
Chapter 6 

CHOPPER-CONTROLLED D.C. BRUSH 
MOTOR DRIVES 

6.1. INTRODUCTION 

The d.c. chopper is a d.c. to d.c. power electronic converter (PEC) with 
forced commutation. It is used for armature voltage control in d.c. brush 
motor drives. D.c. sources to supply d.c. choppers are batteries or diode 
rectifiers with output filters so typical for urban electric transportation 
systems or to low power d.c. brush motor drives. Thyristors, bipolar power 
transistors, MOSFETs or IGBTs are used in d.c. choppers. 

The basic configurations are shown in Table 6.1 and they correspond to 
single, two- or four-quadrant operation. 

Table 6.1. Single-phase chopper configurations for the d.c. brush motors 
Type Chopper configuration ea-Ia 

characteristics 
Function 

First-quadrant 
(step-down) 

choppers 
ia

e

RaLa

D1 Va

S1

g

+

-

io
+

-

Vo

Va = V0 for S1 on 
Va = 0 for S1 off and D1 on

Second 
quadrant, 

regeneration  
(step-up) 
chopper 

ia

e

RaLaD2

VaS2 g

+

-

io
+

-

Vo

Va = 0 for S2 on 
Va = V0 for S2 off and D2 

on 

Two quadrant 
chopper 

ia

e

Ra

+

-

Vo La

D1
S2 g

D2S1

ea = e0 for S1 or D2 on 
ea = e0 for S2 or D1 on 

ia>0 for S1 or D1 on 
ia<0 for S2 or D2 on 

Two quadrant 
chopper 

e
RaLa

D1

S2

g

+

-

Vo

D2

S1

Va = +V0 for S1 & S2 on 
Va = –V0 for S1 & S2 off 

and D1 & D2 on 

119 



120      Chopper-controlled d.c. brush motor drives 

Four quadrant 
chopper 

e
RaLa

D2

S1

g

+

-

Vo

D3D1 S3

S2 D4
S4

S4 on & S3 off S1 & S2 
operated 

Va>0 ia - reversible 
S2 on & S1 off S3 & S4 

operated 
Va<0 ia - reversible 

The first-quadrant chopper (Figure 6.1) is operated by turning on the 
PES for the interval ton, when the supply voltage is connected to the load. 
During the interval toff, when the main switch is off, the load current flows 
through the freewheeling diode D1. The output voltage ea is shown in Figure 
6.1. 

Figure 6.1. First-quadrant chopper operation 

a. ) continuous mode; b.) discontinuous mode

The average voltage Vav is 

V e
t
T

Vav a
on= ⋅ ≤ 0 (6.1)

That is, a step-down chopper. 
Constant frequency (constant T) control is preferred in order to improve 

the input filter operation and reduce the possibility of discontinuous current 
mode (Figure 6.1b) operation. 

The voltage equation for constant speed is 

V R i L
di
dt

e K n   for  0 ta a a
a

g g e p on0 = ⋅ + ⋅ + = ⋅ ⋅ ≤ ≤;    e tλ
 (6.2) 

( )0 01 1

1

= ⋅ + ⋅ + ≤ ≤ =

<

R i L di
dt

e t t

T for disc

a a a
a

g on a; ; ,   t t      i  

 t ontiuous mode  (6.3) 

For continuous current mode t1 = T and ia(T) = ia(0) ≠ 0 for steady state. 
For the d.c. brush series motor 
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e K i n K ng ei a rem= ⋅ ⋅ + ⋅ (6.4)

In (6.4) Krem refers to the remnant flux while the magnetization curve of 
the machine is considered linear. 

The average output voltage for the discontinuous mode may be 
determined noting that the motor voltage is then zero 

V V t
T

e T t
T

Tav
on

g= + ⋅
−

≤0
1 ;        t1 (6.5)

The output current expressions are obtained from (6.2)-(6.3) 
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(6.6)
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ontinuous current1

1

1 (6.7) 

The continuity condition is  

ia(ton) = ia′(ton) (6.8)

The average output current iav is 

i

i dt i dt

Tav

a

t

a
t

ton

on=

+∫ ∫
0

1

'

(6.9)

For the second-quadrant chopper (Table 6.1b) the d.c. motor e.m.f. eg 
with S2 on produces a current rise in inductance La 

( )R i L
di
dt e ta a a

a
g on a⋅ + ⋅ = − ≤ ≤ =; ;      for  0 t    i 0 0

 (6.10) 

When S2 is turned off, the energy stored in the inductor is sent back to 
the source as long as V0 > Va 

V e R i L
di
dt Tg a a a

a
on0 − = − ⋅ − ⋅ ≤ ≤'

'
;    t t

(6.11)

with the solution 

i
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R B e ia

g

a

t
R
L

a

a

a= − + ⋅ +
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0
(6.12)
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The boundary conditions are 

= == (6.14) 

It is thus possible with eg<V0 to retrieve the energy back from the d.c. 
brush motor by using the inductor La as an energy sink (Figure 6.2). 

Figure 6.2. Second-quadrant chopper operation 

The two-quadrant chopper (Table 6.1c,d) is a combination of one first 
and one second-quadrant chopper. Finally two-quadrant choppers are 
combined to obtain a four-quadrant chopper. 

As the chopper is an on-off switch, the source current is chopped (Figure 
6.3). This makes the peak input power demand high. Also, the supply current 
(Figure 6.3) has harmonics which produce voltage fluctuations, signal 
interference, etc. 
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Figure 6.3. Source current waveforms 

a.) first-quadrant operation, b.) second-quadrant operation. 

An LC input filter (Figure 6.4) will provide a path for the ripple current 
such that only (approximately) the average current is drawn from the supply. 

The nth harmonic current in in the supply (Figure 6.4b) is 

( ) ( )
i X n

nX X n
I I

nf f
n

c

L C
sn

sn

ch r

=
−

=
−

/
/ / 2 1 (6.15)

Figure 6.4. First-quadrant chopper with LC input filter 

a.) basic circuit, b.) equivalent circuit for nth harmonic 

where fch is the chopping frequency (fch = 1 / T) and fr is the resonance 

frequency of the filter ( ) rch f32fLC2/1fr π= −. To avoid resonance ≥ .
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