the product being 
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interpreted in the sense of Eq. (1.9). Hence the Fourier transform X (f) of x (t) 
is the convolution of the Fourier transforms of x(t) and of the unit impulse train. 
By Property 6 of Section 1.3, the Fourier transform of the impulse train is 
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Hence the Fourier transform of the sampled data function is the convolu-
tion of (f) and X(f) 
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Once again the order of summation and integration has been reversed (it 
being assumed that this is permissible), and the integral is evaluated by the 
use of the sampling property of the impulse function. 

The relationship between the Fourier transforms of x(t) and x (t) are as 
shown in Figure 1.6. The Fourier transform of x(t) is shown to be band-
limited, meaning that it has no components beyond a cut-off frequency fc. The 
sampled data has a Fourier transform which consists of an infinite train of the 
Fourier transforms of x(t) centered at frequency intervals of (k/ T) for all k. 
Recall that the sampling interval is T, so that the sampling frequency fs = 
(1/ T). 

If the cut-off frequency fc is greater than one-half of the sampling fre-
quency fs, the Fourier transform of the sampled data will be as shown in  
Figure 1.7. In this case, the spectrum of the sampled data is different from 
that of the input signal in the region where the neighboring spectra overlap as 
shown by the shaded region in Figure 1.7. This implies that frequency com-
ponents estimated from the sampled data in this region will be in error, due to 
a phenomenon known as �aliasing�. 

It is clear from the above discussion that in order to avoid errors due to 
aliasing, the bandwidth of the input signal must be less than half the sampling 
frequency utilized in obtaining the sampled data. This requirement is known 
as the �Nyquist criterion�. 
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Fig. 1.6 Fourier transform of the sampled data function as a convolution of the  
Transforms X(f) and (f). The sampling frequency is fs, and X(f) is band-limited  
between fc. 

 
Fig. 1.7 Fourier transform of the sampled data function when the input signal is band-
limited to a frequency greater than half  the sampling frequency. The estimate of fre-
quencies from sampled data in the shaded region will be in error because of aliasing. 

In order to avoid aliasing errors, it is customary in all sampled data systems 
used in phasor estimation to use anti-aliasing filters which band-limit the in-
put signals to below half the sampling frequency chosen. Note that the signal 
input cut-off frequency must be less than one half the sampling frequency. In 
practice, the signal is usually band-limited to a value much smaller than the 
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one required for meeting the Nyquist criterion. Anti-aliasing filters are gener-
ally passive low-pass R-C filters [11], although active filters may also be used 
for obtaining a sharp cut-off characteristic. In addition to passive anti-aliasing 
filters, digital filters may also be used in special cases (e.g., with oversam-
pling and decimation). All anti-aliasing filters introduce frequency-dependent 
phase shift in the input signal which must be compensated for in determining 
the phasor representation of the input signal. This will be discussed further in 
Chapter 5 where the �Synchrophasor� standard is described. 



DFT is a method of calculating the Fourier transform of a small number of 
samples taken from an input signal x(t). The Fourier transform is calculated at 
discrete steps in the frequency domain, just as the input signal is sampled at 
discrete instants in the time domain. Consider the process of selecting N sam-
ples: x(k T) with {k = 0, 1, 2, ····· ,N � 1}, T being the sampling interval. 
This is equivalent to multiplying the sampled data train by a �windowing 
function� w(t), which is a rectangular function of time with unit magnitude and 
a span of N T. With the choice of samples ranging from 0 to N � 1, it is clear 
that the windowing function can be viewed as starting at � T/2 and ending at 
(N � 1/2) T. The function x(t), the sampling function (t), and the windowing 
function w(t) along with their Fourier transforms are shown in Figure 1.8. 

Consider the collection of signal samples which fall in the data window: 
x(k T) with {k = 0,1,2, ····· ,N � 1}. These samples can be viewed as being 
obtained by the multiplication of the signal x(t), the sampling function (t), 
and the windowing function (t): 
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where once again the multiplication with the delta function is to be under-
stood in the sense of the integral of Eq. (1.9). The Fourier transform of the 
sampled windowed function y(t) is then the convolution of Fourier transforms 
of the three functions. 

The Fourier transform of y(t) is to be sampled in the frequency domain in 
order to obtain the DFT of y(t). The discrete steps in the frequency domain 
are multiples of 1/T0, where T0 is the span of the windowing function. The 
frequency sampling function (f) is given by 
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Fig. 1.8 Time functions and Fourier transforms x(t), (t), and (t). Note that once 
again the phase shift factor from (f) has been omitted. 
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and its inverse Fourier transform (by Property 6 of Fourier transforms) is 
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In order to obtain the samples in the frequency domain, we must multiply the 
Fourier transform Y(f) with F(f). To obtain the corresponding time domain 
function x (t) we will require a convolution in the time domain of y(t) and (t): 

x (t) = y(t)* (t) 
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This function is periodic with a period T0. The functions x(t), y(t), and x (t) 
are shown in Figure 1.9. The windowing function limits the data to samples 0 
through N � 1, and the sampling in frequency domain transforms the original 
N samples in time domain to an infinite train of N samples with a period T0 as 
shown in Figure 1.9 (c). Note that although the original function x(t) was not 
periodic, the function x (t) is, and we may consider this function to be an ap-
proximation of x(t). 

The Fourier transform of the periodic function x (t) is a sequence of impulse 
functions in frequency domain by Property 5 of the Fourier transform. Thus 
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Substituting for x (t) in the above expression for n, 
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Fig. 1.9 (a) The input function x(t), its samples (b), and (c) the Fourier transform of 
the windowed function x (t). 
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The index m designates the train of periods shown in Figure 1.9 (c). Since 
the limits on the integration span one period only, we may remove the sum-
mation on m, and set m = 0, thus using only the samples over the period 
shown in bold in Figure 1.9 (c). Equation (1.15) then becomes 
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Since there are N samples in the data window T0, N T = T0. Therefore 
21
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Although the index n goes over all positive and negative integers, it should 
be noted that there are only N distinct coefficients n. Thus, N+1 is the same 
as 1 and the Fourier transform X (f) has only N distinct values corresponding 
to frequencies f = n/T0, with n ranging from 0 through N � 1: 
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Equation (1.22) is the definition of the DFT of N input samples taken at in-
tervals of T. The DFT is symmetric about N/2, the components beyond N/2 
simply belong to negative frequency. Thus the DFT does not calculate fre-
quency components beyond N/(2T0), which also happens to be the Nyquist 
limit to avoid aliasing errors. 

Also note that any real function of time can be written as a sum of a real and 
an odd function. Consequently, by Properties 2 and 3 above any real function 
of time will have real parts of the DFT as even functions of frequency and the 
imaginary parts of the DFT will be odd functions of frequency. 



The Fourier series coefficients of a periodic signal can be obtained from the 
DFT of its sampled data by dividing the DFT by N, the number of samples in 
the data window. Thus, the Fourier series for a function x(t) can be expressed 
by the formula 
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As there are only N components in the DFT, the summation on k in Eq. 
(1.23) is from {k = 0,····, N � 1}. 

 
Example 1.3 
Consider a periodic function x(t) = 1 + cos 2 f0t + sin 2 f0t. The function is 
already expressed in terms of its Fourier series, with a0 = 2, a1 = 1, and b1 = 1. 
The signal is sampled 16 times in one period of the fundamental frequency. 
The sampled data, the DFT, and the DFT divided by 16 (N, the number of 
samples) is shown in  Table 1.1. 

Table 1.1 Sampled data and Fourier transform of the periodic function t = 1 + cos 
2 f0t + sin 2 f0t 

Sample no. x(t) Frequency DFT X = DFT/16 
0 2.0000 0 16.0000 1.000 
1 2.3066 f0 8.0000 + j8.0000 0.5000 + j0.5000 
2 2.4142 2f0 0.0000 � j0.0000 0.0000 + j0.0000 
3 2.3066 3f0 0.0000 � j0.0000 0.0000 + j0.0000 
4 2.0000 4f0 0.0000 + j0.0000 0.0000 + j0.0000 
5 1.5412 5f0 �0.0000 + j0.0000 0.0000 + j0.0000 
6 1.0000 6f0 0.0000 + j0.0000 0.0000 + j0.0000 
7 0.4588 7f0 0.0000 � j0.0000 0.0000 + j0.0000 
8 0.0000 � �0.0000 0.0000 + j0.0000 
9 �0.3066 �7f0 0.0000 + j0.0000 0.0000 + j0.0000 

10 �0.4142 �6f0 0.0000 � j0.0000 0.0000 + j0.0000 
11 �0.3066 �5f0 �0.0000 � j0.0000 0.0000 + j0.0000 
12 �0.0000 �4f0 0.0000 + j0.0000 0.0000 + j0.0000 
13 0.4588 �3f0 0.0000 + j0.0000 0.0000 + j0.0000 
14 1.0000 �2f0 0.0000 + j0.0000 0.0000 + j0.0000 
15 1.5412 �f0 8.0000 � j8.0000 0.5000 � j0.5000 

 
 
 
The last column contains the Fourier series coefficients. Note that the DC 

component a0 appears in the 0th position, while the fundamental frequency 
component appears in the 2nd and 15th position. The cosine term being an 
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even function produces real parts which are even functions of frequency (0.5 
at f0), while the sine term is an odd function of time and produces odd  
functions of frequency (  j0.5 at f0). The coefficient a1 is obtained by adding 
the real parts corresponding to f0 and �f0 in the (DFT/16) column, while the 
coefficient b1 is obtained by subtracting the imaginary part of the �f0 term 
from the imaginary part of the f0 term: 

a0 = 2X0 = 2 
a1 = Real(X1 + XN � 1) = 1 
b1 = Imaginary(X1 � XN � 1) = 1 
 
From the above example it is clear that for real functions x(t) the Fourier 

series coefficients of a periodic function can be obtained from the DFT of its 
sampled data by the following formulas: 

a0 = 2.X0 
ak = 2.Real(Xk) 
bk = 2.Imaginary(Xk) for k = 1, 2, ,····, N/2 � 1. 



A sinusoid x(t) with frequency kf0 with a Fourier series 
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has a phasor representation (see Section 1.2) 
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2

j
k k kX a b e , (1.25) 

where the square-root of 2 in the denominator is to obtain the rms value of 
the sinusoid. The phasor in complex form becomes 

1 ( )
2k k kX a jb . (1.26) 

Using the relationship of the Fourier series coefficients with the DFT, the 
phasor representation of the kth harmonic component is given by 
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Using the notation x(n T) = xn, and 2 /N = is the sampling angle 
measured in terms of the period of the fundamental frequency component) 
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If we define the cosine and sine sums as follows: 
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then the phasor Xk is given by 

.k kc ksX X jX  (1.31) 

Equations (1.29) through (1.31) will be used to represent the phasor in 
most of the computations in the rest of our discussion. 

 
Example 1.4 
Consider a signal consisting of a DC component, and 60 Hz, 120 Hz, and 300 
Hz components: 

x(t) = 0.5 + cos(120 t + /4) + 0.2 cos(240 t + /8) + 0.3 cos(600 t). 
Note that the signal is real, but not an even or odd function of time, and 

hence by Property 4 above, the real part of the Fourier transform will be even, 
and the imaginary part will be odd functions of frequency. 

The signal is sampled at 1440 Hz, and the following 24 samples are ob-
tained over a window of 16.66 ms, which corresponds to one period of the 60-
Hz signal. There will be 24 frequency samples of the DFT. They are calcu-
lated and tabulated in Table 1.2.: 
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Table 1.2 Spectrum created by DFT 

Sample no. x(k) Frequency DFT DFT/24 
0 1.6919 0 12.0000 + j0.0000 0.5000 + j0.0000 
1 1.1994 f0 8.4853 � j8.4853 0.3535 � j0.3535 
2 0.5251 2f0 2.2173 � j0.9184 0.0924 � j0.0383 
3 0.2113 3f0 0.0000 � j0.0000 0.0000 � j0.0000 
4 0.2325 4f0 0.0000 � j0.0000 0.0000 � j0.0000 
5 0.0915 5f0 3.6000 � j0.0000 0.1500 � j0.0000 
6 �0.3919 6f0 �0.0000 � j0.0000 �0.0000 � j0.0000 
7 �0.7776 7f0 0.0000 � j0.0000 0.0000 � j0.0000 
8 �0.6420 8f0 �0.0000 � j0.0000 �0.0000 � j0.0000 
9 �0.2113 9f0 �0.0000 � j0.0000 �0.0000 � j0.0000 

10 �0.0474 10f0 �0.0000 + j0.0000 �0.0000 + j0.0000 
11 �0.2454 11f0 0.0000 � j0.0000 0.0000 � j0.0000 
12 �0.3223 � 0.0000+ j0.0000 0.0000 + j0.0000 
13 0.0441 �11f0 0.0000 + j0.0000 0.0000 + j0.0000 
14 0.5271 �10f0 �0.0000 � j0.0000 �0.0000 � j0.0000 
15 0.6356 �9f0 �0.0000 + j0.0000 �0.0000 + j0.0000 
16 0.4501 �8f0 �0.0000 + j0.0000 �0.0000 + j0.0000 
17 0.5119 �7f0 0.0000 + j0.0000 0.0000 + j0.0000 
18 1.0223 �6f0 �0.0000 + j0.0000 �0.0000 + j 0.0000 
19 1.5341 �5f0 3.6000 + j0.0000 0.1500 + j 0.0000 
20 1.5898 �4f0 0.0000 + j0.0000 0.0000 + j 0.0000 
21 1.3644 �3f0 0.0000 + j0.0000 0.0000 + j 0.0000 
22 1.3648 �2f0 2.2173 + j0.9184 0.0924 + j 0.0383 
23 1.6420 �f0 8.4853 + j8.4853 0.3535 + j 0.3535 

 
The Fourier series coefficients are 

a0 = 1.0, 
a1 = 0.707, 
b1 = �0.707, 
a2 = 0.1848, 
b2 = �0.0766, 
a5 = 0.3, 
b5 = 0.000, 

leading to the Fourier series 
x(t) = 0.5 + 0.707cos(120 t) � 0.707sin (120 t) + 0.1848cos (240 t) � 

0.0766sin (240 t) + 0.3 cos (600 t) 
which agrees with the expression for the input signal. 


